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Abbreviations 
 
1KGP: 1000 Genomes Project 
eQTL: Expression quantitative trait locus. Defined by a (eGene, eVariant, tissue) triplet. 
eGene: Gene implicated in an eQTL 
eVariant: Variant implicated in an eQTL 

• eSNV: Single nucleotide eVariant 
• eIndel: Small insertion/deletion eVariant 
• eSV: Structural eVariant 

FDR: False discovery rate 
GWAS: Genome-wide association studies 
Indel: Small insertion/deletion variant 
IRS: Intensity rank sum 
LD: Linkage disequilibrium 
MAF: minor allele frequency 
PCA: Principal component analysis 
SNP: Single nucleotide polymorphism 
SNV: Single nucleotide variant 
SV: Structural variant 
WGS: Whole-genome sequencing 
 
Types of structural variation 

• DEL (BP, RD): deletion ascertained by LUMPY with breakpoint evidence, with supporting read-
depth evidence from Genome STRiP or CNVnator  

• DUP (BP, RD): duplication ascertained by LUMPY with breakpoint evidence, with supporting 
read-depth evidence from Genome STRiP or CNVnator  

• DEL (RD): deletion ascertained by Genome STRiP, without breakpoint evidence from LUMPY  
• DUP (RD): deletion ascertained by Genome STRiP, without breakpoint evidence from LUMPY 
• mCNV: multi-allelic copy number variant ascertained by Genome STRiP, without breakpoint 

evidence from LUMPY 
• rMEI: reference mobile element insertion 
• INV: inversion ascertained by LUMPY 
• BND: generic breakend ascertained by LUMPY. These included small deletions/duplications 

lacking read-depth evidence, balance rearrangements, mobile element insertions, and other 
uncategorized structural variation. 

• CNV: copy number variant (deletion or duplication structural variant). Encompasses DEL, DUP, 
and mCNV. 
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1. Comparison to 1000 Genomes Project 
1.1 Comparison to 1000 Genomes Project variant call set 
SNVs and indels 

To estimate the accuracy of our variant call set, we compared it to the well-characterized 1000 
Genomes Project (1KGP) Phase 3 call set derived from low-coverage (median 7.4X) WGS of 2,504 

individuals from diverse ancestries1,2. Despite considerable differences in experimental design, such as 
cohort size, sequencing coverage depth, and population ancestry, we detected roughly similar numbers 

of SNVs and indels per person to 1KGP and similarly elevated variant counts in individuals of African 

ancestry compared to Europeans (Supplementary Table 1). Our call set is also comparable by typical 
quality control metrics such as transition/transversion ratio (GTEx: 2.13; 1KGP: 2.08) and the fraction of 

exonic indels that are out-of-frame (GTEx: 0.80; 1KGP: 0.82) (Supplementary Table 3). Furthermore, 
we recapitulate 94.8% (7,743,012/8,167,029) of 1KGP biallelic SNVs and 61.8% (648,474/1,049,038) 

of 1KGP biallelic indels with European variant allele frequency ≥ 0.01 (the predominant ancestry in the 
GTEx cohort). 

 
SVs 

SVs detected in this study demonstrated similar call set summary characteristics to 1KGP. Both studies 
showed consistent trends in the relationship between SV length and minor allele frequency, with larger 

variants tending to be rarer, as well as a dense band of Alu SINE insertions at approximately 300 bp 

(Supplementary Fig. 1a,b). The two studies also showed similar distributions in the number of SVs 
ascertained of a given size (Supplementary Fig. 1c). Tandem duplications detected by LUMPY using 

read-pair and/or split-read evidence in this study (DUP) were considerably smaller than those in 1KGP, 
reflecting a difference in detection algorithms and the difficulty in identifying small CNVs with read-depth 

evidence. 
 

We observed a similar number of SVs per person to the 1000 Genomes Project, with each exception of 
tandem duplications (DUPs), for which we find significantly more variants (Supplementary Table 1). 

This is due to the fact that the vast majority (89%) of DUPs reported by 1KGP were larger than 10 kb, 
whereas we report many smaller DUPs as well (83% less than 10 kb). We also find a somewhat larger 

number of CNVs by read-depth analysis, presumably due to the greater resolution afforded by deep 

coverage data (median 49.9X (GTEx) vs. 7.4X (1KGP)). 



