Supplemental Data

Moss-Produced, Glycosylation-Optimized Human Factor H for Therapeutic Application in Complement Disorders

Stefan Michelfelder,* Juliana Parsons,[†] Lennard L. Bohlender,[†] Sebastian N.W. Hoernstein,[†]Holger Niederkrüger,[‡] Andreas Busch,[‡] Nicola Krieghoff,[‡] Jonas Koch,[‡] Benjamin Fode,[‡]Andreas Schaaf,[‡] Thomas Frischmuth,[‡] Martin Pohl,* Peter F. Zipfel,[§] Ralf Reski,^{†|¶}Eva L. Decker,[†] and Karsten Häffner*

*Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany; [†]Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany; [‡]Greenovation Biotech GmbH, Freiburg, Germany; [§]Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany; ^IBIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; and [¶]FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany **SUPPLEMENTARY TABLE 1:** Data are presented of a representative purification process.

FHmoss was quantified by ELISA.

Step	Volume [ml]	FH [µg/ml]	FH [mg]	FH step recovery [%]	FH total recovery [%]
Starting material (<i>Physcomitrella</i> culture)	2000	9	18		
Concentration/Dialfiltration	354	38	13.5	75	
Phenyl pool	140	41	5.74	43	
Heparin load	1026	5	4.75	83	
Heparin pool	44	60	2.63	55	15
Heparin pool concentrated	0.25	9141	2.29	87	13
Heparin pool concentrated (0.22µm filtered)	0.18	8758	1.58	69	9

