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S1. Derivation of effective velocity and diffusion of transported particles for
large times for a general model of intracellular transport. Examples: the
2-state and 4-state models

Consider particle dynamics that can be described by the following advection-
reaction-diffusion equations:

∂u

∂t
= Au+ C∂yu+D∂2yu , (1)

where u is an n-by-1 column vector of all populations of particles with differ-
ent dynamic behavior, A,C,D ∈ Rn×n, with A the matrix of transition rates
between the n states, C a diagonal matrix with real entries corresponding
to velocities, and D a diagonal matrix with positive real entries for diffusion
coefficients, respectively, of the n populations.

Taking the ansatz

(u1, u2, . . . , un)T (y, t) = eλteνyũ0 , (2)

with ν = ik , equation (1) becomes:

(A+ νC + ν2D − λI)ũ0 = 0 . (3)



Let u0 be the eigenvector of the zero eigenvalue of A, and v be in the
generalized eigenspace V corresponding to all non-zero eigenvalues of A. Let
ψ0 be the eigenvector corresponding to the zero eigenvalue of the adjoint
matrix A∗.

Taking ũ0 = au0 + v allows us to apply a Lyapunov-Schmidt reduction
to equation (3) by projecting it onto the V and u0 spaces.

1. Projection onto V -space:

eqn− 〈ψ0, eqn〉
〈ψ0,u0〉

u0 ,

where eqn denotes equation (3). This gives:

a(A + νC + ν2D − λI)u0 + (A+ νC + ν2D − λI)v (4)

− a
〈ψ0, (νC + ν2D − λI)u0〉

〈ψ0,u0〉
u0 −

〈ψ0, (νC + ν2D − λI)v〉
〈ψ0,u0〉

u0 = 0 .

Note that Au0 = 0 and A∗ψ0 = 0 by definition, and 〈ψ0, λv〉 =
λ〈ψ0,v〉 = 0 ∀v ∈ V .
It can also be shown for the fourth term in (4) that

〈ψ0, (νC + ν2D)v〉
〈ψ0,u0〉

= νBνv ∼ O(ν)

using the Cauchy-Schwartz inequality. Here Bν is the operator sending
x→ 〈ψ0,(C+νD)x〉

〈ψ0,u0〉 . Similarly, the third term in (4) is

a
〈ψ0, (νC + ν2D − λI)u0〉

〈ψ0,u0〉
= −aλ+ aνBνu0 ∼ −aλ+ O(ν) .

Combining these observations yields:

a(νC+ν2D−��λI )u0+(A+νC+ν2D−λI−νu0Bν)v+���aλu0−aν(Bνu0)u0 = 0 .

Simplifying and separating v gives:

v = −a(A+ ν(C − u0Bν) + ν2D − λI)−1(νC + ν2D − νBνu0I)u0

≈ −a(Ã−1 + O(ν + λ))(νC − νBνu0I + ν2D)u0

≈ −aν(Ã−1 + O(ν + λ))

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I + O(ν)

)
u0 . (5)
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Note that matrix Ã corresponds to the projection of matrix A on space
V , so that Ã is invertible. The inversion is allowed because the left-hand

side (v) is in the range of matrix A, and C̃u0 =
(
C − 〈ψ0,Cu0〉

〈ψ0,u0〉 I
)
u0 is

also readily shown to be in the range of A.

2. Projection onto u0-space:
〈ψ0, eqn〉 ,

where again eqn denotes equation (3)
Here, the projection gives:

〈ψ0, (A+ νC + ν2D − λI)(au0 + v)〉 = 0 .

Noting again that A∗ψ0 = 0 and 〈ψ0,v〉 = 0, and using v from (5)
results in:

〈ψ0, (−λI + νC + ν2D − ν2(C + νD)

[
(Ã−1 + O(ν + λ))

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I

)]
u0〉 = 0 .

(6)
Linearity of the inner product gives:

−λ〈ψ0,u0〉+ν〈ψ0, Cu0〉+ν2〈ψ0, Du0〉−ν2〈ψ0, CÃ
−1C̃u0〉+O(ν2(ν+λ)) = 0 .