 

We compared the overlap between our SV calls and those reported by 1KGP and found that 38.7% of 
our high confidence calls were previously reported, including 37.2% of the SVs used for eQTL mapping, 

and thus are presumably not false positives. Importantly, there are not any obvious differences in 
quality between the “known SVs” that were previously reported by 1KGP, or the “novel SVs” that are 

unique to our study. When we map eQTLs using solely SVs (in the absence of competing SNVs and 
indels), we find that known SVs and novel SVs map eQTLs at the same rate, showing that they are 

equally effective at tagging haplotypes with the exception of tandem duplications which are known to 
have very different size profiles (Supplementary Fig. 2a). Consistent with this, known SVs and novel 

SVs have similar patterns of linkage disequilibrium (LD) as judged by their maximal r2 value to flanking 
SNVs (Supplementary Fig. 3). Known and novel SVs also comprise a similar fraction of putatively 

“causal” SVs predicted to underlie eQTLs (Supplementary Fig. 2b), have similar validation rates by 

IRS statistics (Supplementary Fig. 2c), and show a similar pattern of effect size direction when gene 
coding regions are duplicated or deleted (Supplementary Fig. 4). 

 
Moreover, we estimated the false discovery rate (FDR) of high confidence GTEx CNVs to be 2.9%, 

using the Genome STRiP Intensity Rank Sum annotator and the log R ratio (log2(Robserved/Rexpected)) of 
intensity values from Illumina Omni 5M genotyping arrays. This FDR is similar to the 2-4% FDR 

estimated by the 1000 Genomes Project using the same algorithm and Affymetrix SNP6 or Illumina 
Omni 2.5M arrays. 

 

1.2 Comparison to 1000 Genomes Project SV-eQTL mapping 
Our analysis attributes a substantially higher portion of eQTLs to SVs than the 1000 Genomes Project1. 
In whole blood, joint eQTL mapping of SVs, SNVs, and indels revealed an SV to be the lead marker at 

2.2% (41/1,899) of protein-coding eQTLs, compared to the 0.56% (54/9,591) of SV-eQTLs mapped by 
1KGP in lymphoblastoid cell lines (LCLs). Here we investigate potential biological and technical sources 

for the discrepancy between these two findings. 
 

First, we note that while whole blood and LCLs represent similar underlying cell types, they have 
biologically distinct expression profiles that are further subject to procedural differences in RNA isolation 

and bioinformatics algorithms3. Indeed, only 14,750 of the 18,969 transcripts from 1KGP (and 8,593 of 
the 9,591 eQTLs from 1KGP) were expressed at sufficient levels to be tested in our study. Nonetheless, 

for the purpose of this comparison we evaluate whole blood because (1) it is the most similar tissue 

comparator in our data set to LCLs and (2) it is the tissue for which we have the greatest number of 



available samples (133 individuals) to compare with the 1KGP cohort of 446 individuals. We have also 

restricted analyses in this section to protein-coding genes from GENCODE v19 used in 1KGP, even 
though our broader analysis included non-coding RNA and pseudogenes that are enriched for SV-

eQTLs. 
 

Sample size can greatly affect the sensitivity of eQTL mapping studies. Previous work has 
demonstrated that eQTL discovery increases approximately linearly with sample size4. Indeed, serial 

downsampling of the number of individuals used in eQTL mapping for each tissue recapitulates this 
linear trend, as well as the tissue-specific differences in eQTL discovery rates when controlling for 

sample size (Supplementary Fig. 7a,b). By linear extrapolation, we estimate that with an equal 
number of samples to 1KGP, our methods would identify 10,148 protein-coding eQTLs in whole blood. 

This number closely approximates that 9,591 eQTLs actually discovered by 1KGP, and suggests a 

similar eQTL mapping efficiency between the two studies. A caveat is that eQTL mapping experiments 
with fewer samples are biased toward identifying loci with larger effect sizes, which may be a 

characteristic of SV-eQTLs (Supplementary Fig. 7c). Indeed the fraction of SV-eQTLs is slightly 
elevated in tissues with fewer available samples (Supplementary Fig. 7d). However, the relationship 

between sample number and effect size appears to plateau in the tissues with larger sample sizes 
(including whole blood), and is therefore unlikely to fully explain the SV-eQTL mapping difference 

between our study and 1KGP. 
 

Variant detection sensitivity and genotyping accuracy can also impact eQTL mapping efficiency. As 
described above, the GTEx call set is ostensibly similar to that of 1KGP (Supplementary Note 1.1). 

However, due to limitations of variant detection using low coverage sequencing, the 1000 Genomes 

Project performed a series of genotype refinement procedures to infer genotypes, in part, from 
predicted population haplotypes. While the resulting 1KGP call set is extremely high quality by most 

standards, the refinement procedure introduces haplotype dependence to the genotypes of distinct 
variants. Since assigning a causal marker to an eQTL is, at its core, a fine-mapping problem, the 

haplotype-based genotype refinement may confound the results in two ways: (1) an artificially strong 
interdependence between marker genotypes reduces the power to distinguish causal variants from the 

overall haplotype; and (2) variants with non-discriminating a priori genotype likelihoods (as is often the 
case for SVs) or those that are poorly tagged by a haplotype are likely to be systematically penalized. 

