1	Supplementary Note
∠ 3	Accurate identification of single nucleotide variants in whole genome amplified
4	single cells
5	
6	Xiao Dong ^{1*} . Lei Zhang ^{1*} . Brandon Milholland ^{1*} . Moonsook Lee ¹ . Alexander Y. Maslov ¹ .
7	Tao Wang ² and Jan Vijg ^{1,3}
8	5 ,5
9	¹ Department of Genetics, ² Department of Epidemiology & Population Health,
10	³ Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine.
11	
12	*These authors contributed equally to this work.
13	Correspondence should be addressed to Jan Vijg (jan.vijg@einstein.yu.edu).
14	
15	
16	Library preparation and whole-genome sequencing
17	For the 8 single cells and the kindred clone, 2 μg of DNA from each sample was sheared
18	using Covaris sonication to an average size of 600 bp. Then we performed size-selection
19	ranging from 500 bp to 800 bp on a 1% agarose gel. The size-selected DNA was purified
20	using the MinElute Gel Extraction Kit (Qiagen). We transferred 300 ng of purified DNA to
21	a 0.2-ml PCR tube. PCR-free libraries were constructed following manuals of Accel-NGS
22	2S DNA Library Kit (Swift Biosciences). Bead-based SPRI cleanups were used to remove
23	oligonucleotides and small tragments after each step in the library construction. The
24	resulting functional libraries were quantified using the KAPA Library Quantification Kit
25	(KAPA Biosystems). Paired-end sequencing (2×250bp) was performed on Hiseq 2500
20	the bulk cell population generation DNA was extracted from the same human fibroblest
21	ne buik cell population, genomic DNA was extracted from the same numan information
20	purified genomic DNA was fragmented by Covaris sonication to a size of ~400 bn and a
30	PCR-free whole-genome sequencing library was constructed using the KAPA I TP Library
31	Preparation Kit (KAPA Biosystems) with Truesed adapters (Illumina) at the Epigenomics
32	Core of the Albert Einstein College of Medicine. Paired-end sequencing (2×100 bp) was
33	performed on HiSeg 2500 sequencers (Illumina) at the Epigenomics Core of the Albert
34	Einstein College of Medicine. For clones C1, C2 and C3, DNA was extracted from the
35	clone cultures, each grown from a single cell. Library construction and sequencing were
36	performed on the HiSeq X Ten at the New York Genome Center, New York, NY.
37	
~~	

38 Quantitative PCR for estimation of amplification uniformity

Single cell amplicons, positive and negative controls, and empty Rafts were tested for
 uniform amplification at 8 separate loci^{1,2} (Supplementary Table 2) using real-time PCR
 (RT-PCR). The 10-µl reaction included 2 ng DNA as template, 1 µM forward primer, 1 µM

reversed primer and 5 µl Fast Sybr Green master mix (Applied Biosystems). Relativeabundance of each locus was calculated as,

Relative uniformity value $(RUV) = 2^{-(Cti-Ct0)}$ (1)

45 Where, C_i denotes the Ct value of the locus in sample *i*, and C_i denotes the Ct value of 46 the same locus in the unamplified genomic DNA. RUV of unamplified genomic DNA 47 should be 1. An RUV closer to 1 indicates a more uniform amplification of the locus. 48 Primers used for RT-PCR are listed in Supplementary Table 2. RUVs of each locus from 49 single cell amplicons, positive and negative control, and empty Rafts (Methods) are listed 50 in Supplementary Table 1. This test provides a quick and rough estimate of amplification 51 uniformity across the genome. Currently, we consider RUVs of 6 out of the 8 loci in a 52 range of 0.25-4 as satisfactory and 66% of amplicons from single cells are within this 53 range (Supplementary Table 1).