Using the implicit function theorem and isolating λ = O(ν), the higher
order term at the end of the equation is O(ν3). Then λ is given by:

λ = ν
〈ψ0, Cu0〉
〈ψ0,u0〉

+ ν2

[
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉

]
+ O(ν3) . (7)

Returning to ansatz (2), component l of the vector of particle concentra-
tions u is described by:

ul(y, t) = e(a1ν+
a2
2
ν2+

∑∞
j=3 ajν

j)teνyũ0l(y) , (8)

where

a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
.
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Assuming a Dirac delta function initial condition u0l = δ(y) (modeling
a single particle located at y = 0), its Fourier transform in equation (8) is
ũ0l = 1/(

√
2π). Similar to the approach in [1], this allows us to calculate the

concentration of particle population l by taking the inverse Fourier transform:

ul =
1√
2π

∫ ∞
−∞

eik(y+a1t)−
a2
2
k2t × e

∑∞
j=3 ajν

jt × 1√
2π
dk .

As in [1], the change of variables ỹ = y + a1t and k̃ = kt1/2 gives:

ul =
1

2π
√
t

∫ ∞
−∞

e
ik̃ ỹ

t1/2
−a2

2
k̃2 × e

∑∞
j=3

aj(ik̃)
j

tj/2−1 dk̃ .

In the second term in the product above, j/2−1 > 0, so that the summation
vanishes as t→∞. It is therefore sufficient to calculate:

ul =
1

2π
√
t

∫ ∞
−∞

e
ik̃ ỹ

t1/2
−a2

2
k̃2
dk̃

=
1√

2πa2t
e
− (y+a1t)

2

2a2t .

Since this holds for each population l, the solution of the advection-
reaction-diffusion PDEs for large time thus consists of a spreading Gaussian,
and the effective velocity and diffusion of the particle behavior is given by:

effective velocity = a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

(9)

effective diffusion = a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
. (10)

We note that average transport velocity and spreading for the specific
equations modeling neurofilament transport are derived in [1] and [2]. The
spreading Gaussian solutions for large time have also been investigated for
reaction-hyperbolic systems of PDEs in [3–6]. [7] introduces diffusion in the
context of tug-of-war studies for motor-driven transport, with a focus on
diffusion in one particle population. The approach outlined above provides
analytical expressions for effective velocity and diffusion for large times for a
system with arbitrary numbers of particles undergoing diffusion, bidirectional
advection and reaction.
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Effective velocity and diffusion for the 2-state model

We calculate the expressions for effective velocity and diffusion using the
2-state model of particle dynamics (see main text).

In this case, C =

(
c

0

)
, D =

(
0

D

)
and A =

(
−β1 β2
β1 −β2

)
.

The eigenvectors ofA andA∗ in equation (7) are given by u0 =

(
β2/(β1 + β2)
β1/(β1 + β2)

)
and ψ0 =

(
1
1

)
.

This gives that the O(ν) term in (7) is:

a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

=
cβ2/(β1 + β2)

1
= c

β2
β1 + β2

, (11)

which corresponds to the effective velocity in (9).
Similarly, the O(ν2) term in (7) is:

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
.

Note that the non-zero eigenvalue of A is λ1 = −(β1 + β2), and its cor-
responding eigenvector is v = (1,−1)T . Then Ãv = λ1v and thus Ã−1 =
λ−11 = − 1

β1+β2
.

Therefore:

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
= 2

〈ψ0, (D + (1/(β1 + β2))CC̃)u0〉
1

= 2〈ψ0,

(
D +

1

β1 + β2
C

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I

))
u0〉

= 2〈ψ0,

(
D +

1

β1 + β2
C

(
C − cβ2

β1 + β2
I

))
u0〉

= 2d
β1

β1 + β2
+ 2c2

β1β2
(β1 + β2)3

.

Then

a2 = 2d
β1

β1 + β2
+ 2c2

β1β2
(β1 + β2)3

, (12)
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which corresponds to the expression for effective diffusion in (10).
[8] derive expressions similar to (11) and (12) for the effective speed

and diffusion of an on/off transport particle using stochastic methods. Our
analysis yields the additional first term in equation (12) compared to the ex-
pression for effective spread in [8], which is due to our assumption of diffusion
in the off state.

Effective velocity and diffusion for the 4-state model

We also calculate the expressions for effective velocity and diffusion using
the 4-state model of intracellular transport (see main text).