Indeed, among a set of 3,063 SVs that were detected by both our study and 1KGP (50% reciprocal 

overlap, matching variant type, and MAF ≥ 0.05), the genotypes from the 1KGP cohort exhibit markedly 
higher LD to the best linked SNV within 100 kb (Supplementary Fig. 8). The effect was similar whether 



the “best linked SNV” was defined by the GTEx call set (Supplementary Fig. 8a) or by the 1KGP call 

set (Supplementary Fig. 8b). SNVs detected by both studies show a similar trend that is unlikely 
caused by differences in genotyping quality due to the ease in genotyping these variants from deep 

WGS data (Supplementary Fig. 8c,d). In contrast, all genotype information in our study is derived 
solely from the primary read alignments, such that each individual SV, SNV or indel genotype was 

calculated independently from any other variant’s genotype using the raw sequencing data, with 
extremely deep coverage (median 49.9x), affording greater power to disentangle causal variants at 

eQTLs. 
 

Next, we evaluated eQTL mapping of the 2,577 SVs that were detected in both GTEx and 1KGP, and 
that had similar MAFs in the two studies (within 10%). This subset included 28.7% of the 8,980 eQTL-

eligible GTEx SVs and 19.6% of the 14,531 eQTL-eligible 1KGP SVs. In our study, these 2,577 SVs 

are the lead marker at 6 whole blood protein-coding eQTLs (compared with 10 eQTLs from 1KGP). 
Thus, our study maps 60% as many eQTLs for the same set of input SVs despite detecting 19.8% 

(1,899/9,591) as many eQTLs overall as a result of differences in sample size (Supplementary Fig. 7). 
This comparison indicates that on a per variant basis, we detect an approximately 3-fold as many SV-

eQTLs as 1KGP. The similarity of eQTL mapping sensitivity overall (see above) suggests that this 
difference is specifically due to SV genotype information, not other factors such eQTL mapping 

methodology, RNA expression data quality, etc. 
 

Most importantly, the ultimate effect of variant genotyping error is reduced power to map eQTLs, 
therefore any issues related to SV genotyping accuracy will result in false negative eQTLs, not false 

positive eQTLs. Thus, in the context of our WGS-based study, where most eQTLs can be detected by 

multiple linked variants, an increased SV genotyping error rate would decrease the number and fraction 
of SV-eQTLs relative to SNV-eQTLs or indel-eQTLs, and cause an underestimate of the impact of SV.  

 
We performed a simulation experiment to investigate the effect of genotyping error on the ability to map 

SV-eQTLs. A mere 5% increase in the genotyping error rate in SVs is sufficient to reduce SV-eQTL 
mapping rate by 19.6% (Supplementary Fig. 9). 

 
Finally, we compared the properties of SV-eQTLs discovered in this study to those in the 1000 

Genomes Project. The small number of SV-eQTLs (54) identified by 1KGP limited the interpretation of 

these data, but the two studies showed similar trends in the size distribution and number of each SV 
class (Supplementary Figs. 10-12). The exception to this similarity lies in tandem duplication SVs, for 



which methodologies in our study allowed detection of far more smaller events (Supplementary Fig. 
1). Overall, we recapitulated 32 of 47 (68.1%) previously identified LCL SV-eQTLs at eGenes also 
expressed in available tissues from our study. 

 

2. SV-eQTL detectability by alternative means 
While deep WGS provides greater sensitivity and genotyping accuracy for SV detection, its utility must 

be balanced against its relative cost compared to other technologies. To aid in the experimental design 
of future studies, we have conducted a series of experiments to estimate the number of SV-eQTLs that 

could have been detected with high throughput genotyping arrays. 

 
2.1 Tagging of structural variants by linked markers 
The extent to which structural variants are tagged by other genetic markers via linkage disequilibrium 
(LD) is an important consideration in the design of trait-mapping studies. Our analyses indicate that 

SVs exhibit weaker linkage to the surrounding haplotype than other variant types. Of 8,577 autosomal 
SVs in our study with minor allele frequency (MAF) ≥ 0.05, only 58.2% had a well-tagged (r2 ≥ 0.8) SNV 

or indel detected by WGS within 50 kb. This fraction is markedly lower than that of SNVs (79.4%) and 
slightly lower than indels (64.5%) (randomly downsampled to 10,000 variants of each type) 

(Supplementary Fig. 19a). Moreover, the weaker linkage of SVs is not likely to result solely from 
differences in genotyping quality because it is apparent in various subsets of SVs that had sufficiently 

high quality genotype information to map eQTLs and/or be judged as causal through various measures. 
For example, only 56.7% of the SV-eQTLs identified from the “SV-only” mapping exercise were well-

tagged based on r2 ≥ 0.8, as were 19.3% of the 243 autosomal eSVs identified by joint eQTL mapping, 

and 51.4% of the 766 autosomal SVs in the top 10% of composite causality scores (the set used for all 
functional analyses). In contrast, 77.6% of the SNVs judged as causal by joint eQTL analysis were well-

tagged. 
 