54

44

55 Sanger sequencing

56 To confirm that somatic SNVs called by SCcaller were present in the single cell amplicons, 57 but not in the bulk DNA, we performed Sanger sequencing on 16 randomly selected 58 variants of the kindred group (Supplementary Table 5). This was done in the kindred cells 59 and clone, as well as the bulk, even for SNVs identified in only one cell. All the somatic 60 SNVs selected were confirmed by Sanger sequencing. Of note, the Sanger sequencing 61 can only confirm whether the mutation is in the amplicon, but cannot rule out the 62 possibility that the mutation is the result of an amplification error. We took advantage of 63 the kindred design to distinguish real SNVs and amplification errors (Fig. 1 a, b).

64

65 Accessing sequencing uniformity

To assess sequencing uniformity of the bulk, as well as the clone and single cell samples
amplified using SCMDA and HighTemp MDA, we split the genome into 1kb
non-overlapping windows. For each window, we calculated the number of reads
(mapQ≥20) aligned to it using bedtools (v2.24.0). We used the read counts per window to
plot Lorenz curves of the read numbers using the R package "ineq" (Supplementary Fig.
4).

72

73 Using other variant callers

For Haplotypecaller, we used the options -stand_call_conf 30 -stand_emit_conf 10 asrecommended by its developers.

For MuTect³, (version 1.1.7), we input single cell or clone data as the tumor (--input_file:tumor) and bulk cell population data as the normal (--input_file:normal). The dbSNP (build 138) data was also used as input to MuTect (--dbsnp). Candidate somatic SNVs overlapping with dbSNP (build 144), located on sex chromosomes or with sequencing depth less than 20 were discarded.

For VarScan⁴, (version 2.3.8), we first mpileuped single cells and bulk data using samtools. The somatic command for VarScan, with the default settings, was used for calling somatic SNVs from each single cell or clone against the bulk with a minimum
sequencing depth of 20. Candidate somatic SNVs reported by VarScan overlapping with
dbSNP (build 144), located on sex chromosomes or with variant reads in the bulk were
discarded.

For Monovar⁵, we first mpileuped the single cell data using samtools (-BQ0 -d10000
-f referencegenome.fa -q 40, as recommended) and then called SNVs (-p 0.002 -a 0.2 -t
0.05, as recommended). Somatic SNVs were identified as not present in the bulk, not
overlapping with dbSNP (build 144), located on autosomes, and with a sequencing depth
equal or more than 20.

92

93 Calling somatic SNVs from clones

We used three software tools, MuTect³, VarScan⁴ and Unifiedgenotyper⁶, as described
above, to call somatic SNVs from the clones using the bulk cell population as control, and
took the intersection of the three call sets; these we considered to be high-quality somatic
SNV calls and we reported them in the main text (Fig. 3). This strategy of taking the
intersection is a common practice, for example, in the 1000 Genomes Project⁷.

99

100 Determining true mutations and amplification artifacts

101 For our kindred cells and clone, TPs and FPs were determined as follows. For each 102 germline SNP detected by a variant caller in a kindred cell (Fig. 2a,b), we calculated the 103 variant read counts in the kindred clone, the other kindred cell and the bulk (mapQ≥40). 104 When the three numbers were all \geq 1, we assigned the germline SNP call as a TP, and 105 when all equal to 0, it was assigned as a FP. For each somatic SNV called by a variant 106 caller in a kindred cell (Fig. 2d,e), we calculated the number of variant reads in the 107 kindred clone (mapQ≥40). When at least 4 reads in the clone, a threshold based on 108 commonly used criteria for calling mutations from a single dataset⁴, we considered it to be 109 a TP, and when there was 0 variant-supporting read in the clone, a FP. This assignment 110 left some somatic SNVs with an unknown TP/FP status. We approximated the proportion 111 of TPs and FPs with an unknown TP/FP status as that of the SNVs with clear TP/FP 112 status described above.

