Additional File 1: Supplemental Results, Figures, and Tables

Supplemental Results

Gene set enrichment analysis on RNA-Sequencing signatures. We performed gene set enrichment analysis, using the Gene Set Variation Analysis for microarray and RNA-seg data (GSVA) method, to better understand the biological significance and discover enriched gene sets between our RNAsequencing signatures: AKT, BAD, EGFR, HER2, IGF1R, KRAS, and RAF1 and GFP controls. We analyzed 1370 gene sets from the C2: canonical pathways collection from the Molecular Signatures Database (See Methods section in manuscript). Gene sets representing cell cycle pathways were found to be enriched across all signatures, however each signature also showed enrichment for expected and unique gene sets (See Additional File 5.xlxs for full results). For example, the HER2 signature was primarily enriched for immune system and cellular adhesion pathways (Supplemental Table 6; Additional File 1). The IGF1R signature was dominated by metabolic pathways (Supplemental Table 7; Additional File 1). The AKT signature was enriched for immune, apoptotic, and metabolic pathways (Supplemental Table 8; Additional File 1). The BAD signature was enriched for immune system and cell cycle pathways (Supplemental Table 9; Additional File 1). EGFR was dominated by DNA replication and cell cycle pathways (Supplemental Table 10; Additional File 1). KRAS and RAF were highly enriched for MAPK pathways (Supplemental Tables 11- 12; Additional File 1), but RAF also showed enrichment for TGFB and immune system pathways (Supplemental Tables 11-12; Additional File 1). This results highlight the variety of biological pathway differences which can be found by overexpressing GFRN components, further illustrating the need for GFRN pathway activation signatures.

Supplemental Figures

Supplemental Figure 1: Validation of protein overexpression for each GFRN signature. Protein lysates from human primary mammary epithelial cells (HMECs) overexpressing GFRN genes were compared to GFP control protein lysates using Western blotting. (A) HMECs overexpressing AKT1 compared to GFP (GAPDH loading control) (B) HMECs overexpressing BAD, compared to GFP (β -tubulin loading control) (C) HMECs overexpressing EGFR and pEGFR compared to GFP (GAPDH loading control) (D) HMECs overexpressing HER2 and pHER2 compared to GFP (GAPDH and β -tubulin loading controls) (E) HMECs overexpressing IGF1R and pIGF1R (GAPDH and β -tubulin loading controls) (F) HMECs overexpressing pMEK compared to GFP (β -tubulin and GAPDH loading controls) (G) HMECs overexpressing PMEK compared to GFP (β -tubulin and GAPDH loading controls) (G) HMECs overexpressing RAF1 compared to GFP controls (β -tubulin loading controls).

Supplemental Figure 2: Gene expression signatures for key GFRN pathways generated by

ASSIGN. (A) AKT 20 gene signature, (B) BAD 250 gene signature, (C) EGFR 50 gene signature, (D) HER2 10 gene signature, (E) IGF1R 100 gene signature, (F) KRAS (G12V) 200 gene signature, and (G) RAF1 350 gene signature. The horizontal black bar indicates green fluorescent protein (GFP) overexpressing control samples, and the red bar indicates the overexpressed genes of interest (i.e., *AKT1, BAD, EGFR, ERBB2 (HER2), IGF1R, KRAS (G12V),* and *RAF1*, respectively) signature samples. The signature genes for each pathway are listed in Additional File 4.

Supplemental Figure 3: Additional GFRN gene expression signature validations in TCGA breast cancer data. Pathway activity estimate boxplots between the (A) AKT pathway and (B) BAD pathway between *PI3KCA* mutated and *PI3KCA* wild-type TCGA breast cancer samples (n=787). Any mutation in *PI3KCA* was considered pathogenic in this mutation analysis. (C) HER2 pathway activation estimates between HER+ and HER- patient TCGA samples (n=708). Pathway activation estimates for (D) IGF1R, (E) AKT, (F) EGFR, and (G) RAF1 between 'high', 'intermediate', and 'low' expressing samples in 1119 BRCA TCGA samples. Samples with 90 percentile or higher expression were considered 'high', 10 percentile or lower were considered 'low', and 10 to 90 percentile were considered 'Intermediate' expressing samples for AKT1, EGFR and RAF1. For IGF1R validation, samples with 80 percentile or higher IGF1R expression were considered 'high', 20 percentile or lower was considered 'low', and 20 to 80 percentile expressing samples.

Supplemental Figure 4: Pathway activity estimates between ER+ and ER- samples in breast cancer cell lines and patient data. (A) 19 ER- breast cancer cell lines from ICBP, (B) 32 ER+ breast cancer cell lines from ICBP. (C) 230 ER- breast cancer patient samples from TCGA, and (D) 785 ER+

breast cancer patient samples from TCGA. The growth phenotype is represented in aquamarine above the heat map, and the survival phenotype in coral. Subtypes determined by immunohistochemistry (ER, PR, and HER2), intrinsic subtyping, and PAM50, are label in the right side of the heatmap.

Supplemental Figure 5: Pathway activation estimates across clinical subtypes (IHC-based, N=1012) in TCGA breast cancer data for (A) the AKT pathway (B) the BAD pathway (C) the HER2 pathway (D) the IGF1R pathway (E) the EGFR pathway (F) the RAF1 pathway (G) the KRAS pathway.

Supplemental Figure 6: Pathway activation estimates across intrinsic subtypes (PAM50 based, N=510) in TCGA breast cancer data for (A) the AKT pathway (B) the BAD pathway (C) the EGFR pathway (D) the HER2 pathway (E) the IGF1R pathway (F) the KRAS pathway (G) the RAF1 pathway estimates.

Supplemental Figure 7: Graphical representation of the IHC and intrinsic subtype status distribution for ICBP cell line and TCGA breast tumors. Each sample is represented along the X-axis and corresponding phenotype, ER, PR, HER2 and intrinsic subtype status is represented along the Y-axis. Supplemental Table 9 and 10 provides breakdown of each category, for ICBP and TCGA.

Supplemental Figure 8: Survival analysis of the four subgroups in TCGA BRCA samples (N=1119). Kaplan-Meier survival analysis for the four identified subgroups using the Peto and Peto modification of Gehan-Wilcoxon test did not show significant differences across the subgroups (λ^2 =5.5, p=0.141).

Supplemental Figure 9: Correlation between mean gene expression values for all samples and the principal component values for each sample for principal component 1 based from breast cancer (BRCA) TCGA RNA-sequencing samples (Spearman's correlations: -0.786, p-value <0.0001).