When tagging markers were limited to the 1,980,784 SNVs present on the widely used Illumina Omni 
2.5M genotyping array and detected by WGS in our GTEx cohort, only 46.7% of SVs (including 41.3% 

of predicted causal eSVs) had a probe with r2 ≥ 0.8 and only 69.6% (66.8% of predicted causal eSVs) 
had a probe with r2 ≥ 0.5 (Supplementary Fig. 19b). 

 
To investigate the consequences of omitting SVs from trait mapping studies, we assessed the fraction 

of SV-eQTLs that would have been discovered by linked SNVs or indels when SVs were excluded from 

the analysis. We ran FastQTL on the SNVs and indels alone and tracked the fate of the 828 SV-eQTLs 



(across 13 tissues) originally discovered by joint eQTL mapping. Overall 41.2% (341/828) of eQTLs did 

not meet genome-wide significance through SNV and indel eQTL mapping, demonstrating that a 
substantial portion of eQTL effects caused by SVs are invisible through linkage disequilibrium with 

nearby SNVs and indels detected by WGS (Supplementary Table 6). We note the important caveat 
that the power to detect eQTLs through non-causal markers is heavily influenced by sample size in 

addition to LD, a trend which is apparent in our data. However, even in whole blood, the tissue with the 
greatest number of available samples, 20.8% of eGenes originally mapped to SV-eQTLs did not meet 

genome-wide significance through other markers. 
 

2.2 Detection of SVs by genotyping array probe intensities 
Genotyping microarrays are a high-throughput and cost-effective technology that can detect CNVs 

through the signal intensities of genotyping probes. However, due to their low-resolution (commonly 2-5 
million probes per array), they are only sensitive to large CNVs that comprise the minority of genomic 

structural variation. In a typical array-based CNV detection workflow, aberrant signal intensity must be 
observed for at least 5 consecutive probes, and of the 17,040 CNVs identified in this study, only 12.9% 

and 24.2% spanned 5 probes for the Illumina Omni 2.5M and Omni 5M genotyping arrays respectively 
(Supplementary Fig. 20). Moreover, since common SVs are generally smaller than rare events, only 

3.8% (Omni 2.5M) and 13.9% (Omni 5M) of the CNVs with MAF ≥ 0.05 spanned 5 probes. CNVs that 
were in the 90th percentile of causality scores were spanned by 5 probes at similar frequencies, (Omni 

2.5M: 4.9%; Omni 5M: 16.0%). 
 

Finally, we compared CNV calls detected by WGS to those identified in any sample by either of these 

two array platforms in our data set (Omni 2.5M: 270 samples; Omni 5M: 178 samples). This included 
an additional 301 samples for which microarray data was available. Only 11.0% (1,873/17,040) CNVs 

(3.7% (208/5,643) of CNVs with MAF ≥ 0.05) were detected in any sample with either array platform, 
when requiring 50% reciprocal overlap. CNVs with a causality score in the 90th percentile were only 

detected on arrays at a rate of 6.2% (33/536). 
 

3. Examination of population substructure in rare variant analysis 
We examined the subpopulation structure within the 117 Caucasians used for our rare variant analysis 
to exclude the possibility that it may lead to non-causal co-occurrence of rare variants and expression 

outliers. Principal components analysis of the 117 Caucasian individuals using SNVs did not reveal 

clear population clusters (Supplementary Fig. 22), which suggests that subpopulation architecture is 
not a major confounding factor. A single outlier individual (GTEX-WHPG) who clustered with admixed 



Hispanic ethnicity did not account for an excess number of RNA expression outliers (30) or an excess 

number of “genetically explained” expression outliers that have a rare variant within 5 kb (11) 
(Supplementary Fig. 23), and exclusion of this individual did not significantly change our results or 

conclusions (Supplementary Fig. 24). 
 

None of the principal components calculated above correlate with the number of RNA expression 
outliers identified per individual (Supplementary Fig. 25a), or with the number of genetically explained 

expression outliers (Supplementary Fig. 25b). Thus, whatever population structure may exist in the 
data set, there is no evidence that it affects the comparison of rare variants and gene expression 

outliers. 
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Cohort (ancestry) 1KGP 
(European) 

GTEx 
(European) 

1KGP 
(African) 

GTEx 
(African) 

Number of individuals 503 122 661 23 

Median number of 
variants per individual 

SNVs 3.53M 3.39M 4.31M 4.07M 
Indels 546k 368k 625k 441k 

Deletions 1223 1369 1,431 1,620 
Duplications 10 516 14 564 

mCNVs 166 282.5 179 378 
Inversions 29 7 33 9 
Reference 

MEIs 661 1,095 764 1,264 

 
Supplementary Table 1. Median number of variants of each class per individual for this study (GTEx) 
and the 1000 Genomes Project (1KGP). 
 

