
Description of EpiQuant Framework 
 

1. Development of the model framework 

The geography of a sample from which a bacterial isolate was recovered, the time or date of sampling, 

and the source of the sample, represent three common metadata descriptors that can be used for 

uniquely describing the epidemiology of a bacterial isolate. Much like a sequence of genetic features can 

be used to create a strain genotype in molecular epidemiology, this combination of descriptive 

epidemiological parameters can be used to describe the epidemiologic type or epi-type of an isolate, 

which can thus be used to assess the epidemiologic similarity of any two bacterial isolates collected in a 

surveillance setting. Our aim is thus to develop an approach that can be used to compute the 

epidemiological distance between two isolates based on a quantitative comparison of epi-types. 

In our model, the epidemiologic type or epi-type (Ɛ) of a bacterial isolate can be described by its position 

in a three-dimensional space defined by geospatial (g), temporal (t), and source (s) components and 

defined by the vector:  

 𝜀 = (𝑔, 𝑡, 𝑠) (1) 

The Epidemiological Distance between two epi-types (ΔƐ) is given by the weighted Euclidean distance 

between their respective vectors: 

 Δ𝜀 =  √𝛾(∆ 𝑔)2 + 𝜏(∆ 𝑡)2 + 𝜎(∆ 𝑠)2  (2) 

where Δg, Δt, and Δs represent the pairwise geospatial, temporal and source distances respectively and 

γ, τ, and σ represent adjustable coefficients for assigning weights to each component based on a priori 

epidemiological considerations. For example, a bacterial species known to be highly source-restricted 

may then require higher value for σ to provide additional weight to the source relative to the geospatial 

and temporal variables, to account for the increased significance when observing a difference in the 

source. 

2. Defining the components of the model.  

Since each component of the Ɛ vector represents a different form of information (geospatial, temporal, 

source), the distance calculation in each dimension requires a different mathematical treatment.  

A) Geospatial distance (Δg):  

The geographical distance between pairs of isolates is computed based on geographical positioning 

system (GPS) coordinates with distances between GPS coordinates calculated using geog.dist function of 

the ‘fossil’ package in R (1). Thus, the equation for calculating the geographic distance between two 

bacterial isolates can be written as: 



 𝛾(∆𝑔) =  𝛾({𝑑𝑖𝑠𝑡𝑎𝑏})  (3) 

where (distab) is the physical distance, in kilometres, between each pairwise comparison of isolates, 

calculated using the Haversine formula for deriving great-circle spherical distances from latitude and 

longitude GPS coordinates (2).  

 

B) Temporal distance (Δt):  

The temporal distance between pairs of isolates is computed based on the formula: 

 𝜏(Δ𝑡) =   𝜏({√∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 })  (4) 

where (x, y) represent the date of isolation of each pairing of isolates, in POSIX-time, which is defined as 

the time elapsed since January 01, 1970, rounded to the nearest day.  

 

C) Source distance (Δs):  

The source component is inherently more complex to quantify and to our knowledge, no system 

currently exists for estimating the likeliness of one epidemiologic source compared to another. 

Approaches based on using the genetic similarity of sources may provide good basis for assessing the 

similarity of plant or animal sources, however, when comparing environmental samples such as water or 

soil, this method loses its effectiveness. Because our example in this study uses data for Campylobacter  

jejuni, we chose to employ categories commonly used in describing the epidemiology of enteric 

pathogens (3). To this end, sources were redefined as fitting to animal, human or environmental 

categories, and then further differentiated based on additional epidemiologic attributes pertaining to 

each parental category. In essence, a line-list was created containing all the non-redundant sources in 

the dataset as the sample input, with descriptive epidemiologic attributes acting as the informative 

elements of the questionnaire. Each source exemplar is then assessed independently across all 

attributes with three possible outcomes for each attribute: strong association, partial or potential 

association, and little to no association. This effectively reduces each source into a consistent set of 

comparable attributes, which allows us to compute the distance for pairs of sources (Δs) based on the 

matching and partially matching attributes as a proportion of the total number of attributes examined. 

Thus, the statistic for source distance becomes: 
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where f(vi , ui)  is the function to compute the pairwise source similarity score from a matrix comprising 

rows of each source and columns of defined epidemiological attributes. The function f(vi , ui) compares 



the score from sources u, v in the column position i and based on complete, partial, or negative 

matches, returns a predefined score:  

 (0-0) matches: score of 1 

 (* - *) partial matches: score of 0.8 

 (*-0), (0-*), (1-*) and (*-1) partial matches: score of 0.2 

 (1-0) and (0-1) mismatches: score of 0. 

The sum of scores across all attributes is then divided by the total number of attributes resulting in a 

pairwise similarity estimate for two sources normalized to 1. Using this approach, it becomes possible to 

assign a pairwise similarity to any two bacterial isolates based solely on their descriptive epidemiologic 

source.  

3. Derivation of the ΔƐ statistic. 

To account for the skewed contributions of geospatial and temporal components when Δg and Δt are 

high (4), we apply a logarithmic correction to the distribution of these data in the dataset. Our rationale 

is that the epidemiological signal of geographical and temporal distances should decay rapidly as these 

distances increase. The epidemiological relevance of temporal information for isolates separated by 1 

year should have no greater impact than that of isolates separated by 10 years and we expect a similar 

relationship for geographical distance. Conversely, for isolates sampled with very close geographical or 

temporal proximity, the epidemiological significance of geographical or temporal data is likely to be 

extremely high. Thus, by applying a logarithmic correction to Δg and Δt, we shape the distribution of the 

resulting similarity values such that they provide a greater significance to isolates of closer temporal or 

geographic distance.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Temporal distance calculated from sampling  metadata 
accompanying 654 isolates of Canadian C. jejuni 



 

 

To calculate the relative geospatial distance for pairs of isolates in the dataset the distances (in km) are 

calculated between each isolate pair and treated as a proportion of the largest distance in the dataset. A 

similar treatment is performed on the temporal data, where the individual pairwise distances (in 

number of days) are calculated based on the day of isolation of each isolate and treated as a proportion 

of the largest temporal distance in the dataset. This effectively reduces each estimate to a proportional 

value out of 1, and allows us add the contributions from geospatial distance, temporal distance and 

source distance together directly. 

Substituting the geospatial, temporal and source distance equations (3 – 5) and incorporating the 

logarithmic corrections into Equation 2 yields our final model for computing the basic Epidemiologic 

Distance metric (ΔƐ) between any two bacterial isolates, which is presented in Equation 6:  

∆𝜀 =  √𝛾(log{𝑑𝑖𝑠𝑡𝑎𝑏})2 + 𝜏 (log {√∑(𝑥𝑖 − 𝑦𝑖)2
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  (6) 
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