Supplementary Information

Incubation of 2-Methylisoborneol Synthase with the Intermediate Analogue 2-Methylneryl Diphosphate

Wayne K. W. Chou,¹ Colin A. Gould¹ and David E. Cane¹

¹Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108

Figure S1. ¹H NMR spectrum (400 MHz, D_2O) of 2-MeNPP (10).

Figure S2. ${}^{13}C$ { ${}^{1}H$ } NMR spectrum (75 MHz, D₂O) of 2-MeNPP (10).

Figure S3. ${}^{31}P$ { ${}^{1}H$ } NMR spectrum (161 MHz, D₂O) of 2-MeNPP (10).

Figure S4. ¹H NMR spectrum (300 MHz, D₂O) of [1-³H]-2-MeNPP (10).

Figure S5. ${}^{31}P$ { ${}^{1}H$ } NMR spectrum (121 MHz, D₂O) of [1- ${}^{3}H$]-2-MeNPP (10).

Figure S6. ¹H NMR spectrum (400 MHz, CDCl₃) of 2-methyl-α-terpineol (**13**).

Figure S7. ¹³C {¹H} NMR spectrum (100 MHz, CDCl₃) of 2-methyl- α -terpineol (13).

Figure S8. Chiral GC-MS TIC of synthetic racemic 2-methyl- α -terpineol (13), showing individual enantiomers at ret. time 10.94 and 11.02 min.

Figure S9. Mass spectrum of 2-methyl-α-terpineol (13) peak at 10.94 min.

Figure S10. Mass spectrum of 2-methyl- α -terpineol (13) peak at 11.02 min.

			(-);	<u> </u>				
	2-methyl-	1-methyl	2-	2-methyl	2-methyl	2-methyl	2-methyl-	2-methyl
Incubation	2-bornene	camphene	methylene	limonene	linalool	isoborneol	α -terpineol	nerol
	(5)	(6)	bornane (4)	(15)	(14)	(1)	(13)	(11)
rt (min)	5.07	5.16	5.46	6.41	6.93	6.94	7.70	7.81
RI (calc)	990	993	1027	1134	1196	1197	1299	1317
RI (ref)	989	995	1030	1129	1200	1178	1306	
2-MeNPP				$4(2/2)^{b}$	$10(5/5)^{b}$		$86 (44/42)^{b}$	
control								
chiral								
2-MeNPP	<1	<1	26	39	<1	17	$10(10/0)^{ab}$	7
SCO7700				$(22/17)^{ab}$	$(0/<1)^{ab}$			
chiral								
2-MeGPP					100			
Control					(49/51)			
chiral								
2-MeGPP	<1	<1	10			89		
SCO7700								
chiral								

Table S1. GC-MS analysis of percent distribution of products from the incubation of Sco7700 with 2-MeNPP (10), 2-MeGPP (3), and assay buffer alone.

^apercentages after subtraction Mg²⁺⁻catalyzed background hydrolysis of 2-MeNPP. ^btotal percentage of product formed (percentage first enantiomer to elute/percentage second enantiomer to elute).

GC-MS spectra of co-injections.

Figure S12. Chiral GC-MS TIC of the pentane extract from the incubation of 2-MeNPP with Sco7700 (bottom spectrum) compared to the co-injection of the extract with synthetic 2-methyl- α -terpineol (13) (top spectrum).

Representative GC-mass spectra.

Figure S13. Mass spectrum of enzymatically generated 2-methyl-2-bornene (5) (lower spectrum) and 2-methyl-2-bornene standard (upper spectrum).

Figure S14. Mass spectrum of enzymatically-generated 1-methylcamphene (6) (lower spectrum) and 1-methylcamphene standard (upper spectrum).

Figure S15. Mass spectrum of enzymatically-generated 2-methylenebornane (4) (lower spectrum) and 2-methylenebornane standard (upper spectrum).

Figure S16. Mass spectrum of peak for enzymatically-generated 2-methyllimonene (15) (lower spectrum) and 2-methyllimonene standard (upper spectrum).

Figure S18. Mass spectrum of enzymatically-generated 2-methylisoborneol (1) (lower spectrum) and 2-methylisoborneol standard (upper spectrum).

Figure S20. Mass spectrum of enzymatically-generated 2-methyl- α -terpineol (13) (lower spectrum) and 2-methyl- α -terpineol standard (upper spectrum).

Steady-state kinetics.

Figure S21. Michaelis-Menten plot of the reaction velocity for the MIBS-catalyzed formation of homo-monoterpenes as a function of the concentration of 2-MeGPP (**3**).

Figure S22. Michaelis-Menten plot of the reaction velocity for the MIBS-catalyzed formation of homo-monoterpenes as a function of the concentration of 2-MeNPP (10).