In this case, we have C =


c+
−c−

0
0

, D =


0

0
0

D

 , and

transition rate matrix

A =


−(γ+ + δ+) 0 α+ β+

0 −(γ− + δ−) α− β−
δ+ δ− −(α+ + α−) 0
γ+ γ− 0 −(β+ + β−)

 .

The eigenvectors of A and A∗ in equation (7) can also be easily found:
ψ0 = (1, 1, 1, 1)T , and u0 corresponds to the proportions of each population
at equilibrium (See Section S2). u0 can be normalized so that 〈ψ0,u0〉 = 0 .

This gives the O(ν) term in (7):

〈ψ0, Cu0〉
〈ψ0,u0〉

= −(α−β−c−δ+ + α−β+c−δ+ − α+β−c+δ− − α+β+c+δ− + α−β−c−γ+

− α−β+c+γ− + α+β−c−γ+ − α+β+c+γ+)

/ (α−β−δ+ + α+β−δ− + α−β+δ+ + α+β+δ− + α−β−γ+ + α−β+γ− + β−δ−δ+

+ α+β−γ+ + α+β+γ− + β+δ−δ+ + α−δ+γ− + α+δ−γ+ + β−δ−γ+ + β+δ+γ−

+ α−γ−γ+ + α+γ−γ+) , (13)

which is the effective velocity in the 4-state example. Note that the above
expression can be calculated using Matlab or Mathematica.

The O(ν2) term in equation (7) requires calculation of a2 = 〈ψ0,(D−CÃ−1C̃)u0〉
〈ψ0,u0〉 .

Noting that R(A) = (R(ψ0))⊥, we seek a matrix representation of Ã using
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a basis in the complement of ψ0 = (1, 1, 1, 1)T . A choice for this basis is
v01 = (1, 0,−1, 0)T , v02 = (0, 1, 0,−1)T , and v03 = (1, 0, 0,−1)T , yielding:

Ãv01 = α1v01 + α2v02 + α3v03 ,

Ãv02 = β1v01 + β2v02 + β3v03 ,

Ãv03 = γ1v01 + γ2v02 + γ3v03 .

Note that αi, βi, γi have simple expressions that Matlab’s or Mathematica’s
symbolic environments can readily find. This is done by solving equations of
the form V0(α1, α2, α3)

T = Ãv01, with V0 = (v01,v02,v03).
Since we are interested in Ã−1C̃u0, we seek x̄ = x̄1v01 + x̄2v02 + x̄3v03

such that Ãx̄ = C̃u0 . Writing C̃u0 = x = x1v01 + x2v02 + x3v03 gives:

α1x̄1 + β1x̄2 + γ1x̄3 = x1 ,

α2x̄1 + β2x̄2 + γ2x̄3 = x2 ,

α3x̄1 + β3x̄2 + γ3x̄3 = x3 .

Note that xi can also be readily found for this example by solving V0(x1, x2, x3)
T =

C̃u0 in Matlab. The equation for x̄i is therefore:α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

x̄1x̄2
x̄3

 =

x1x2
x3

 . (14)

Given that αi, βi, γi and xi have expressions that can be determined as de-
scribed above, this linear system can be solved in Matlab or Mathematica.
This recovers x̄ = Ã−1C̃u0 = x̄1v01 + x̄2v02 + x̄3v03 .

The O(ν2) term in the expression for λ is:

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
= 2

〈ψ0, (D − CÃ−1C̃)u0〉
1

= 2〈ψ0, Du0 − Cx̄〉

= 2ψ0
T (Du0 − Cx̄) . (15)

An analytical expression for this term can be found using the symbolic envi-
ronments in Matlab or Mathematica.
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S2. Calculation of percentages of particles in different states, and of expected
run times and run lengths for cargo transported on microtubules

The equilibrium distributions of particles in different states given the
general model (1) is readily obtained by solving

Au = 0 . (16)

Then the additional assumption:
∑n

i=1 ui = 1 yields the percentages of par-
ticles in each dynamic state at equilibrium.