[supp_table.02.xlsx] 
Supplementary Table 2. Excel file of all SV-only and joint eQTLs, along with causality scores 
 

Study Number of 
samples 

SNVs Indels 
Number of 

variants Ti/Tv Percent 
singletons 

Singleton 
Ti/Tv 

Number of 
variants 

Percent out of 
frame exonic 

Percent 
singleton 

GTEx 147 21,764,904 2.13 34.4% 2.12 3,030,964 80% 33.6% 
1KGP 

Phase 3 2,504 81,443,083 2.08 43.9% 1.97 3,363,851 82% 2.2% 

 
Supplementary Table 3. Number and characteristics of SNVs and indels discovered in GTEx and 
1KGP studies. 
  



Tissue # 
samples 

# expressed 
genes 

# expressed 
genes (protein-

coding) 
# joint 
eQTLs 

# joint 
SNV-

eQTLs 

# joint 
indel-

eQTLs 

# joint 
SV-

eQTLs 
Whole blood 133 23,931 15,335 2,596 2,205 314 77 

Cells (transformed 
fibroblasts) 116 23,745 15,036 3,573 3,083 404 86 

Muscle (skeletal) 116 23,906 15,487 1,813 1,550 208 55 
Lung 105 28,631 16,940 2,035 1,749 205 81 

Artery (tibial) 98 25,262 15,914 1,918 1,623 233 62 
Adipose 

(subcutaneous) 97 27,133 16,539 1,684 1,424 189 71 

Thyroid 89 28,472 16,795 2,032 1,746 217 69 
Esophagus (mucosa) 88 25,914 16,256 1,782 1,522 185 75 

Skin (sun exposed 
lower leg) 87 27,763 16,852 1,320 1,132 129 59 

Nerve (tibial) 82 27,762 16,604 1,520 1,298 162 60 
Esophagus 
(muscularis) 80 25,270 16,129 1,607 1,376 167 64 

Artery (aorta) 72 25,253 15,926 1,048 903 101 44 
Heart (left ventricle) 70 23,668 15,467 626 537 64 25 

Overall 145 34,053 18,126 23,554 20,148 2,578 828 
Overall distinct 

eGenes - - - 9,634 8,825 1,999 224 

Overall distinct 
eVariants - - - 19,342 16,959 2,383 253 

 
Supplementary Table 4. Number of samples, expressed (protein-coding) genes, and joint eQTLs from 
each tissue type. 
 

[supp_table.05.xlsx] 
Supplementary Table 5. Excel file of all SV-eQTL GWAS hits 
  



 
# 

samples 
# joint SV-

eQTLs 

# 
Attributed 
to SNP or 

indel 

% Attributed 
to  SNP or 

indel 

# Did not 
meet 

genome-wide 
significance 

% Did not meet 
genome-wide 
significance 

Whole blood 133 77 61 79.2% 16 20.8% 
Cells (transformed 

fibroblasts) 116 86 65 75.6% 21 24.4% 

Muscle (skeletal) 116 55 36 65.5% 19 34.5% 
Lung 105 81 44 54.3% 37 45.7% 

Artery (tibial) 98 62 35 56.5% 27 43.5% 
Subcutaneous 

adipose 97 71 41 57.7% 30 42.3% 

Thyroid 89 69 39 56.5% 30 43.5% 
Esophagus 
(mucosa) 88 75 46 61.3% 29 38.7% 

Skin (sun exposed 
lower leg) 87 59 33 55.9% 26 44.1% 

Nerve (tibial) 82 60 27 45.0% 33 55.0% 
Esophagus 
(muscularis) 80 64 30 46.9% 34 53.1% 

Artery (aorta) 72 44 18 40.9% 26 59.1% 
Heart (left ventricle) 70 25 12 48.0% 13 52.0% 

Overall 145 828 487 58.8% 341 41.2% 
 
Supplementary Table 6. Fate of SV-eQTLs when performing eQTL mapping in the absence of SVs. 
 