Supplemental Figure 10: Comparison of R² values (proportion of variance) explained by each model for principle components (PCs) 1 through 5 from TCGA RNA-sequencing breast cancer data. For each PC,

model variables include GFRN subtypes, intrinsic subtypes (PAM50), clinical subtypes (ER, ER, and HER2 status) and their combinations.

Supplemental Figure 11: Independent western blot assay for MCL-1 and BIM proteins between breast cancer cell lines from the survival and growth phenotypes. Lysates from 12 cell lines from the survival phenotype (8 ER+ and 4 ER-) and 7 cell lines from the growth phenotype (1 ER+ and 6 ER-) were probed for anti- and pro-apoptotic proteins, MCL-1 and BIM, and compared to β -actin (loading control).

Supplemental Figure 12: Correlations between pathway activation estimates and drug response values between ER+ and ER- and between HER+ and HER2- samples in breast cancer cell lines. Colors correspond to scaled Spearman correlations between specific pathway activation estimates generated with *ASSIGN* and drug sensitivity (-logGI50) across (A) 18 ER+ breast cancer cell lines, (B) 32 ER- breast cancer cell lines from the ICBP panel, (C) 18 HER2+ breast cancer cell lines, and (D) 32

HER2- breast cancer cell lines from the ICBP panel. Red represents positive correlation and blue represents negative correlation. Pathways cluster across the x-axis as (coral color) survival phenotype and (green) growth phenotype. Drug classes are represented along the y-axis as pink (HER2/AKT/PI3K/mTOR targeted-therapies), yellow (chemotherapies/BCL-2 targeting therapies), and blue (EGFR/MEK targeted-therapies).

Supplemental Figure 13: Comparison of lapatinib sensitivity based on (A) ER status, (B) PR status, (C) HER2 status, (D) Intrinsic Subtypes in ICBP breast cancer cell lines. Drug sensitivity is measured in - logEC50.

Supplemental Tables

Supplemental Table 1: Spearman correlations between pathway activation estimates and proteomics data for optimum signature selection in ICBP cell line and TCGA proteomics data.

Pathway	Optimized	Protein	ICBP		TCC	GA
_	Number of Genes		Correlation	p-value	Correlation	p-value
		Akt	0.576	2.03E-04	0.192	1.54E-07
AKT	20	PDK1	0.574	2.14E-04	0.239	5.93E-11
		PDK1_pS241	0.535	6.50E-04	0.337	5.84E-21
		Akt	-0.456	4.33E-03	-0.150	4.43E-05
BAD	250	PDK1	-0.605	8.14E-05	-0.313	4.37E-18
		PDK1_pS241	-0.518	1.02E-03	-0.232	2.23E-10
		EGFR	0.470	0.050	0.357	2.09E-23
EGFR	50	EGFR_pY1068	0.397	0.028	0.129	4.50E-04
		EGFR_pY1173			0.155	2.44E-05
	10	HER2	0.923	0.00E+00	0.376	1.61E-05
NENZ	10	HER2_pY1248	0.953	0.00E+00	0.356	1.37E-04
		IRS1			0.324	2.37E-19
	100	IGF1R	0.086	0.608		
IGFIK	100	PDK1	0.569	2.45E-04	0.371	2.68E-25
		PDK1_pS241	0.509	1.26E-03	0.403	5.33E-30
		EGFR	0.423	8.57E-03	0.493	4.05E-46
KRAS	200	EGFR_pY1068	0.296	7.17E-02	0.089	1.60E-02
(G12V)	200	EGFR_pY1173			0.090	1.47E-02
		MEK1			0.116	1.69E-03
		MEK1	0.285	0.084	0.245	1.72E-11
RAF	350	PKC.alpha	0.467	3.46E-03	0.396	6.36E-29
		PKC.alpha_pS657	0.462	3.83E-03	0.415	0.00E+00

Supplemental Table 2: Top 50 gene sets predicted by GSVA between GFP (control) and HER2 overexpressing RNA-sequencing data in HMECs. Distinguishing pathways are in red.

Hallmark + canonical (C2) gene sets (Molecular Signatures Database)	logFC	P.Value	adj.P.Val
KEGG ANTIGEN PROCESSING AND PRESENTATION	-0.0207	< 0.0001	< 0.0001
REACTOME IL 7 SIGNALING	-0.0239	<0.0001	<0.0001
REACTOME CHEMOKINE RECEPTORS BIND CHEMOKINES	-0.0281	<0.0001	<0.0001
BIOCARTA CBL PATHWAY	0.0135	<0.0001	<0.0001
BIOCARTA_COMP_PATHWAY	-0.0395	<0.0001	<0.0001
PID VEGFR1 PATHWAY	0.0087	<0.0001	<0.0001
ST_G_ALPHA_S_PATHWAY	-0.0150	< 0.0001	<0.0001
BIOCARTA EPONFKB PATHWAY	-0.0176	<0.0001	<0.0001
REACTOME CELL EXTRACELLULAR MATRIX INTERACTIONS	0.0180	<0.0001	<0.0001
BIOCARTA RB PATHWAY	0.0161	<0.0001	0.0001
BIOCARTA IL22BP PATHWAY	-0.0170	<0.0001	0.0001
BIOCARTA IL10 PATHWAY	-0.0125	< 0.0001	0.0001
BIOCARTA P53HYPOXIA PATHWAY	-0.0094	<0.0001	0.0001
KEGG PATHOGENIC ESCHERICHIA COLI INFECTION	0.0067	< 0.0001	0.0001
REACTOME REGULATION OF IFNA SIGNALING	-0.0127	< 0.0001	0.0002
	0 0086	<0.0001	0 0003
REACTOME RECYCLING PATHWAY OF L1	0.0000	<0.0001	0.0003
	0.0107	<0.0001	0.0003
	0.0094	<0.0001	0.0003
	-0.0102	<0.0001	0.0003
	0.0102	<0.0001	0.0003
KEGG GAP JUNCTION	0.0075	<0.0001	0.0004
	0.0070	<0.0001	0.0005
REACTOME_SEMAPHORIN_INTERACTIONS	0.0079	< 0.0001	0.0005
PID NECTIN PATHWAY	0.0055	<0.0001	0.0006
REACTOME SIGNALING BY RHO GTPASES	0.0061	< 0.0001	0.0006
REACTOME PEPTIDE LIGAND BINDING RECEPTORS	-0.0108	<0.0001	0.0006
PID INTEGRIN A9B1 PATHWAY	0.0169	<0.0001	0.0007
REACTOME KINESINS	0.0158	< 0.0001	0.0007
KEGG SELENOAMINO ACID METABOLISM	-0.0088	<0.0001	0.0007
PID INTEGRIN A4B1 PATHWAY	0.0100	<0.0001	0.0008
REACTOME_PLATELET_HOMEOSTASIS	0.0071	<0.0001	0.0008
REACTOME_GRB2_EVENTS_IN_ERBB2_SIGNALING	0.0118	<0.0001	0.0008
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES	0.0116	<0.0001	0.0008
REACTOME_G0_AND_EARLY_G1	0.0132	<0.0001	0.0008
BIOCARTA_CELLCYCLE_PATHWAY	0.0132	<0.0001	0.0008
PID_AURORA_A_PATHWAY	0.0106	<0.0001	0.0008
PID_S1P_S1P1_PATHWAY	0.0075	<0.0001	0.0009
HALLMARK_GLYCOLYSIS	0.0063	<0.0001	0.0009
HALLMARK_INTERFERON_GAMMA_RESPONSE	-0.0225	<0.0001	0.0009
REACTOME_P75NTR_RECRUITS_SIGNALLING_COMPLEXES	0.0093	<0.0001	0.0009
	0.0147	< 0.0001	0.0009
	0.0055	<0.0001	0.0009
KEAUTUME_SIGNALING_BY_FGFR1_FUSION_MUTANTS	-0.0083	<0.0001	0.0009
	0.0086	<0.0001	0.0009
	0.0109	<0.0001	0.0010
	0.0088		0.0010
	0.0156	<0.0001	0.0010
REACTOME REGULATION OF COMPLEMENT CASCADE	-0.0235	<0.0001	0.0010