113 For public single cell sequencing data, TPs and FPs were determined as follows. For 114 germline SNP calling (Fig. 2c), SNPs presented in dbSNP and covered in bulk (minimum 115 4 variant supporting reads), were considered as germline SNPs. The number of false 116 positives was approximated as the number of SNVs not present in dbSNP and not 117 present in bulk (minimum 1 variant supporting read). This is because according to Hazen 118 et al.⁸ the real somatic SNVs in this cell type is about a hundred per cell and we detected 119 1,000 to 30,000 depending on the variant caller applied, so the vast majority of these 120 variant calls are FPs. For somatic SNV calling (Fig. 2f), SNVs called by a variant caller in 121 one kindred cell and also present in the other two kindred single cells (minimum 1 variant 122 supporting read) in the MALBAC dataset⁹, were considered as overlapping somatic SNV 123 calls in all kindred cells.

124

125 Estimating the number of somatic SNVs per cell

To estimate the number of somatic SNVs per cell, we adjusted the raw number of somatic SNVs for sequencing depth and coverage. To do this, we divided the raw number of somatic SNVs by the number of base pairs in the genome with sequencing depth \ge 20 in both a single cell and its bulk (Supplementary Table 3), and multiplied by the total number of bases in the genome.

131

132 Somatic SNV distribution across genomic features

133 Gene annotations were downloaded from the Ensembl Biomart (hg19). DNase I 134 hypersensitive peaks and TF peaks were generated by ENCODE projects and 135 downloaded from the UCSC genome browser. Repeat annotations were downloaded 136 from the RepeatMasker website (http://www.repeatmasker.org). Germline variants were 137 downloaded from the 1000 Genomes Project 138 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).

We used bedtools (v2.24.0) to annotate somatic SNVs on the above genomic features. Level of enrichment of SNVs on a genomic region was presented as the ratio between observed number of somatic SNVs and the expected number from genome-wide average after adjusting sequencing depth and coverage (Supplementary Fig. 10a).

144

145 Somatic SNVs in expressed genes

146Transcriptome data were taken from the ENCODE projects under experiment IDs147ENCFF640FPGandENCFF704TVE148(https://www.encodeproject.org/experiments/ENCSR797BPP/), which correspond to149human dermal fibroblasts, the same cell type we used. The data include FPKM values for150genes.

151 To test whether mutation frequency in exomes correlate with gene expression level 152 we performed a permutation test as follows (Supplementary Fig. 10b). We sampled a 153 random gene set with the same number of genes harboring somatic SNVs and calculated 154 the average FPKM value for the random gene set. The sampling was repeated 2,000 155 times, and this generated 2,000 average FPKM values of random gene sets (the solid 156 black line in Supplementary Fig. 10b). The average FPKM value of the mutant gene set 157 was also calculated and compared to these 2,000 average FPKM values. The P value 158 was estimated as,

159 $P = \frac{N_{le} + 1}{N_{run} + 1}$ (2)

where N_{le} denotes the number of random gene sets with a smaller or equal average FPKM compared to the mutant, and N_{run} denotes the number of permutations, i.e., 2000 in this test.

163

Supplementary Table 1. Quantitative PCR at 8 loci for SCMDA amplicons of single human dermal fibroblasts.