 

 
Rare 

variant type 
Num. outliers with 
rare variant within 

5 kb 
Num. 

outliers 
Shuffle 
median 

Shuffle 
2.5-%tile 

Shuffle 
97.5-%tile 

Fold 
enrichment 
of outliers 

Fold 
enrichment 
(95% CI) 

Per 
outlier 

SV 355 5,047 22 14 31 16.1 (11.5, 25.4) 
SNV 1,965 5,047 1,738 1,679 1,797 1.1 (1.1, 1.2) 
Indel 690 5,047 561 519 600 1.2 (1.2, 1.3) 
Any 2,417 5,047 1,974 1,912 2,035 1.2 (1.2, 1.3) 

         

 
Rare 

variant type 
Num. rare variants 
with outlier within 

5 kb 
Num. rare 
variants 

Shuffle 
median 

Shuffle 
2.5-%tile 

Shuffle 
97.5-%tile 

Fold 
enrichment 

of rare 
variants 

Fold 
enrichment 
(95% CI) 

Per 
variant 

SV 99 4,691 10 5 17 9.9 (5.8, 19.8) 
SNV 4,188 4,830,727 3,536 3,349 3,762 1.2 (1.1, 1.3) 
Indel 917 824,836 727 664 786 1.3 (1.2, 1.4) 
Any 5,204 5,660,254 4,275 4,071 4,528 1.2 (1.1, 1.3) 

 
Supplementary Table 7. Fold enrichment of the co-occurrence of gene expression outliers and rare 
variants in same sample on a per-outlier (top) and per-variant (bottom) basis. Shuffled medians and 
percentiles represent the number of co-occurrences expected by chance based on 1,000 random 
permutations of the outlier sample names. 
  



 
 
 
 

 Type Variants Outliers 

Deletions Simple 47 70 
Complex 3 4 

Duplications Simple 32 263 
Complex 6 13 

Balanced Inversions 2 4 
Complex 1 1 

 
Supplementary Table 8. Distribution of simple and complex rearrangements associated with gene 
expression outliers. After clustering SVs into complex variants present in the same individual(s) and 
located no more than 100 kb away from each other, a total of 99 SVs associated with expression 
outliers were collapsed into 91 events. 
 
 
 

Cluster ID Locus SV IDs Sample Class Coding 
Region Outlier Genes 

1565 1:25551621-25761207 LUMPY_BND_184573, 
LUMPY_DUP_176134 GTEX-NPJ7 Complex 

dup Yes 
ENSG00000117614.5, 

ENSG00000117616.13, 
ENSG00000183726.6 

1868 1:1388772-1429798 LUMPY_BND_93489, 
LUMPY_DUP_175996 GTEX-XGQ4 Complex 

dup Yes ENSG00000215915.5 

1902 20:32168930-55372800 LUMPY_DEL_135568, 
LUMPY_DEL_136038 GTEX-P4QR Complex 

del Yes ENSG00000124126.9 

258 11:47153961-47186142 

LUMPY_BND_186174, 
LUMPY_BND_186175, 

GS_DEL_CNV_11_47153934_471
66318, 

GS_DEL_CNV_11_47173052_471
86140 

GTEX-Q2AG Complex 
del Yes ENSG00000149179.9, 

ENSG00000149182.10 

3276 6:127656006-127656010 LUMPY_BND_182569, 
LUMPY_BND_193281 GTEX-OXRL Balanced Yes ENSG00000093144.14 

339 11:77413211-77786061 LUMPY_DUP_177173, 
LUMPY_DUP_177174 GTEX-UPIC Complex 

dup Yes ENSG00000087884.10, 
ENSG00000149262.12 

4274 X:78417460-78425402 LUMPY_DEL_174258, 
LUMPY_DEL_174259 GTEX-X8HC Complex 

del No ENSG00000147138.1 

1126 
16:26052128-26052227, 
16:26457178-26551538, 
16:26910809-27287111 

LUMPY_BND_119970, 
LUMPY_BND_178606, 
LUMPY_BND_188219, 
LUMPY_BND_188221, 
LUMPY_BND_188222, 
LUMPY_DUP_178610 

GTEX-QV31 Complex 
dup Yes ENSG00000155666.7, 

ENSG00000169189.12 

1629 19:50401535-50401536, 
19:52871602-52970915 

LUMPY_BND_179537, 
LUMPY_DUP_179549 GTEX-X261 Complex 

dup Yes 
ENSG00000269834.1, 
ENSG00000221923.4, 
ENSG00000167555.9 

4136 X:100747271-100747272 LUMPY_BND_195398 GTEX-OXRN Complex 
dup Yes ENSG00000196440.7, 

ENSG00000198960.6 
 
Supplementary Table 9. Complex SVs associated with expression outliers. Complex SVs were 
identified by clustering rare SVs located no more than 100 kb away from each other and present in the 
same individual(s). 
 
 



Supplementary Figure 1. Plots of the GTEx SV call set compared to the 1000 Genomes SV 
call set. (a) Heat scatter plots of SV size by minor allele frequency (MAF) showing the GTEx 
SV call set compared to (b) the 1000 Genomes Project SV call set from 2,504 individuals 
(Sudmant et al. 2015). (c) Size and number of ascertained variants for each SV type on a 
log-log axis scale for GTEx (top panel) and 1000 Genomes Project (1KGP) (bottom panel). 