Supplemental Table 3: Top 50 gene sets predicted by GSVA between GFP (control) and IGF1R overexpressing RNA-sequencing data in HMECs. Distinguishing pathways are in red..

Hollmark + conceived (C2) gone acts (Molecular Signatures Database)	logEC	D Volue	adi D Val
REACTOME AMINO ACID SYNTHESIS AND INTERCONVERSION TRANSAMINATION	0.064	<0.0001	<0.0001
KEGG AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM	0.004	<0.0001	<0.0001
REACTOME DIABETES PATHWAYS	0.027	< 0.0001	< 0.0001
PID ATE2 PATHWAY	0.028	<0.0001	<0.0001
REACTOME UNEQUED PROTEIN RESPONSE	0.036	< 0.0001	< 0.0001
REACTOME IL 6 SIGNALING	0.045	< 0.0001	< 0.0001
REACTOME ACTIVATION OF CHAPERONE GENES BY XBP1S	0.030	< 0.0001	< 0.0001
HALLMARK UNFOLDED PROTEIN RESPONSE	0.028	<0.0001	<0.0001
REACTOME ACTIVATION OF GENES BY ATF4	0.053	< 0.0001	<0.0001
PID IL23PATHWAY	0.029	< 0.0001	<0.0001
REACTOME PERK REGULATED GENE EXPRESSION	0.050	< 0.0001	<0.0001
REACTOME SYNTHESIS OF SUBSTRATES IN N GLYCAN BIOSYTHESIS	0.044	< 0.0001	<0.0001
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	0.034	<0.0001	<0.0001
REACTOME_ACTIVATION_OF_CHAPERONES_BY_ATF6_ALPHA	0.028	<0.0001	<0.0001
HALLMARK_CHOLESTEROL_HOMEOSTASIS	0.019	<0.0001	<0.0001
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	-0.017	<0.0001	<0.0001
HALLMARK_MTORC1_SIGNALING	0.019	<0.0001	<0.0001
KEGG_NITROGEN_METABOLISM	0.022	<0.0001	<0.0001
BIOCARTA_CYTOKINE_PATHWAY	0.050	<0.0001	<0.0001
BIOCARTA_GRANULOCYTES_PATHWAY	0.057	<0.0001	<0.0001
REACTOME_SYNTHESIS_SECRETION_AND_INACTIVATION_OF_GIP	0.022	<0.0001	<0.0001
ST_STAT3_PATHWAY	0.022	<0.0001	<0.0001
KEGG_PROTEIN_EXPORT	0.016	<0.0001	<0.0001
KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM	0.022	<0.0001	<0.0001
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	0.015	<0.0001	<0.0001
REACTOME_GLUCONEOGENESIS	0.016	<0.0001	<0.0001
REACTOME_BASIGIN_INTERACTIONS	0.017	<0.0001	<0.0001
PID_REG_GR_PATHWAY	0.012	<0.0001	<0.0001
BIOCARTA_ERYTH_PATHWAY	0.028	<0.0001	<0.0001
BIOCARTA_IL10_PATHWAY	0.013	<0.0001	<0.0001
REACTOME_BIOSYNTHESIS_OF_THE_N_GLYCAN_PRECURSOR_DOLICHOL_LIPID	0.029	<0.0001	<0.0001
PID_AP1_PATHWAY	0.019	<0.0001	<0.0001
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY	0.011	<0.0001	<0.0001
PID_NECTIN_PATHWAY	-0.007	<0.0001	<0.0001
PID_P38ALPHABETADOWNSTREAMPATHWAY	0.016	<0.0001	<0.0001
BIOCARTA_TEL_PATHWAY	0.009	<0.0001	<0.0001
BIOCARTA_LAIR_PATHWAY	0.060	<0.0001	<0.0001
BIOCARTA_IGF1MTOR_PATHWAY	0.014	<0.0001	<0.0001
REACTOME_CIRCADIAN_CLOCK	0.008	<0.0001	<0.0001
REACTOME_BMAL1_CLOCK_NPAS2_ACTIVATES_CIRCADIAN_EXPRESSION	0.010	<0.0001	<0.0001
BIOCARTA_IL6_PATHWAY	0.012	<0.0001	<0.0001
REACTOME_INCRETIN_SYNTHESIS_SECRETION_AND_INACTIVATION	0.014	<0.0001	<0.0001
REACTOME_PLATELET_ADHESION_TO_EXPOSED_COLLAGEN	0.016	<0.0001	<0.0001
BIOCARTA_LYM_PATHWAY	0.047	<0.0001	<0.0001
HALLMARK_GLYCOLYSIS	0.008	<0.0001	< 0.0001
PID_CDC42_REG_PATHWAY	-0.010	<0.0001	<0.0001
BIOCARTA_TALL1_PATHWAY	-0.013	<0.0001	<0.0001
REACTOME_ASSOCIATION_OF_LICENSING_FACTORS_WITH_THE_PRE_REPLICT	0.024	<0.0001	<0.0001
I REACTOME CYTOSOLIC TRNA AMINOACYLATION	0.018	<0.0001	< 0.0001

Supplemental Table 4: Top 50 gene sets predicted by GSVA between GFP (control) and AKT1 overexpressing RNA-sequencing data in HMECs. Expected pathways are in red.