Samplo	Туре	ype Yield µg	Relative uniformity value (Supplementary Information)							
Sample			site1	site2	site3	site4	site5	site6	site7	site8
h1	Single cell	14.4	1.11	0.14	1.01	0.38	0.19	1.31	0.28	0.50
h2	Single cell	15.2	1.02	0.25	0.09	0.53	0.70	0.60	0.15	0.38
h3	Single cell	17.2	1.68	0.21	1.17	0.06	0.28	0.76	0.49	0.66
h4	Single cell	17.5	0.69	0.11	0.73	0.12	0.34	0.72	0.57	0.52
h5	Single cell	14.6	10.04	0.04	0.01	0.32	0.02	0.02	0.01	0.03
h6	Single cell	16.4	0.84	0.36	0.91	0.18	0.33	0.99	0.27	0.63
h7	Single cell	16.4	0.53	0.16	0.98	0.28	0.29	0.31	0.16	0.34
h8	Single cell	17.0	1.05	0.14	1.20	0.39	0.47	0.88	0.35	0.58
h9	Single cell	15.2	1.31	0.25	1.14	0.33	0.17	0.75	0.22	0.63
h10	Single cell	15.6	0.95	0.23	0.90	0.54	0.51	0.60	0.36	1.19
h11	Single cell	16.4	1.09	0.22	1.81	0.41	0.47	1.16	0.39	0.77
h12	Single cell	16.2	0.50	0.17	0.25	0.33	0.24	0.52	0.16	0.85
h13	Single cell	14.8	1.08	0.33	1.24	0.32	0.51	0.58	0.40	0.60
h14	Single cell	16.7	0.62	0.21	0.57	0.18	0.25	0.89	0.28	0.60
h15	Single cell	14.8	1.59	0.33	1.50	0.21	0.68	1.24	0.32	1.03
h16	Single cell	16.4	0.41	0.21	0.00	0.37	0.01	0.41	0.17	0.32
h17	Single cell	13.8	0.73	0.15	1.47	0.38	0.51	0.61	0.25	0.27
h18	Single cell	13.4	0.28	0.06	0.40	0.21	0.43	0.63	0.21	0.21
h19	Single cell	15.5	0.28	0.06	8.94	0.13	0.01	0.02	0.00	0.09
h20	Single cell	12.7	1.89	0.24	0.57	0.34	0.80	0.88	0.50	0.93
h21	Single cell	13.0	0.78	0.08	0.01	0.45	0.18	1.24	0.02	0.19
h22	Single cell	12.7	1.43	0.11	0.51	0.78	0.68	0.36	0.13	0.54
h23	Single cell	13.1	1.41	0.39	0.88	0.62	0.68	1.21	0.36	0.90
h24	Single cell	12.8	1.28	0.87	0.75	0.96	0.40	3.53	0.32	0.84
h25	Single cell	12.2	0.99	0.20	0.74	0.24	0.39	0.31	0.05	0.41
h26	Single cell	13.2	0.02	0.33	1.58	0.69	0.52	0.76	0.27	1.41
h27	Single cell	12.8	1 44	0.05	0.00	0.57	0.01	0.01	0.49	1 21
h28	Single cell	14.4	0.48	0.27	0.90	0.09	0.15	0.57	0.19	0.81
h29	Single cell	13.9	0.81	0.39	0.58	0.51	0.42	1.17	0.46	0.77
h30	Single cell	14.2	0.95	0.22	0.97	0.71	0.24	1 64	0.35	0.66
h31	Single cell	14.4	0.65	0.15	1.78	0.42	0.44	0.78	0.37	1.04
h32	Single cell	13.6	0.93	0.36	0.42	0.30	0.45	0.91	0.19	0.96
h33	Single cell	14.3	0.75	0.20	1.02	0.32	0.48	0.61	0.47	1.02
h34	Single cell	13.7	0.58	0.33	1 90	0.45	0.39	2 27	0.36	0.44
h35	Single cell	14.3	2 24	0.33	5 16	0.44	0.40	1 69	0.51	1 20
h36	Single cell	14.2	0.98	0.08	0.02	0.01	0.24	0.91	0.76	0.22
h37	Single cell	13.7	1.35	0.31	1.75	0.67	0.33	1.11	0.36	0.42
h38	Single cell	12.4	1 10	0.04	0.00	0.28	0.00	4 01	0.22	0.34
h39	Single cell	12.1	0.47	0.53	0.00	0.09	0.05	0.23	0.05	0.11
h40	Single cell	12.2	0.81	0.25	0.19	0.51	0.16	0.21	0.35	0.52
h41	Single cell	12.2	0.66	0.09	2 16	0.47	0.64	0.83	0.13	0.50
h42	Single cell	11.9	0.39	0.40	0.09	0.14	0.86	0.23	0.19	0.59
h43	Single cell	12.1	0.00	0.10	0.00	0.95	0.50	0.45	0.10	0.00
h44	Single cell	11.5	0.40	0.06	0.00	1 20	0.00	1 52	0.06	0.00
empty raft1	Empty raft*	1.0	0.00	0.00	0.70	0.00	0.40	0.03	0.00	0.04
empty raft?	Empty raft	1.0	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
ompty raft2	Empty raft	0.0	0.00	0.00	0.01	0.00	0.01	0.03	0.00	0.00
	Empty rait	1.9	0.00	0.00	0.01	0.00	0.01	0.04	0.00	0.00
empty ratt4	Emply rait	1.0	0.00	0.00	0.01	0.00	0.01	0.04	0.00	0.00
pc1	Positive control**	12.6	1.70	0.52	0.93	0.61	0.48	1.25	0.05	0.00
pc2	Positive control	11.5	1.16	0.27	1.04	0.71	0.40	0.95	0.31	0.43
nc1	Negative control***	0.6	0.00	0.00	0.01	0.00	0.02	0.07	0.00	0.00