A	В
MAFYKISSVF FIFCFFLIAL PFHSYAEDC NELPPRRNTE ILTGSWSDQTY	MAFYKISSVF FIFCFFLIAL PFHSYAEDC NELPPRRNTE ILTGSWSDQTY
PEGTQAIYKC RPGYRSLGNV IMVCRKGEWV ALNPLRKCQK RPCGHPGDTP	PEGTQAIYKC RPGYRSLGNV IMVCRKGEWV ALNPLRKCQK RPCGHPGDTP
FGTF TLTGGN VFEYGVKAVY TCNEGYQLLG EINYRECDTD GWTNDIPICE	FGTFTLTGGN VFEYGVKAVY TCNEGYQLLG EINYRECDTD GWTNDIPICE
VVKCLPVTAP ENGKIVSSAM EPDREYHFGQ AVRFVCNSGY KIEGDEEMHC	VVKCLP VTAP ENGKIVSSAM EPDREYHFGQ AVRF VCNSGY KIEGDEEMHC
SDDGFWSKEK PKCVEISCKS PDVIDGSPIS QKIIYKENER FQYKCNMGYE	SDDGFWSKEK PKCVEISCKS PDVIDGSPIS QKIIYKENER FQYKCNMGYE
YSERGDAVCT ESGWRPLPSC EEKSCDNPYI PNGDYSPLRI KHRTGDEITY	YSERGDAVCT ESGWRPLPSC EEKSCDNPYI PNGDYSPLRI KHRTGDEITY
QCRNGFYPAT RGNTAKCTST GWIPAPRCTL KPCDYPDIKH GGLYHENMRR	QCRNGFYPAT RGNTAKCTST GWIPAPRCTL KPCDYPDIKH GGLYHENMRR
PYFPVAVGKY YSYYCDEHFE TPSGSYWDHI HCTQDGWSPA VPCLRKCYFP	PYFPVAVGKY YSYYCDEHFE TPSGSYWDHI HCTQDGWSPA VPCLRKCYFP
YLENGYNQNY GRKF VQGKSI DVACHPGYALP KAQTTVTCM ENGWSPTPRC	YLENGYNQNY GRKFVQGKSI DVACHPGYALP KAQTTVTCM ENGWSPTPRC
IRVKTCSKSS IDIENGFISE SQYTYALKEK AKYQCKLGYV TADGETSGSI	IRVKTCSKSS IDIENGFISE SQYTY ALKEK AKY QCKLGY V TADGETSGSI
TCGKDGWSAQ PTCIKSCDIP VFMNARTKND FTWFKLNDTL DYECHDGYES	TCGKDGWSAQ PTCIKSCDIP VFMNARTKND FTWFKLNDTL DYECHDGYES
NTGSTTGSIV CGYNGWSDLP ICYERECELP KIDVHLVPDR KKDQYKVGEV	NTGSTTGSIV CGYNGWSDLP ICYERECELP KIDVHLVPDR KKDQYKVGEV
LKFSCKPGFT IVGPNSVQCY HFGLSPDLPI CKEQVQSCGP PPELLNGNVK	LKFSCKPGFT IVGPNSVQCY HFGLSPDLPI CKEQVQSCGP PPELLNGNVK
EKTKEEYGHS EVVEYYCNPR FLMKGPNKIQ CVDGEWTTLP VCIVEESTCG	EKTKEEYGHS EVVEYYCNPR FLMKGPNKIQ CVDGEWTTLP VCIVEESTCG
DIPELEHGWA QLSSPPYYYG DSVEFNCSES FTMIGHRSIT CIHGVWTQLP	DIPELEHGWA QLSSPPYYYG DSVEF <u>NCS</u> ES FTMIGHRSIT CIHGVWTQLP
QCVAIDKLKK CKSSNLIILE EHLKNKKEFD HNSNIRYRCR GKEGWIHTVC	QCVAIDKLKK CKSSNLIILE EHLKNKKEFD HNSNIRYRCR GKEGWIHTVC
INGRWDPEVN CSMAQIQLCP PPPQIPNSHN MTTTLNYRDG EKVSVLCQEN	INGRWDPEVN CSMAQIQLCP PPPQIPNSHN MTTTLNYRDG EKVSVLCQEN
YLIQEGEEIT CKDGRWQSIP LCVEKIPCSQ PPQIEHGTIN SSRSSQESYA	YLIQEGEEIT CKDGRWQSIP LCVEKIPCSQ PPQIEHGTIN SSRSSQESYA
HGTKLSYTCE GGFRISEENE TTCYMGKWSS PPQCEGLPCK SPPEISHGVV	HGTKLSYTCE GGFRISEENE TTCYMGKWSS PPQCEGLPCK SPPEISHGVV
AHMSDSYQYG EEVTYKCFEG FGIDGPAIAK CLGEKWSHPP SCIKTDCLSL	AHMSDSYQYG EEVTYKCFEG FGIDGPAIAK CLGEKWSHPP SCIKTDCLSL
PSFENAIPMG EKKDVYKAGE QVTYTCATYY KMDGASNVTC INSRWTGRPT	PSFENAIPMG EKKDVYKAGE QVTYTCATYY KMDGASNVTC INSRWTGRPT
CRDTSCVNPP TVQNAYIVSR QMSKYPSGER VRYQCRSPYE MFGDEEVMCL	CRDTSCVNPP TVQNAYIVSR QMSKYPSGER VRYQCRSPYE MFGDEEVMCL
NG <u>NWT</u> EPPQC KDSTGKCGPP PPIDNGDITS FP LSVYAPAS SVEYQCQNLY	NGNWTEPPQC KDSTGKCGPP PPIDNGDITS FPLSVYAPAS SVEYQCQNLY
QLEGNKRITC RNGQWSEPPK CLHPCVISRE IMENYNIALR WTAKQKLYSR	QLEGNKRITC RNGQWSEPPK CLHPCVISRE IMENYNIALR WTAKQKLYSR
TGESVEFVCK RGYRLSSRSH TLRTTCWDGK LEYPTCAKR	TGESVEFVCK RGYRLSSRSH TLRTTCWDGK LEYPTCAKR