An alternative approach to modeling particle mobility is by using a continuous-
time Markov chain (CTMC) of the times and states of a particle undergo-
ing intracellular transport. In this framework, we introduce matrix A with
Aij the rate of the transition from state i to state j, which corresponds to
the transition matrix of the CTMC. Solving the linear system (16) becomes
equivalent to solving the equilibrium or balance equations of the Markov
process [9]. For the advection-diffusion 2-state model in the main text, the
fractions of particles in each state are simply:

fraction moving =
β2

β1 + β2
(17a)

fraction diffusing =
β1

β1 + β2
. (17b)

The 4-state model expressions for fractions in each state are computed in a
similar way and depend on all model transition rates.

The CTMC modeling approach is also useful in determining the dissociation-
based quantities that appear in experimental literature, such as distances and
times spent on microtubules before a motor-cargo complex unbinds [10]. It
is well established that sojourn times of a homogeneous Markov chain in
each state i are exponentially distributed with parameter qi, where qi is the
transition rate of leaving state i for any other state [9]. This means that the
mean sojourn times for the 2-state model are:

expected run time =
1

β1
,

expected run length =
1

β2
.

Similarly, the mean times in the states of the 4-state model are given by:
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expected run time up =
1

γ− + δ−
,

expected run time down =
1

γ+ + δ+
,

expected time diffusing =
1

β− + β+
,

expected time pausing =
1

α− + α+

.

The expected run length of motor-cargo complexes on microtubule fil-
aments is then simply the speed in the desired direction times the mean
sojourn time in the corresponding moving state. For the 4-state model, this
yields:

expected run length up =
c−

γ− + δ−
,

expected run length down =
c+

γ+ + δ+
.

9



S3. Supplementary Figures and Tables

Figure 1: Shown is a representative oocyte in which three 5 µm circular ROIs of βG-MS2
RNA (β-globin RNA) bound by MCP-mCh were bleached as detailed in the main text.
Scale bar corresponds to 10 µm. Note that Figure 4B in the main text shows a sample
postbleach intensity profile extracted from a similar image. That profile is then used as
an initial condition for the numerical parameter estimation.
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Figure 2: Parameter estimates from Region 1 VLE RNA FRAP data for individual oocyte
trials are validated using PDE-generated FRAP recovery curves (5 trials shown).
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Figure 3: Sample synthetic data generated using the Markov Chain approach (104, re-
spectively 106 RNAs) based on the 4-state model are fit using our parameter estimation
procedure. The synthetic data on the left is not smooth since this stochastic model for
data generation creates realistic noisy FRAP recovery curves. We note that the approxi-
mately 108 RNAs injected in the oocytes correspond to roughly 104-106 RNAs given the
spatial domain considered in our simulations.

Table 1: Table of input and output parameters for Figure 3. Input corresponds to param-
eters used for data generation, Output (104) corresponds to parameters estimated using
data generated with 104 RNAs, and Output (106) corresponds to parameters estimated
using data generated with 106 RNAs.

c+ (µm/s) c− (µm/s) d (µm2s−1) α+ (s−1) α− (s−1) δ+ (s−1) δ− (s−1)
Input 0.157 2e−4 0.11 0.008 4e−6 3e−4 0.12

Output (104) 0.114 2e−6 0.05 0.002 0.005 0.03 0.08
Output (106) 0.13 3e−5 0.09 3e−5 0.008 0.03 0.05

Table 2: Estimated parameters for FRAP WT average data based on 5 oocytes using the
2-state model for VLE RNA. While the estimates for speed c and diffusion coefficient d
are provided in the main text as well for this set, here we also include the estimates of
reaction rates β1 and β2.

Region c (µm/s) d (µm2s−1) β1 (s−1) β2 (s−1)
1 0.05 0.26 2.3e−14 0.006
2 0.09 1.42 0.003 0.0007
3 0.07 0.83 4e−5 1.4e−6
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parameter estimation procedure. Note that the same estimated parameters generate fits
to data from all 3 bleach spots in the initial condition (see Figure 1). Estimated parameters
are D = 2.77 µm2/s, β1 = 0.03 s−1 and β2 = 0.05 s−1.