Hallmark + canonical (C2) gene sets (Molecular Signatures Database)	logFC	P.Value	adj.P.Val
REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES	-0.028	<0.0001	< 0.0001
REACTOME_REVERSIBLE_HYDRATION_OF_CARBON_DIOXIDE	0.035	<0.0001	<0.0001
BIOCARTA_RB_PATHWAY	-0.021	<0.0001	<0.0001
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	0.015	<0.0001	<0.0001
REACTOME_GLYCOLYSIS	0.011	<0.0001	<0.0001
REACTOME_SIGNALING_BY_BMP	-0.015	<0.0001	<0.0001
REACTOME_DOWNREGULATION_OF_SMAD2_3_SMAD4_TRANSCRIPTIONAL	-0.015	<0.0001	<0.0001
REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SMAD3_SMA	-0.009	<0.0001	<0.0001
PID_SYNDECAN_2_PATHWAY	-0.009	<0.0001	<0.0001
PID_NECTIN_PATHWAY	-0.007	<0.0001	<0.0001
REACTOME_YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EXPRESSION	-0.010	<0.0001	<0.0001
REACTOME_SIGNAL_ATTENUATION	-0.014	<0.0001	<0.0001
REACTOME GLUCOSE METABOLISM	0.008	<0.0001	<0.0001
PID RHOA PATHWAY	-0.008	<0.0001	<0.0001
BIOCARTA P53 PATHWAY	-0.011	<0.0001	<0.0001
PID_P53DOWNSTRFAMPATHWAY	-0.007	< 0.0001	< 0.0001
REACTOME FORMATION OF TUBULIN FOLDING INTERMEDIATES BY CC	0.007	< 0.0001	0.0001
REACTOME RNA POLI RNA POLI III AND MITOCHONDRIAL TRANSCRIPTION	0.008	<0.0001	0.0001
	-0.013	<0.0001	0.0001
HALLMARK WNT BETA CATENIN SIGNALING	-0.008	<0.0001	0.0001
KEGG PENTOSE PHOSPHATE PATHWAY	0.000	<0.0001	0.0001
	-0.010	<0.0001	0.0001
	-0.018	<0.0001	0.0002
HALLMARK TNEA SIGNALING VIA NEKB	-0.011	<0.0001	0.0002
REACTOME REGULATION OF GENE EXPRESSION IN BETA CELLS	0.014	<0.0001	0.0002
	-0.011	< 0.0001	0.0003
REACTOME BILE SALT AND ORGANIC ANION SLC TRANSPORTERS	0.018	< 0.0001	0.0003
REACTOME ZINC TRANSPORTERS	0.011	< 0.0001	0.0003
BIOCARTA NTHI PATHWAY	-0.011	< 0.0001	0.0004
PID REG GR PATHWAY	-0.008	< 0.0001	0.0004
KEGG HOMOLOGOUS RECOMBINATION	-0.011	< 0.0001	0.0004
PID HIF1 TFPATHWAY	0.010	< 0.0001	0.0004
REACTOME GLUCONEOGENESIS	0.010	< 0.0001	0.0004
BIOCARTA DNAFRAGMENT PATHWAY	-0.021	< 0.0001	0.0004
BIOCARTA DC PATHWAY	-0.033	< 0.0001	0.0004
BIOCARTA ECM PATHWAY	-0.007	<0.0001	0.0004
REACTOME RNA POL III TRANSCRIPTION	0.009	<0.0001	0.0004
REACTOME_DOWNREGULATION_OF_ERBB2_ERBB3_SIGNALING	0.011	<0.0001	0.0004
REACTOME P75NTR RECRUITS SIGNALLING COMPLEXES	-0.010	<0.0001	0.0004
BIOCARTA GRANULOCYTES PATHWAY	-0.030	<0.0001	0.0005
BIOCARTA ARAP PATHWAY	-0.011	<0.0001	0.0005
REACTOME FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT	-0.008	<0.0001	0.0005
REACTOME REGULATION OF RHEB GTPASE ACTIVITY BY AMPK	-0.014	<0.0001	0.0005
HALLMARK IL6 JAK STAT3 SIGNALING	-0.008	<0.0001	0.0005
PID TOLL ENDOGENOUS PATHWAY	-0.012	<0.0001	0.0006
REACTOME_HS_GAG_BIOSYNTHESIS	-0.007	<0.0001	0.0006
REACTOME_RECYCLING_PATHWAY_OF_L1	-0.008	<0.0001	0.0006
PID_FAK_PATHWAY	-0.008	<0.0001	0.0006
BIOCARTA_ARENRF2_PATHWAY	-0.013	<0.0001	0.0007

Supplemental Table 5: Top 50 gene sets predicted by GSVA between GFP (control) and BAD overexpressing RNA-sequencing data in HMECs Expected pathways are in red.

