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Section I: The three layered DNAzymes cascade

Shown below as Equation (S1) is the kinetic scheme corresponding to Figure1 of the 

main text

  (S1)

d D3  t 
dt

 k D3H2  t - k- D3  t  H2  t 

d D3H2  t 
dt

 k D3  t  H2  t  k D3H2  t 










  3rd layer

d D2  t 
dt

 k D3H2  t  k D2  t  H1  t  k D2H1  t 

d D2H1  t 
dt

 k D2  t  H1  t  k D2H1  t 










   2nd layer

d D1  t 
dt

 k D2H1  t  k[D1] t [FQ] t  k[D1FQ] t 

d D1FQ  t 
dt

 k[D1] t [FQ] t  k[D1FQ] t 










   1st layer

d F  t 
dt

 k[D1FQ] t  fluorescence
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Section II: Solving analytically for one layer

We here solve the coupled kinetic equations for the first layer 

 

d D1  t 
dt

 k[D1] t [FQ] t  k[D1FQ] t 

d FQ  t 
dt

 k[D1] t [FQ] t 

d D1FQ  t 
dt

 k[D1] t [FQ] t  k[D1FQ] t   d D1  t 
dt

d F  t 
dt

 k[D1FQ] t 

We simplify the task by taking advantage of the conservation of the DNAzyme, meaning 

that  and assuming that no initial D1FQ is poresent. [D1FQ] t  D1  t  const  D1  0 
Then the equation for the fluorescence becomes

d F  t 
dt

 k[D1FQ] t  k D1  0  D1  t  

Using the conservation [D1FQ] t  D1  0  D1  t 

d D1  t 
dt

  k[FQ](t) [D1] t  k[D1FQ] t 

  k[FQ](t) [D1] t  k D1  0  D1  t  
  k[FQ](t) k  [D1] t  D1  0   k[FQ](t) [D1] 0 

d [D1] t  D1  0  
dt

  k[FQ](t) k  [D1] t  D1  0   k[FQ](t) [D1] 0 

If FQ is in great excess so that its concentration is effectively constant in time

 
d [D1] t  D1  0  

dt
  k[FQ] k  [D1] t  D1  0   k[FQ] [D1] 0 

We next define an auxiliary variable   and use a  y  D1  t  D1  0   , y(t  0)  0
well known mathematical trick for solving a linear non homogeneous differential 
equation  with a constant c that is not time dependent. We define a new   dy / dt  ky  c
variable  and rewrite the differential equation as  exp(kt)y(t)
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d exp(kt)y / dt  k exp(kt)y  exp(kt)dy / dt
 k exp(kt)y  k exp(kt)y  exp(kt)c
 exp(kt)c
Integrating both sides from 0 to t

exp(kt)y  y(0)  k1c exp(kt)1 
y(t)  k1c 1 exp(kt)  y(0)exp(kt)

 
dy
dt
  y  k[FQ] [D1] 0  and using the preliminary results above

y  D1  t  D1  0   1 k[FQ] [D1] 0  1 exp( t 

With the solution for  we continue to solve for D1  t  D1  0   F  t 

 

d F  t 
dt

 k D1  0  D1  t   ky

F  t  F  0  k y(t ')dt '
0
t


Integrating y(t)

 
  

1 exp( t ') 0
t
 dt '  t  1 exp( t)1 
Final result:

 

  

F  t  F  0  k
1 k[FQ] [D1] 0  t  1 1 exp( t)  

 F  0  [D1] 0 x t  1 1 exp( t)  
 F  0  [D1] 0 x t  [D1] 0 x 1 exp( t) 

In the experiments reported here there is no initial fluorophore .  F  0  0

We then have that the fluorescence has a zero intercept at zero time and it is a sum of a 

transient term that decays exponentially with the rate , and a term  that    [D1] 0 x t

increases linearly with time. This is the term that gives rise to the observed linear rise of 

the signal with time. A key point is that the coefficient is , the initial   [D1] 0 
concentration of D1. Thereby we have the linear term for equation (2) of the main text. It 

shows how the initial concentration determines the slope of the linear term.
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An analytical solution for the model of two or three layers is also possible and the final 

results are quoted in Section III of this ESI
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Section III: The results of solving analytically for the kinetics of two layers

When we include the second layer in the model the result is

 (S2)

  

Fluorescence = [F](t  0) 3[D2](t  0)x2(1 -  exp(- t)) [D1](t  0)x(1 -  exp(- t))
([D1](t  0) (2 exp(- t))[D2](t  0))x t 

1
2

[D2](t  0)x2 2t2

 t1  [F](t  0) 3[D2](t  0)x2  [D1](t  0)x 

[D1](t  0) 2[D2](t  0)x x t 

1
2

[D2](t  0)x2 2t2

In the limit when x <<1 and for times longer than the induction period, , we have    t 1

for the second layer the result shown in the main text,

              (S3)

  

Fluorescence x1  [F](t  0) [D1](t  0)x t  1
2

[D2](t  0)x2 2t2

 Fluorescence 1st layer + 1
2

[D2](t  0)x2 2t2
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Table S1: DNA sequences for the complete three layer system, Figure 1 of the main text.