12



G G G G G G G G G  G G G G G G G G G
Oocytes (type indicated)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
in

 e
ac

h 
st

at
e Fraction diffusing

Fraction pausing

Figure 5: Predicted fractions of nonlocalizing β-globin RNA (G) in diffusing and stationary
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sets provided here and in the main text are each from FRAP experiments carried out
on different days. The average diffusion coefficient d for the first set is 1.8 µm2/s (with
standard deviation 1.1 µm2/s), and for the second set 3.1 µm2/s (with standard deviation
1.5 µm2/s). mRNA particles are predicted to spend on average 60% of time in a paused
state (with standard deviation 32%) for the first set, and 51% of time (with standard
deviation 31%) for the second set. Parameter estimation is set up with a three bleach spot
initial condition for β-globin RNA (see Figure 4B in the main text).
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Figure 6: Predicted fractions of localizing VLE RNA in different states for individual
oocyte trials in healthy and Nocodazole-treated (N) oocytes. The fits are carried out
using the 4-state model.
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S4. Adjusted FRAP data

The procedure for adjusting the raw FRAP data to correct for photofad-
ing during image acquisition is outlined in [11]. We provide the details here
for completion.

We refer to the raw time series fluorescence data for each photobleached
region of interest in the vegetal cytoplasm of Xenopus oocytes as ROI(t).
Additional measurements available from FRAP experiments are the fluores-
cence data from the non-photobleached regions outside and inside the oocyte
at time t, which we denote by ROIo(t) and ROIn(t), respectively. To correct
the raw FRAP data for acquisition photobleaching, we calculate the adjusted
fluorescence time series A(t) as

A(t) = F (t)× Fpre

Fn(t)

= (ROI(t)− ROIo(t))×
(ROIn(1)− ROIo(1))

(ROIn(t)− ROIo(t))
. (18)

Here the background subtracted fluorescence at time t is denoted by F (t), the
background subtracted average intensity for all prebleach frames is denoted
by Fpre, and Fn(t) denotes the background subtracted fluorescence intensity
value in a neighboring region at time t. It is worth noting the meaning
of the second equality in equation (18): to obtain F (t), we subtract the
background fluorescence ROIo(t) from the fluorescence intensity in the region
of interest ROI(t); to obtain Fpre, we subtract the background fluorescence of
the prebleach frames ROIo(1) from prebleach fluorescence outside the cortical
region ROIn(1); and to yield Fn(t), we subtract the background fluorescence
intensity ROIo(t) from the fluorescence at the neighboring region outside the
cortical region ROIn(t).

S5. Numerical Methods

Numerical integration of equations of the form (1) is done using expo-
nential time-differencing Runge-Kutta methods [12, 13] coupled with space
discretization using Fourier spectral methods. The boundary conditions for
the PDE systems are taken to be periodic in both the x and y dimensions.
The spatial domain size is taken to be large relative to the bleach spot size,
with length scales of 40 µm in the horizontal direction x, and 60 µm in the
vertical direction of movement y. We used 64 Fourier modes in the spectral
decomposition in both directions, which is sufficient for the purpose of our
simulations. Finally, different time steps were tested, and ∆t = 0.1 was cho-
sen for yielding consistent results while also minimizing computation costs.
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Figure 7: Estimated diffusion coefficients for β-globin RNA using the same set of 5 oocytes
with instantaneous photobleach (flat circular disk initial conditions), Gaussian initial con-
ditions, and the experimental photobleach profile (exponential of Gaussian initial condi-
tion), left to right. Note the different scales of the vertical axis.

Matlab code for generating synthetic data and for performing parameter
sweeps and estimation is included in the S5 Matlab code FRAP.zip file.

S6. Accounting for the dynamics during the FRAP photobleach process: Sup-
porting figures

Section 3.5 in the main text outlines the importance of accounting for the
dynamics occurring during the photobleach process when modeling the initial
condition for our numerical FRAP parameter estimation methods. Figure 7
shows the sensitivity of the diffusion coefficient estimates for the same set of
5 oocytes to the initial condition (flat circular disk, Gaussian, or exponential
of Gaussian initial condition). In Figure 8 we include additional diffusion
coefficient estimates for β-globin RNA using the instantaneous bleaching and
photobleach profile (exponential of Gaussian) initial conditions. In addition,
we also include estimates of diffusion coefficients for a set of 7 oocytes and
speed in the animal pole direction in region 3 (c−) for a set of 5 oocytes using
both settings.
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Figure 8: Estimated diffusion coefficients for β-globin RNA, diffusion coefficient for VLE
RNA, and speed in the animal pole direction in region 3 for VLE RNA using the in-
stantaneous photobleach and experimental photobleach profile initial conditions (top to
bottom).
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