 * Empty rafts had no cells on it.
 0.6
 0.00
 0.00
 0.00

 ** 1 ng of human genomic DNA in 2.5 μl PBS was amplified as a positive control.

 **** 2.5 μl of PBS without any template was amplified as a negative control.

Supplementary Table 2. Primers for qPCR of the 8 loci.

Species	Chr	Forward	Reverse
human	1p	TTTGATGGAGAAATCCGAGG	CTGACTCGGAGAGCAGGAC
human	1q	GGTAGGATGATTCTAGAATGCCA	GCCCAAATTGGCTTCTTTT
human	4p	AACTGAATGGCAGTGAAAACA	CCCTAGCCTGTCATTGCTG
human	4q	TATAGCCCACCTGACCCAAG	CTGTCATCACTGTCTACTTCCTCTC
human	10p	GTTCTGCTGCCTCTACACAGG	ATCCTTCTGTGAACTCTCAAATCC
human	10q	CTTCCTGACCTGTTTGCAGT	CTTCAGTGCACAGAATGCAG
human	12p	CCACACACTCTGGTTTTATAAAGC	TTTTTCTCCTGCATCCATGG
human	12q	TCCTCATTGTTGGGGATGAT	TGGCCAAAAATAGAAGCCAT

Comple id	Turne	Protocol	Average depth	% genome				
Sample lu	туре			≥ 20x	≥ 10x	≥ 5x	at 0x	
IL11	kindred cell	SCMDA	26.5	54.9%	78.9%	87.3%	9.3%	
IL12	kindred cell	SCMDA	26.9	49.3%	70.0%	80.9%	11.0%	
IL1C	kindred clone	-	31.6	82.6%	90.1%	90.9%	8.7%	
IL2	single cell	SCMDA	26.3	57.7%	82.3%	88.8%	9.1%	
IL3	single cell	SCMDA	27.1	52.8%	72.9%	82.3%	11.2%	
IL4	single cell	SCMDA	17.9	35.5%	68.8%	84.1%	9.6%	
IL5	single cell	SCMDA	17.8	34.7%	68.5%	84.3%	9.5%	
HL1	single cell	HighTemp MDA	42.8	65.1%	79.2%	85.6%	10.1%	
HL2	single cell	HighTemp MDA	40.9	60.6%	76.0%	83.9%	10.4%	
clone1	single cell clone	-	29.5	82.1%	89.6%	90.5%	9.0%	
clone2	single cell clone	-	33.6	84.9%	90.0%	90.6%	9.0%	
clone3	single cell clone	-	27.6	80.0%	89.3%	90.5%	9.0%	
Bulk control	bulk	-	43.9	88.1%	90.0%	90.5%	9.1%	

Supplementary Table 3. Coverage statistics and sequencing depth (mapQ≥20).

Supplementary Table 4. Pearson correlation coefficients of observed and estimated major allele fractions* in cell IL11 and IL12.

Sample ID	λ,	** = 2000	λ = 10000 (SCcaller default)			
	10 fold cross validation	leave-100-out cross validation	on 10 fold cross validation leave-100-out cross val			
IL11	0.5	0.55	0.49	0.53		
IL12	0.8	0.84	0.76	0.79		

* The data were estimated on a randomly selected region, chr1:100,000,000-110,000,000.