Hairpin 1 GATATCAGCGATCCGGAACGGCACCCATGT TACTCTrAGGTTACTACGCTGATA

Hairpin 2 TAGTAACAGCGATCCGGAACGGCACCCATGT AGAGTArAGGACACAGGCTGTTACTA

Dz 1 GATATCAGCGATCCGGAACGGCACCCATGT TACTCT
Dz 2 TAGTAACAGCGATCCGGAACGGCACCCATGT AGAGTA
Dz 3  CTGTGTCAGCGATCCGGAACGGCACCCATGTTACTCT
FQ /56-FAM/AGAGTATrAGGATATC/3IABkFQ/
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Figure S1

Figure S1. Results of a mumerical integration for the concentration of the fluorophore, 
[F(t)] in MOL for the one layer system (red), two layer system (blue) and three layer 
system (green) obtained from the kinetic model (Eq. S1) using the values of the rate 
constants fitted to the experimental data (Table 1) and the experimental initial 
concentrations in substrate. The initial concentrations in all DNAzymes are non zero 
emphasize the capabilities of the experimental system to operate as an integrator outside 
of the limiting conditions of the analytical model. One layer initial concentrations (in 
MOL): [D1(t=0)]=0.33, [FQ(t = 0)] = 4. Two layer system: [D1(t=0)]=0.33, [FQ(t = 0)] 
= 4, [D2(t=0)] =0.33, [H1(t = 0)] = 4. Three layer system: [D1(t=0)]=0.33, [FQ(t = 0)] = 4, 
[D2(t=0)] =0.33, [H1(t = 0)] = 4, [D3(t=0)] =0.66, [H2(t = 0)] = 4.
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Figure S2. Stepwise integration a-la Euler of three concatenated AND gates. A(0) is the 

input and the concentrations are shown in time steps of a small increment   t
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Figure S3.    An integrator in the notation of electronic circuits

An

An-1

An-1 +Ant An-1+An-1 t +An t2/2
An-2 A0

y(t)
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Figure S4. The reduced variable x as a function of the dimensionless constant 

. For best results one needs to operate at a value of x that is well K  k substrate  k

below 1.
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Figure S5. Comparison between the numerical solution of the kinetic scheme (full lines) 
and the solution of the analytical model, dashed line, for a one layer system. The values 
of the rate constants are the values obtained from the fit of the one layer experimental 
fluorescence reported in Table I. In panel a) the initial concentrations in DNAzyme is 
divided by 6 and that of the substrate is left unchanged compared to the experimental 
values : [D1(t=0)]=0.11, [FQ(t = 0)] = 4.  In Panel b), the initial concentration in 
DNAzyme is left unchanged and that of the substrate is multiplied by 6. [D1(t=0)]=0.66, 
[FQ(t = 0)] = 39.6. Concentrations are given in MOL. Both cases correspond to an 
excess of substrate but two different values of the  (Eq. (3) of the main text) and x 
parameters (Eq. (4) of the main text) which allow to asses the validity of the analytical 
solution. In panel a), the values of x and  are the same as those of the fit to the 
experimental result since the two parameters do not depend on the initial concentration of 
DNAzymes : x=0.1  and  = 0.0224. In panel b)  = 0.04376, x = 0.25. The numerical 
solution in panel b) deviates more from the analytical one because the values of the  and 
x parameters are further away from their optimal values. See also Equation (5) of the 
main text and section II above.
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Figure S6. Numerical solutions (solid line) and analytical solutions (dashes) for a 3 layer 

system that obeys of the conditions of validity of the analytical model. The numerical 

integration of the non-linear rate equations was done using a Runge-Kutta fifth order 

scheme. Each layer has the same set of rate constants,  = 6 MOL-1 min-1 and =0.05  k  k

min-1, the concentration of substrate for each layer is 133.2 MOL, which leads to x = 

0.015 and . x <<1, which leads to a good agreement between the 

analytical model (Eqs. (7)-(9)) and the results of the numerical integration of the kinetic 

scheme. The different computations correspond to different sets of initial concentrations 

of DNAzymes, as indicated in the figure. In this regime of parameters, the initial 

concentrations in DNAzymes fully control the values of the coefficients of the 

polynomial as in equation (2) of the main text.
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Figure S7. The ‘steady state’ where the concentration of the DNAzyme and the adduct 
settle to a constant under two different set of conditions for one layer. (a) Using the rate 
constants fitted to the experimental data of one layer and with the experimental initial 
concentration. The substrate FQ, right ordinate, is not in great excess compared to 
[D1(t=0)]. It is therefore depleted by the reaction and while the feedback strives to keep
[D1(t)] constant in time, it succeeds but only approximately. (b) Same conditions as in 
Figure S6. [FQ(t=0)] is high enough that the DNAzyme reaches a steady state and the 
output of the integrator is strictly linear in time.
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Figure S8. The model is accurate when K >1. Flourescence computed by numerical 
integration, solid lines, and by the model, dashed lines, for K = 15.96.  =1200 min-1 k
MOL-1 ,  =10-2 min-1.  = 0.169 and x =5.5.10-2. The initial concentration of substrate k 

for each layer is 133.2 MOL and the initial concentration of the DNAzyme for each 
layer is 0.1 MOL. 
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