Hallmark + canonical (C2) gene sets (Molecular Signatures Database)	logFC	P.Value	adj.P.Val
REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES	-0.055	<0.0001	< 0.0001
KEGG ANTIGEN PROCESSING AND PRESENTATION	-0.031	< 0.0001	< 0.0001
BIOCARTA_INFLAM_PATHWAY	-0.043	<0.0001	<0.0001
BIOCARTA_NTHI_PATHWAY	-0.030	<0.0001	<0.0001
PID_FRA_PATHWAY	-0.030	< 0.0001	< 0.0001
PID SYNDECAN 2 PATHWAY	-0.017	< 0.0001	< 0.0001
PID_ATF2_PATHWAY	-0.020	<0.0001	<0.0001
BIOCARTA_P53HYPOXIA_PATHWAY	-0.019	<0.0001	<0.0001
BIOCARTA_TID_PATHWAY	-0.029	<0.0001	<0.0001
PID_SYNDECAN_3_PATHWAY	-0.033	<0.0001	<0.0001
BIOCARTA_PPARA_PATHWAY	-0.017	<0.0001	<0.0001
HALLMARK_TNFA_SIGNALING_VIA_NFKB	-0.026	<0.0001	<0.0001
PID_REG_GR_PATHWAY	-0.017	<0.0001	<0.0001
BIOCARTA IL7 PATHWAY	-0.020	<0.0001	<0.0001
BIOCARTA FREE PATHWAY	-0.032	< 0.0001	< 0.0001
BIOCARTA IL10 PATHWAY	-0.019	< 0.0001	< 0.0001
PID AP1 PATHWAY	-0.027	<0.0001	< 0.0001
REACTOME PEPTIDE LIGAND BINDING RECEPTORS	-0.020	<0.0001	< 0.0001
BIOCARTA STEM PATHWAY	-0.078	< 0.0001	< 0.0001
BIOCARTA IL17 PATHWAY	-0.061	< 0.0001	< 0.0001
KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION	-0.018	<0.0001	< 0.0001
PID RHOA PATHWAY	-0.013	< 0.0001	<0.0001
PID IL8CXCR1 PATHWAY	-0.023	< 0.0001	<0.0001
BIOCARTA ARENRF2 PATHWAY	-0.028	< 0.0001	< 0.0001
BIOCARTA_GRANULOCYTES_PATHWAY	-0.061	<0.0001	<0.0001
PID_NFAT_TFPATHWAY	-0.030	<0.0001	<0.0001
BIOCARTA CYTOKINE PATHWAY	-0.053	<0.0001	<0.0001
BIOCARTA ERYTH PATHWAY	-0.028	< 0.0001	<0.0001
BILD HRAS ONCOGENIC SIGNATURE	-0.021	< 0.0001	< 0.0001
PID IL23PATHWAY	-0.015	< 0.0001	< 0.0001
REACTOME_RNA_POL_III_CHAIN_ELONGATION	0.023	<0.0001	<0.0001
KEGG_RNA_POLYMERASE	0.020	<0.0001	<0.0001
KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLORI_INFECTION	-0.011	<0.0001	<0.0001
REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATION_FROM_TYPE_3	0.019	<0.0001	<0.0001
BIOCARTA_IL22BP_PATHWAY	-0.022	<0.0001	<0.0001
BIOCARTA_ETS_PATHWAY	-0.022	<0.0001	<0.0001
BIOCARTA_CHEMICAL_PATHWAY	0.016	<0.0001	<0.0001
REACTOME_RNA_POL_III_TRANSCRIPTION_TERMINATION	0.020	<0.0001	<0.0001
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY	-0.017	<0.0001	<0.0001
KEGG_PRION_DISEASES	-0.020	<0.0001	<0.0001
REACTOME_G_ALPHA_I_SIGNALLING_EVENTS	-0.013	<0.0001	<0.0001
KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY	-0.013	<0.0001	<0.0001
PID TAP63PATHWAY	-0.010	< 0.0001	< 0.0001
PID_P53DOWNSTREAMPATHWAY	-0.009	<0.0001	<0.0001
REACTOME_IL_6_SIGNALING	-0.020	<0.0001	<0.0001
HALLMARK_IL6_JAK_STAT3_SIGNALING	-0.013	<0.0001	<0.0001
KEGG ENDOCYTOSIS	-0.014	< 0.0001	< 0.0001
PID FGF PATHWAY	-0.013	<0.0001	<0.0001
KEGG_PYRIMIDINE_METABOLISM	0.014	<0.0001	<0.0001

Supplemental Table 6. Top 50 gene sets predicted by GSVA between GFP (control) and EGFR overexpressing RNA-sequencing data in HMECs. Expected pathways are in red.

Hallmark + canonical (C2) gene sets (Molecular Signatures Database)	logFC	P.Value	adj.P.Val
REACTOME_UNWINDING_OF_DNA	0.056	<0.0001	<0.0001
REACTOME_DNA_STRAND_ELONGATION	0.044	<0.0001	<0.0001
REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX	0.045	<0.0001	<0.0001
REACTOME_CYCLIN_A_B1_ASSOCIATED_EVENTS_DURING_G2_M_TRANS	0.027	<0.0001	<0.0001
KEGG_DNA_REPLICATION	0.033	<0.0001	<0.0001
PID_FANCONI_PATHWAY	0.026	<0.0001	<0.0001
REACTOME_G1_S_SPECIFIC_TRANSCRIPTION	0.039	<0.0001	<0.0001
REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRE	0.041	<0.0001	<0.0001
REACTOME_G2_M_CHECKPOINTS	0.038	<0.0001	<0.0001
HALLMARK_E2F_TARGETS	0.025	<0.0001	<0.0001
PID_FOXM1PATHWAY	0.019	<0.0001	<0.0001
REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION	0.030	<0.0001	<0.0001
PID_ATR_PATHWAY	0.026	<0.0001	<0.0001
BIOCARTA_MCM_PATHWAY	0.032	<0.0001	<0.0001
REACTOME MITOTIC PROMETAPHASE	0.025	<0.0001	<0.0001
REACTOME DNA REPLICATION	0.023	< 0.0001	<0.0001
KEGG CELL CYCLE	0.017	< 0.0001	<0.0001
HALLMARK G2M CHECKPOINT	0.020	< 0.0001	<0.0001
REACTOME G0 AND EARLY G1	0.027	< 0.0001	<0.0001
REACTOME POL SWITCHING	0.037	< 0.0001	< 0.0001
REACTOME MITOTIC M M G1 PHASES	0.022	< 0.0001	< 0.0001
REACTOME REPAIR SYNTHESIS FOR GAP FILLING BY DNA POL IN TC	0.033	< 0.0001	< 0.0001
REACTOME LAGGING STRAND SYNTHESIS	0.036	< 0.0001	< 0.0001
REACTOME CELL CYCLE MITOTIC	0.019	< 0.0001	<0.0001
REACTOME EXTENSION OF TELOMERES	0.030	< 0.0001	< 0.0001
KEGG MISMATCH REPAIR	0.028	<0.0001	<0.0001
REACTOME SYNTHESIS OF DNA	0.020	< 0.0001	< 0.0001
REACTOME INHIBITION OF REPLICATION INITIATION OF DAMAGED DNA	0.024	< 0.0001	<0.0001
BIOCARTA MCM PATHWAY	0.022	< 0.0001	<0.0001
REACTOME CDC6 ASSOCIATION WITH THE ORC ORIGIN COMPLEX	0.036	< 0.0001	< 0.0001
PID AURORA B PATHWAY	0.021	< 0.0001	< 0.0001
BIOCARTA CELLCYCLE PATHWAY	0.016	< 0.0001	< 0.0001
PID PLK1 PATHWAY	0.019	<0.0001	< 0.0001
REACTOME S PHASE	0.020	<0.0001	< 0.0001
REACTOME CELL CYCLE	0.017	<0.0001	< 0.0001
REACTOME_HOMOLOGOUS_RECOMBINATION_REPAIR_OF_REPLICATION	0.025	<0.0001	<0.0001
PID E2F PATHWAY	0.015	<0.0001	< 0.0001
REACTOME MITOTIC G1 G1 S PHASES	0.017	<0.0001	< 0.0001
REACTOME M G1 TRANSITION	0.019	<0.0001	< 0.0001
REACTOME_KINESINS	0.019	<0.0001	<0.0001
REACTOME_G1_S_TRANSITION	0.019	<0.0001	<0.0001
REACTOME_CHROMOSOME_MAINTENANCE	0.020	<0.0001	<0.0001
REACTOME_PROCESSIVE_SYNTHESIS_ON_THE_LAGGING_STRAND	0.031	<0.0001	<0.0001
REACTOME_E2F_ENABLED_INHIBITION_OF_PRE_REPLICATION_COMPLEX	0.029	< 0.0001	<0.0001
KEGG_HOMOLOGOUS_RECOMBINATION	0.019	< 0.0001	<0.0001
SA_REG_CASCADE_OF_CYCLIN_EXPR	0.024	< 0.0001	< 0.0001
PID_BARD1PATHWAY	0.017	< 0.0001	<0.0001
REACTOME_ASSOCIATION_OF_LICENSING_FACTORS_WITH_THE_PRE_REP	0.025	<0.0001	<0.0001
PID ERBB NETWORK PATHWAY	0.020	< 0.0001	< 0.0001