Supplementary Figure 2. Comparison between (a) eQTL mapping rates in when SVs are 
mapped to expression phenotypes in the absence of SNVs and indels (“SV-only eQTL 
mapping”), (b) the fraction of common SVs predicted to be causal eSVs from the composite 
causality score, and (c) validation rates by Intensity Rank Sum (IRS) annotator. Note that the 
difference in eQTL mapping rate and validation for the DUP class is most likely due to the 
size distribution difference apparent in Supplementary Figure 1. Text above each bar 
denotes its denominator. 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Supplementary Figure 3. Maximum LD between each SV (MAF ≥ 0.05) and a marker within 
50 kb for (a) novel SVs and (b) SVs previously detected by 1KGP. 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Supplementary Figure 4. Median effect size (across all tissues, eGenes) for each eSV from 
SV-only eQTL mapping that overlapped with at least one exon of any gene for (a) novel SVs 
and (b) SVs detected by 1KGP. 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Supplementary Figure 5. Availability of RNA-seq expression data for 544 samples in the GTEx 
project, of which 147 samples had whole genome sequencing (WGS) data that passed quality 
control. Common eQTL mapping was performed on the 13 tissues with at least 70 individuals 
with both WGS and expression data (bounded by blue bars). Rare variant analysis was 
conducted on 117 individuals of European ancestry with at least 5 tissues with expression data 
per individual (green bars). Expression outliers for the rare variant analysis were defined using 
all 544 individuals and all 44 tissues.

Supplementary Figure 6. Number and fraction of SVs ascertained by LUMPY, Genome STRiP, 
or both algorithms for (a) common SVs eligible for eQTL mapping, (b) joint eQTL mapping 
winners, and (c) predicted causal eSVs in the 90th percentile of causality scores 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Supplementary Figure 7. Number of significant eGenes per tissue for (a) all genes and (b) all 
protein-coding genes. (c) Mean effect size for eQTLs and (d) fraction of eGenes with lead SV 
marker detected by serial downsampling within each tissue. 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Supplementary Figure 8. Linkage disequilibrium patterns at SVs (a,b) and SNVs (c,d) 
discovered by both GTEx and 1KGP studies and with MAF ≥ 0.05. Shown is the maximal r2 

value to SNVs within 100 kb detected by both GTEx and 1KGP, using the most tightly linked 
SNV based on genotypes from GTEx (a,c) and 1KGP (b,d) studies. 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Supplementary Figure 9. The fraction of eQTLs in whole blood with an SV as the lead marker 
as a function of injected SV genotyping error, for which a fraction of the samples were assigned 
a random genotype value drawn from the allele frequency distribution at each site. 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Supplementary Figure 10. Minor allele frequency of (a) eSVs in the 90th percentile of causality 
scores in our study, compared with (b) eSVs identified by the 1000 Genomes Project (Sudmant 
et al., 2015). 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Supplementary Figure 11. Size distribution of (a) eSVs in the 90th percentile of causality 
scores in our study, compared with (b) eSVs identified by the 1000 Genomes Project (Sudmant 
et al., 2015). 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Supplementary Figure 12. Overlap with genomic elements for eSVs in the 90th percentile of 
causality scores in our study (blue), compared with eSVs identified by the 1000 Genomes 
Project (red) (Sudmant et al., 2015). GTEx N=789; 1KGP N=48. 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Supplementary Figure 13. Heat scatter plots (grouped by tissue) showing the heritability of 
each eQTL apportioned to the most significant SV in the cis window (x-axis) and the additive 
effect from the top 1,000 most significant SNVs and indels in the cis window for (a) SV-only and 
(b) joint eQTL mapping analyses. 



Supplementary Figure 14. Relationship between eQTL effect size and minor allele frequency 
(MAF). (a) Absolute effect size of joint eQTLs within each bin of minor allele frequency (MAF) for 
SVs, SNVs, and indels. Black dots represent the median of each distribution, and values 
beneath indicate the number of observations in each distribution. (b) Number of eQTLs in each 
bin of minor allele frequency, by variant type.