Supplementary Figure 1. Mass spectrometric detected sequence coverage of FHmoss. Shown is the mature FH sequence (black) fused to the *ToH1*-signal peptide (grey). Identified peptides are highlighted, N-glycosylation sites, including the deamidated site Asn199→Asp199, are underlined. FHmoss from the upper and the lower FH band was separately digested with trypsin, thermolysin or chymotrypsin, respectively and analyzed by nano LC-MS/MS on a Q-TOF instrument. The analyses of the raw data were performed with Mascot Distiller V2.4 and glycosylated peptides were identified manually. The highlighted peptides were identified with high confidence at a false discovery level of 0% on the protein as well as on the peptide level according to Protein- and PeptideProphetTM filtering with Scaffold4 software with a sequence coverage of 74 % for the upper FH band (A) and a sequence coverage of 57 % for the lower FH band (B).

Supplementary Figure 2. Summed MS1 scans showing the glycosylated Asn804- and Asn893 glycosylation sites of FHmoss (A) and the proof of the Asn804 glycopeptide identity on MS2-level (B and C). FHmoss was digested with thermolysin and analyzed by nano LC-MS/MS on a Q-TOF instrument. (A) Among the identified peptides, the glycopeptide 792-808 (LCPPPPQIPNSHNMTTT, glycosylation site Asn804) with an oxidized methionin (Mox) and the glycopeptide 889-901 (ISEENETTCY, glycosylation site Asn893) were identified in a GnGn-glycosylated manner. (B and C) The glycopeptide identity of the GnGn-LCPPPPQIPNSHNMTTT glycopeptide could be proven on MS2 level by the identification of the N-glycan reporter ion N-acetylglucosamine (Gn, m/z= 204.0872) and its oxonium ions with m/z= 186.0766, 168.0661, 138.0555 and 126.0555 (B) and by the detection of m/z-values of product ions consisting of fragmented glycan structures attached to the intact peptide (C). Shown m/z values correspond to the most abundant isotope peak for each peptide. The monoisotopic masses for the identified glycopeptides are listed in table 1.

Supplementary Figure 3. MS2 spectra of detected N-glycosylation sites of FHmoss. FHmoss was tryptically digested and analyzed by nano LC-MS/MS on a Q-TOF instrument. Among the identified peptides, the glycopeptides 850-867 (IPCSQPPQIEHGTINSSR, glycosylation site Asn864) (A and B), 889-901 (ISEENETTCYMGK, glycosylation site Asn893) (C and D) and 1006-1018 (MDGASNVTCINSR, glycosylation site Asn1011) (E, F) were identified and proven by

MS2 spectra inspection. For each glycopeptide the presence of the N-glycan reporter ion N-acetylglucosamine (Gn, m/z= 204.0872) and its oxonium ions with m/z= 186.0766, 168.0661, 138.0555 and 126.0555 could be shown on MS2 level (A, C and E). Further, also N-glycan product ions consisting of fragmented glycan structures and glycan fragments attached to the intact peptide could be identified (B, D and F). Shown m/z values correspond to the most abundant isotope peak for each peptide. The monoisotopic masses for the identified glycopeptides are listed in table 1.

Supplementary Figure 4. Relative quantification of N-glycans identified on FHmoss. FHmoss was digested with trypsin, thermolysin and chymotrypsin, respectively and analyzed by nano LC-MS/MS on a Q-TOF instrument. Relative quantification is based in peak area integration of extracted ion chromatograms (EICs) for every on MS1 and/or in MS2 level identified N-glycan form at the respective glycosylation site.

Supplementary Figure 5. FHmoss is devoid of plant-specific xylose and fucose. Western blots of total protein extracts of FHmoss-producing line, in which fucosyl- and xylosyltransferases have been knocked-out, and previous generation plant FH3³⁸, with intact glycosyltransferases, and the respective parental plants $\Delta xt/ft$ and WT. (A) Western blot using antibodies specifically recognizing β 1,2-linked xylose. (B) Western blot using antibodies specifically recognizing α 1,3-linked fucose.