Supplemental Table 7. Top 50 gene sets predicted by GSVA between GFP (control) and KRAS(G12V) overexpressing RNA-sequencing data in HMECs. Expected pathways are in red.

Hallmark + canonical (C2) gene sets (Molecular Signatures Database)	logFC	P.Value	adj.P.Val
REACTOME_RAF_MAP_KINASE_CASCADE	0.037	< 0.0001	< 0.0001
PID_TCRRASPATHWAY	0.044	<0.0001	<0.0001
REACTOME_SHC1_EVENTS_IN_EGFR_SIGNALING	0.023	<0.0001	<0.0001
REACTOME_SHC_MEDIATED_SIGNALLING	0.023	< 0.0001	< 0.0001
REACTOME_GRB2_EVENTS_IN_ERBB2_SIGNALING	0.032	<0.0001	<0.0001
REACTOME_SHC1_EVENTS_IN_ERBB4_SIGNALING	0.034	<0.0001	<0.0001
REACTOME_SHC_RELATED_EVENTS	0.022	<0.0001	<0.0001
BIOCARTA P53HYPOXIA PATHWAY	-0.030	<0.0001	<0.0001
REACTOME_P38MAPK_EVENTS	0.031	<0.0001	<0.0001
REACTOME_SOS_MEDIATED_SIGNALLING	0.026	<0.0001	<0.0001
PID_RAS_PATHWAY	0.020	<0.0001	<0.0001
BILD_HRAS_ONCOGENIC_SIGNATURE	0.019	<0.0001	<0.0001
KEGG ANTIGEN PROCESSING AND PRESENTATION	-0.037	<0.0001	< 0.0001
REACTOME_IL_7_SIGNALING	-0.030	<0.0001	<0.0001
PID_ERBB_NETWORK_PATHWAY	0.030	<0.0001	< 0.0001
REACTOME_SIGNALLING_TO_P38_VIA_RIT_AND_RIN	0.022	<0.0001	<0.0001
BIOCARTA IL7 PATHWAY	-0.022	<0.0001	<0.0001
KEGG ALDOSTERONE REGULATED SODIUM REABSORPTION	0.018	<0.0001	<0.0001
BIOCARTA TID PATHWAY	-0.038	<0.0001	<0.0001
PID MAPKTRKPATHWAY	0.022	<0.0001	< 0.0001
PID CD8TCRDOWNSTREAMPATHWAY	0.018	<0.0001	< 0.0001
HALLMARK ANGIOGENESIS	0.016	< 0.0001	< 0.0001
REACTOME ARMS MEDIATED ACTIVATION	0.017	< 0.0001	< 0.0001
BIOCARTA_SPRY_PATHWAY	0.014	<0.0001	<0.0001
REACTOME_TIE2_SIGNALING	0.025	<0.0001	<0.0001
BIOCARTA_PPARA_PATHWAY	-0.017	<0.0001	<0.0001
HALLMARK_KRAS_SIGNALING_UP	0.014	<0.0001	<0.0001
REACTOME_NUCLEOTIDE_LIKE_PURINERGIC_RECEPTORS	0.029	<0.0001	<0.0001
HALLMARK_APICAL_SURFACE	0.020	<0.0001	<0.0001
KEGG_ENDOCYTOSIS	-0.010	<0.0001	<0.0001
KEGG_SPLICEOSOME	-0.018	<0.0001	<0.0001
REACTOME_SIGNALING_BY_CONSTITUTIVELY_ACTIVE_EGFR	0.015	<0.0001	<0.0001
REACTOME_HYALURONAN_METABOLISM	0.019	<0.0001	<0.0001
PID_ER_NONGENOMIC_PATHWAY	0.012	<0.0001	<0.0001
BIOCARTA_MAL_PATHWAY	0.019	<0.0001	<0.0001
REACTOME_SIGNALLING_TO_RAS	0.013	<0.0001	<0.0001
HALLMARK_IL2_STAT5_SIGNALING	0.010	<0.0001	<0.0001
BIOCARTA_TEL_PATHWAY	0.015	<0.0001	<0.0001
REACTOME_TRIGLYCERIDE_BIOSYNTHESIS	0.011	<0.0001	<0.0001
PID_P38ALPHABETAPATHWAY	-0.011	<0.0001	<0.0001
REACTOME_SHC_MEDIATED_CASCADE	0.022	<0.0001	<0.0001
BIOCARTA_EPONFKB_PATHWAY	-0.013	<0.0001	<0.0001
BIOCARTA_FIBRINOLYSIS_PATHWAY	0.037	<0.0001	<0.0001
ST_JNK_MAPK_PATHWAY	-0.010	<0.0001	<0.0001
REACTOME_PROLONGED_ERK_ACTIVATION_EVENTS	0.013	<0.0001	<0.0001
REACTOME_GASTRIN_CREB_SIGNALLING_PATHWAY_VIA_PKC_AND_MAPK	0.009	<0.0001	< 0.0001
PID_ERBB2ERBB3PATHWAY	0.008	<0.0001	< 0.0001
BIOCARTA_LONGEVITY_PATHWAY	-0.011	<0.0001	<0.0001

Supplemental Table 8. Top 50 gene sets predicted by GSVA between GFP (control) and RAF1 overexpressing RNA-sequencing data in HMECs. Expected pathways are in red.