 ** λ denotes half of window width for smoothing (Methods).

Chr Po	Position	Reference	Genotype in bulk	Single cell genotype	Called by SCcaller		Sanger sequencing		
	1 0311011	Reference	cell population	from Sanger	IL11, kindred cell	IL12, kindred cell	IL11, kindred cell	IL12, kindred cell	IL1C, kindred clone
6	124299091	Т	T/T	T/C	TRUE	-	TRUE	TRUE	TRUE
9	5732840	G	G/G	G/T	TRUE	TRUE	TRUE	TRUE	TRUE
10	8488243	Т	T/T	T/C	TRUE	TRUE	TRUE	TRUE	TRUE
9	4461559	С	C/C	C/A	TRUE	-	TRUE	TRUE	TRUE
1	152685505	С	C/C	C/T	TRUE	TRUE	TRUE	TRUE	TRUE
12	14908833	Α	A/A	A/G	TRUE	TRUE	TRUE	TRUE	TRUE
2	142675185	Т	T/T	T/C	TRUE	-	TRUE	TRUE	TRUE
4	132380455	Т	T/T	T/C	-	TRUE	TRUE	TRUE	TRUE
8	112315076	Α	A/A	A/C	-	TRUE	TRUE	TRUE	TRUE
5	158512199	G	G/G	G/A	-	TRUE	TRUE	TRUE	TRUE
1	77255928	G	G/G	G/A	-	TRUE	TRUE	TRUE	FALSE
2	115020724	Α	A/A	A/G	TRUE	TRUE	TRUE	TRUE	FALSE
6	136645743	Т	T/T	T/G	TRUE	-	TRUE	TRUE	FALSE
7	76872746	С	C/C	C/A	TRUE	TRUE	TRUE	TRUE	FALSE
20	60057506	G	G/G	G/T	TRUE	-	TRUE	TRUE	FALSE
21	28506056	С	C/C	C/A	TRUE	-	TRUE	TRUE	FALSE

164 References

- 165 1 Gundry, M., Li, W., Maqbool, S. B. & Vijg, J. Direct, genome-wide assessment of
 166 DNA mutations in single cells. *Nucleic acids research* 40, 2032-2040,
 167 doi:10.1093/nar/gkr949 (2012).
- Hosono, S. *et al.* Unbiased whole-genome amplification directly from clinical samples. *Genome research* 13, 954-964, doi:10.1101/gr.816903 (2003).
- 170 3 Cibulskis, K. *et al.* Sensitive detection of somatic point mutations in impure and
 171 heterogeneous cancer samples. *Nature biotechnology* **31**, 213-219,
 172 doi:10.1038/nbt.2514 (2013).
- Koboldt, D. C. *et al.* VarScan 2: somatic mutation and copy number alteration
 discovery in cancer by exome sequencing. *Genome research* 22, 568-576,
 doi:10.1101/gr.129684.111 (2012).
- 1765Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-nucleotide177variant detection in single cells. *Nature methods*, doi:10.1038/nmeth.3835 (2016).
- 178 6 DePristo, M. A. *et al.* A framework for variation discovery and genotyping using
 179 next-generation DNA sequencing data. *Nature genetics* 43, 491-498,
 180 doi:10.1038/ng.806 (2011).
- 181 7 Auton, A. *et al.* A global reference for human genetic variation. *Nature* 526, 68-74,
 182 doi:10.1038/nature15393 (2015).
- 183 8 Hazen, J. L. *et al.* The Complete Genome Sequences, Unique Mutational Spectra,
 184 and Developmental Potency of Adult Neurons Revealed by Cloning. *Neuron* 89,
 185 1223-1236, doi:10.1016/j.neuron.2016.02.004 (2016).
- 186 9 Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of
 187 single-nucleotide and copy-number variations of a single human cell. *Science*188 (*New York, N.Y.*) 338, 1622-1626, doi:10.1126/science.1229164 (2012).
- 189