Supplementary Figure 15. (a) Comparison between CAVIAR causal probabilities and the SV 
heritability fraction (hsv2/hcis2) from the GCTA linear mixed model analysis. (b) Relationship 
between nominal p-value from FastQTL and CAVIAR causal probability and (c) the ranking 
among the 101 variants included for each eQTL by nominal p-value and CAVIAR causal 
probability. 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Supplementary Figure 16. (a) eGene classes for eQTLs with SNV, indel, or SV lead markers 
through joint eQTL mapping, as well as the eGene classes for predicted causal eSVs. (b) Loss 
of function gene constraint score (-log10(probability loss of function intolerance)) from ExAC for 
eQTLs with SNV, indel, or SV lead markers through joint eQTL mapping, as well as the eGene 
classes for predicted causal eSVs. (c) Fold enrichment for overlap with segmental duplications 
(error bars: 95% confidence interval) compared to 1,000 randomly shuffled permutations non-
gapped genomic regions within 1 Mb of a gene transcript. 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Supplementary Figure 17. Additional genomic features showing fold enrichment for SVs in 
each composite causality quantile bin compared to the median of 100 permutations with 
randomly shuffled genomic positions. SVs that overlap with exons of the eGene were excluded. 
Each annotated feature was allowed 1 kb of flanking sequence on either side for intersection, 
except GENCODE genes and GENCODE exons (no flanking sequence) and topologically 
associated domain boundaries (5 kb flanking sequence). 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Supplementary Figure 18. (a) A polymorphic mobile element insertion defining exon 
boundaries of CASP8 reduces the gene’s expression and is linked with a risk allele for 
melanoma (rs13016963). (b) A large 32,197 bp deletion of the LCE3C and LCE3B genes that 
was previously identified as a risk factor for psoriasis was recapitulated by our study. (c) A ~37 
kb deletion of the GSTT2 (glutathione S-transferase theta-2) linked to a GWAS marker of 
circulating gamma-glutamyl transferase levels (rs2739440). 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Supplementary Figure 19. Distribution of maximum LD (r2) from variants of each type (MAF ≥ 
0.05) to a marker within 50 kb among (a) all SNVs and indels detected by WGS and (b) only 
SNVs present on the Illumina Omni 2.5M genotyping array. 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Supplementary Figure 20. Number of probes spanned by each CNV (DEL, DUP, or mCNV) on 
(a) the Illumina Omni 2.5M genotyping array and (b) the Illumina Omni 5M genotyping array.

Supplementary Figure 21. Histogram showing the number of outlier genes per SV (among the 
SVs within 5 kb of an outlier gene in the same individual). 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Supplementary Figure 22. Principal components based on SNV genotypes from the 117 rare 
variant samples. 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Supplementary Figure 23. Population clustering of the 117 samples used in the rare variant 
analysis (hollow circles) based on 1000 Genomes Project architecture showing (a) principal 
components 1,2 and (b) principal components 2,3. A single genetic outlier (GTEX-WHPG) 
clusters with admixed Americans, and has a greater burden of singleton or doubleton SNVs (c). 
However, this individual does not exhibit a greater burden of expression outliers (d). 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Supplementary Figure 24. Result of rare variant analysis excluding the 19 samples with more 
than 50,000 singleton or SNVs. 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Supplementary Figure 25. Correlation between principal components for the 117 samples in 
the rare variant analysis and (a) the number of expression outliers or (b) the number of 
expression outliers with a rare variant within 5 kb in the same sample. 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Supplementary Figure 26. Fold enrichment of rare variants within 5 kb of expression outliers 
for (a) SVs, (b) SNVs, and (c) indels gated on impact score percentile. Panels (d-f) show the 
fold enrichment of expression outliers within 5 kb of rare variants for (d) SVs, (e) SNVs, and (f) 
indels. For SVs, impact score percentile was based on the highest CADD scoring base in the 
affected interval and the confidence intervals around the SV breakpoints. For SNVs and indels 
the impact score percentile was derived from the CADD score of the variant. 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Supplementary Figure 27. Number and percent of gene expression outliers that have a rare 
variant of each type within 5 kb of the gene. For each area of the Venn diagram, bold text shows 
the number (top) and percent (bottom) of the 5,047 expression outliers observed to be within 5 
kb of a rare variant in the same individual. Italic text shows the number and percentage of 
outliers in excess of the median from 1,000 random permutations of the outlier dataset, with the 
95% confidence intervals in parentheses.

Rare SV
No rare variant

184; +173 (166, 179)
3.6%; +3.4% (3.3%, 3.5%)

2630; -441 (-382, -501)
52.1%; -8.7% (-7.6%, -9.9%)

1,433; +38 (-25, 91)
28.4%; +0.8% (-0.5%, 1.8%)

247; +23 (-5, 50)
1.0%; +0.5% (-0.1%, 1.1%)

21; +20 (17, 21)
0.4%; +0.4% (0.3%, 0.4%)

110; +103 (98, 108)
2.2%; +2.0% (1.9%, 2.1%)

40; +38 (34, 40)
0.8%; +0.8% (0.7%, 0.8%)

382; +48 (17, 80)
7.6%; +1.0% (0.3%, 1.6%)

Rare SNV Rare indel