Hallmark + canonical (C2) gene sets (Molecular Signatures Database)	logFC	P.Value	adj.P.Val
BIOCARTA_SPRY_PATHWAY	0.027	<0.0001	<0.0001
KEGG ANTIGEN PROCESSING AND PRESENTATION	-0.029	<0.0001	<0.0001
HALLMARK_KRAS_SIGNALING_UP	0.021	<0.0001	<0.0001
PID_REELINPATHWAY	0.018	<0.0001	<0.0001
BIOCARTA_CBL_PATHWAY	0.020	<0.0001	<0.0001
REACTOME_REVERSIBLE_HYDRATION_OF_CARBON_DIOXIDE	0.034	<0.0001	<0.0001
BIOCARTA_FIBRINOLYSIS_PATHWAY	0.051	<0.0001	<0.0001
PID_VEGFR1_PATHWAY	0.014	<0.0001	<0.0001
PID_INTEGRIN_A9B1_PATHWAY	0.037	<0.0001	<0.0001
BIOCARTA_SPPA_PATHWAY	0.021	<0.0001	<0.0001
BIOCARTA_IL10_PATHWAY	-0.020	<0.0001	<0.0001
PID_BMPPATHWAY	0.022	<0.0001	<0.0001
SIG_IL4RECEPTOR_IN_B_LYPHOCYTES	0.020	<0.0001	<0.0001
BIOCARTA_P53HYPOXIA_PATHWAY	-0.016	<0.0001	<0.0001
PID_ERBB1_INTERNALIZATION_PATHWAY	0.021	<0.0001	<0.0001
HALLMARK_TGF_BETA_SIGNALING	0.017	<0.0001	<0.0001
PID_IGF1_PATHWAY	0.015	<0.0001	<0.0001
SIG_PIP3_SIGNALING_IN_B_LYMPHOCYTES	0.013	<0.0001	<0.0001
BIOCARTA_AKAP13_PATHWAY	0.026	<0.0001	<0.0001
PID_TGFBRPATHWAY	0.012	<0.0001	<0.0001
PID_FGF_PATHWAY	0.012	<0.0001	<0.0001
REACTOME_DOWNREGULATION_OF_SMAD2_3_SMAD4_TRANS	0.015	<0.0001	<0.0001
HALLMARK_IL2_STAT5_SIGNALING	0.011	<0.0001	<0.0001
BIOCARTA_IL22BP_PATHWAY	-0.019	<0.0001	<0.0001
KEGG_SPLICEOSOME	-0.015	<0.0001	<0.0001
SIG_BCR_SIGNALING_PATHWAY	0.013	<0.0001	<0.0001
REACTOME_SIGNAL_TRANSDUCTION_BY_L1	0.011	<0.0001	<0.0001
KEGG_ASCORBATE_AND_ALDARATE_METABOLISM	-0.019	<0.0001	<0.0001
REACTOME_RECYCLING_PATHWAY_OF_L1	0.014	<0.0001	<0.0001
REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX	0.009	<0.0001	<0.0001
REACTOME_DOWNREGULATION_OF_TGF_BETA_RECEPTOR	0.013	<0.0001	<0.0001
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY	0.009	<0.0001	<0.0001
KEGG_JAK_STAT_SIGNALING_PATHWAY	0.011	<0.0001	<0.0001
REACTOME_SIGNALING_BY_BMP	0.017	<0.0001	<0.0001
REACTOME_TRANSCRIPTIONAL_ACTIVITY_OF_SMAD2_SMAD3	0.010	<0.0001	<0.0001
REACTOME_RORA_ACTIVATES_CIRCADIAN_EXPRESSION	0.012	<0.0001	<0.0001
PID_EPHRINBREVPATHWAY	0.015	<0.0001	<0.0001
REACTOME_IL_7_SIGNALING	-0.016	<0.0001	<0.0001
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION	0.010	<0.0001	<0.0001
REACTOME_G_ALPHA1213_SIGNALLING_EVENTS	0.013	<0.0001	<0.0001
PID_P38_MK2PATHWAY	0.013	<0.0001	<0.0001
REACTOME_GAP_JUNCTION_TRAFFICKING	0.016	<0.0001	<0.0001
KEGG_FATTY_ACID_METABOLISM	-0.012	<0.0001	<0.0001
KEGG_PRION_DISEASES	-0.018	<0.0001	<0.0001
REACTOME_TGF_BETA_RECEPTOR_SIGNALING_ACTIVATES_SMADS	0.013	<0.0001	<0.0001
PID_ARF6_PATHWAY	0.011	<0.0001	<0.0001
BIOCARTA_ECM_PATHWAY	0.010	< 0.0001	<0.0001
BILD_HRAS_ONCOGENIC_SIGNATURE	0.015	<0.0001	<0.0001
PID_CDC42_REG_PATHWAY	0.012	< 0.0001	< 0.0001

Supplemental Table 9: Clinical and intrinsic subtype variation within the growth and survival phenotypes in ICBP breast cancer cell lines

Subtypes	Num. in survival phenotype (N=29)	Percentage of total survival phenotype samples	Num. in growth phenotype (N=26)	Percentage of total growth phenotype samples
ER Positive	17	58.62%	1	3.84%
ER Negative	10	34.48%	22	84.62%
PR Positive	7	24.14%	0	0%
PR Negative	20	68.96%	21	80.76%
HER2 Positive	15	51.72%	2	7.69%
HER2 Negative	14	48.28%	19	73.07%
Basal	1	3.45%	9	34.62%
Claudin-low	0	0%	5	19.23%
HER2-Basal	1	3.45%	6	23.08%
HER2-Luminal	14	48.28%	0	0%
Luminal	11	37.93%	0	0%
Normal-like	0	0%	5	19.23%

Supplemental Table 10: Clinical and intrinsic subtype variation within the growth and survival phenotypes in TCGA tumor data.

Subtypes	Num. in survival phenotype (N=596)	Percentage of total survival phenotype samples	Num. in growth phenotype (N=523)	Percentage of total growth phenotype samples
ER Positive	505	84.73%	280	53.54%
ER Negative	33	5.54%	197	37.67%
PR Positive	435	72.99%	245	46.85%
PR Negative	102	17.11%	230	43.98%
HER2 Positive	108	18.12%	54	10.33%
HER2 Negative	251	42.11%	295	56.41%
Basal	2	0.34%	93	17.78%
HER2	41	6.88%	16	3.06%
LumA	158	26.51%	73	13.96%
LumB	106	17.79%	21	4.02%
Normal	2	0.34%	5	0.96%

Supplemental Table 11: Comparing GFRN subtypes, intrinsic subtypes (PAM50), and clinical subtypes (ER, ER, and HER2 status) in terms of contribution to principle components 1 through 5 from TCGA RNA-sequencing breast cancer data. Contributed variability from linear models are represented as R² values (0-1).

РС	ER (R ²)	ER + GFRN subgroups (R ²)	ER + PAM50 (R ²	²)
1	0.087	0.188	0.131	
2	0.561	0.696	0.747	
3	0.052	0.398	0.254	
4	0.029	0.279	0.078	
5	0.038	0.175	0.216	
РС	PR	PR + GFRN subgroups	PR + PAM50	
1	0.060	0.156	0.124	
2	0.407	0.647	0.736	
3	0.059	0.393	0.253	
4	0.004	0.282	0.083	
5	0.027	0.173	0.216	
				_
РС	HER2	HER2 + GFRN subgroups	HER2 + PAM50	,
1	0.011	0.129	0.125	
2	0.000	0.509	0.725	
3	0.033	0.393	0.257	
4	0.021	0.279	0.082	
5	0.023	0.207	0.224	
PC	ER/PR/HER2	ER/PR/HER2 + GFRN subgroups	ER/PR/HER2 + PAM50	
1	0.098	0.191	0.133	
2	0.598	0.726	0.751	
3	0.091	0.404	0.263	
4	0.054	0.282	0.089	
5	0.068	0.213	0.224	
РС	GFRN subgroups	PAM50	GFRN subgroups + PAM50	ER/PR/HER2 + PAM50 +GFRN subgroups
1	0.124427	0.1229359	0.2100966	0.220723
2	0.4922497	0.7243437	0.7920581	0.8151674
3	0.3845233	0.2489111	0.4695138	0.4784226
4	0.2788131	0.0777884	0.2880172	0.2936144
5	0.1725182	0.2159571	0.2904661	0.3047475

Supplemental Table 12: Spearman correlations between principal component values for principal components 1-5 from TCGA BRCA gene expression data and pathway activation estimates for each oncogenic signature in TCGA BRCA gene expression data (* p-value<0.0001).

	PC 1	PC 2	PC 3	PC 4	PC 5
AKT	0.047	-0.572*	0.402*	0.474*	0.084
HER2	-0.076	-0.334*	0.366*	0.347*	-0.094
IGF1R	-0.284*	-0.824*	0.249*	0.358*	0.044
EGFR	-0.255*	0.439*	-0.538*	-0.596*	-0.266*
RAF1	-0.357*	0.639*	-0.434*	-0.636*	-0.347*
KRAS	0.108	0.762*	-0.399*	-0.443*	-0.065
BAD	0.401*	0.452*	0.524*	-0.139*	0.364*

Supplemental Table 13: List of cancer drugs and corresponding p-values, where GFRN phenotypes, ER, PR, or HER2 status could significantly (p-value<0.05) distinguish drug response in ICBP cell lines.

GFRN phenotype		ER based		PR based		HER2 based	
drugs	P.value	drugs	P.value	drugs	P.value	drugs	P.value
AKT1/2 Inhibitor	<0.0001	AG1478	0.014	AK I 1/2 Inhibitor	0.028	AG1478	0.001
AZD6244	0.007	AKT1/2 Inhibitor	0.034	Triciribine	0.001	BEZ235	0.024
CGC.11047	0.006	Bortezomib	0.041	AS.252424	0.029	BIBW2992	0.000
Erlotinib	0.012	CGC.11047	0.027	AZD6244	0.000	CPT.11	0.040
Etoposide	0.034	Erlotinib	0.001	GSK107091 6	0.047	Everolimus	0.020
Everolimus	0.001	GSK461364	0.004	GSK112021 2	0.000	GSK1838705	0.015
Fascaplysin	0.004	GSK2119563	0.049	GSK461364	0.001	GSK2119563	0.029
GSK1070916	0.035	MG.132	0.017	ICRF.193	0.000	GSK2126458	0.004
GSK1120212	0.003	PF.4691502	0.041	PF.3814735	0.023	GSK1059615	0.021
GSK1059868	0.018	Vorinostat	0.022	Pemetrexed	0.000	GSK650394	0.038
GSK461364	0.016	Bosutinib	0.018	VX.680	0.020	Lapatinib	>0.001
GSK2119563	0.022	Tamoxifen	0.044	ZM447439	0.010	Geldanamyci n	0.021
GSK2126458	0.008	Trichostatin.A	0.048			Gefitinib	0.003
GSK2141795	0.009					NU6102	0.000
GSK650394	0.029					Olomoucine.II	0.031
Lapatinib	0.036					PF.2341066	0.005
IKK.16	0.003					PF.3814735	0.007
LBH589	0.005					Temsirolimus	0.039
MG.132	0.008					VX.680	0.019
NU6102	0.028						
PF.4691502	0.000						
Rapamycin	0.001						
Vorinostat	0.001						
Bosutinib	0.003						
Sunitinib.Malate	0.015						
Temsirolimus Trichostatin.A	0.032						

Supplemental Table 14: ASSIGN parameters used for all analyses. The default values were used for all other parameters.

Parameter	Value
adaptive_B	TRUE
adaptive_S	TRUE
mixture_beta	FALSE
S_zeroPrior	FALSE
sigma_sZero	0.05
sigma_sNonZero	0.5
iter	100,000
burn_in	50,000