Supporting Information

Hydrogenation and Hydrosilylation of Nitrous Oxide Homogeneously

Catalyzed by a Metal Complex

Rong Zeng, Moran Feller, Yehoshoa Ben-David, David Milstein* Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel Corresponding author: david.milsein@weizmann.ac.il

Materials: THF and toluene were distilled freshly over sodium and kept over 4Å MS. Other commercially available chemicals were purchased and used without additional purification unless noted otherwise. Complexes $5^{1}_{,1} 6^{2}_{,2} 13^{3}_{,3}$ and $15^{1}_{,1}$ were prepared according to the known literature.¹⁻³ The precursors for $\mathbf{8}$,⁴ $\mathbf{10}$,⁵ $\mathbf{11}$,⁶ and $\mathbf{12}$ ⁷ were prepared according to the known literature. All reactions were carried out with stirring bar under an atmosphere of purified nitrogen in a Braun glovebox equipped or using standard Schlenk techniques. Reaction temperatures were reported as the temperatures of the oil bath. Nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR, and ³¹P NMR) were recorded with a Bruker-300 MHz spectrometer (300 MHz, ¹H at 300 MHz, ¹³C at 75 MHz, and ³¹P at 121 MHz) or Bruker-400 MHz spectrometer (400 MHz, ¹H at 400 MHz, ¹³C at 101 MHz). Chemical shifts are reported in parts per million (ppm, δ). In ¹H NMR, the chemical shifts were referenced to the residual hydrogen signal of the deuterated solvents. In ${}^{13}C{}^{1}H$ NMR measurements, the signals of deuterated solvents were used as a reference. ³¹P NMR chemical shifts are reported in parts per million downfield from H₃PO₄ and referenced to an external 85% solution of phosphoric acid in D₂O. Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, coupling constant (Hz), and integration).

Contents	Ĵ
----------	---

	Title	Page
1	Table S1	S2
2	Determination of solubility of N ₂ O in THF	S2-S3
3	Catalytic hydrogenation of N ₂ O	S3-S6
	Determination of N ₂ and H ₂ O	S3-S6
4	Formation of complex 14	S6-S8
5	Mechanistic Studies	S8-S13
6	Catalytic oxidation of silanes with nitrous oxide	S13-S14
7	Spectra for catalytic oxidation of silanes	S15-S18
8	References	S19

Entry	Complex	¹ H NMR for Ru-H	$^{31}P{^{1}H} NMR$
1	5	-20.1 (t, ${}^{2}J_{\rm PH}$ = 18.0 Hz)	67.0 (d, ${}^{2}J_{PP} = 235.4$ Hz), 60.1 (d. ${}^{2}J_{PP} = 235.4$ Hz) ^b
2	15	-5.5 (t, ${}^{2}J_{\rm PH}$ = 18.0 Hz)	107.0 (s)
3	14	-14.7 (t, ${}^{2}J_{\rm PH}$ = 18.0 Hz)	74.0 (s)

1. Table S1: ¹H NMR of Ru–H bonds and ³¹P{¹H} NMR spectra data of complexes 5, 14, and 15 in THF^a

^{*a*} All the data were obtained in normal THF. Chemical shifts are reported in parts per million (ppm, δ) and are referenced to residual solvent (THF, δ =3.58 ppm for CH₂O, for ¹H NMR) and external standard sample (H₃PO₄, δ =0 ppm, for ³¹P NMR). ^{*b*} AB system centered at 67.0 and 60.1, respectively.

2. Determination of solubility of N₂O in THF.

To determine the solubility and total amount of N_2O in THF at rt (20 °C), the following experiments using two Fisher-Porter tubes have been done:

The experiments are based on the balanced pressure between tube **A** and **B**

Procedure for **Exp. 1** and **2**: Two 90 mL of Fisher-Porter tubes **A** and **B** were connected and controlled by two cock valves **a** and **b**, in which tube **A** was pumped and kept in a vacuum while tube **B** was filled with high pressure of N_2O . After switching on cock valves *a* and *b*, the pressure of tube **A** reached the pressure as same as tube **B**. In Exp. **1**, no THF was used in tube **A** as a control experiment. To be mentioned, due to the exist of the connecting tube between tube **A** and **B**, the amount decreasing in tube **B** was not equal to the amount increasing in tube **A**.

	Before switching on <i>a</i> and <i>b</i> :	After switching on <i>a</i> and <i>b</i> :	
Exp. 1	Tube A: no THF under vacuum;	Tube A and Tube B : 47 psi of N_2O	
	Tube B : 105 psi of N_2O		
Exp. 2	Tube A: with 5 mL of THF under vacuum;	Tube A and Tube B : 42.5 psi of N_2O	
	Tube B : 105 psi of N_2O		

Based on exp. 1: the total volume of the system (including 2 Fisher-Porter tubes and 1 connecting tube) could be calculated:

*
$$\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_{\text{total}}$$

* $V_{\text{total}} = (P_1 V_1) / P_2 = 105 \times 90 / 42.5 = 201 \text{ mL}$

* Total amount of N₂O in both exp. 1 and 2 at rt (20 °C): 105 psi × (90 mL) is equal to 26.2 mmol of gas.

* The gas phase in exp. 2: 42.5 $psi \times (201-5 mL)$ is equal to 23.1 mmol

* The amount of N_2O in 5 mL of THF is: 3.1 mmol

* The solubility of N₂O in THF is 3.1 mmol \times 44 (mg/mL) / 5 mL = 27.3 mg/mL

3. Catalytic hydrogenation of N₂O

Complex 15 was generated in situ in this experiment from complex 5, prior to addition of N₂O, since 5 might undergo decomposition under excess of N₂O. Complex 5 can be efficiently employed as catalyst if both N₂O and H₂ are added immediately prior to stirring of the solution (since it takes some minutes to reach a saturated solution of N₂O in THF). Note that the reaction of 5 with H₂ is much faster than reaction with N₂O.

Procedure: To a 20 mL vial were added **Ru-5-Cl** (15.2 mg, 0.03 mmol), ¹BuOK (3.6 mg, 1.0 equiv, 0.03 mmol), and THF (2 mL) in glovebox. The resulting mixture was stirred at room temperature for overnight (12 h) to afford a solution of **5** in THF,¹ which was then transferred into a 90 mL Fisher-Porter tube and 3 mL of THF were added. 30 psi of H₂ were added, and the solution was stirred for 30 seconds, generating complex **15**. Freeze-pump-thaw was conducted carefully 3 times to remove N₂ and H₂. The Fisher-Porter Tube was then refilled with N₂O till reaching saturated THF solution, resulting in a pressure of 42 psi of N₂O (5 min at rt), and then ca. 58 psi of H₂ were added. Based on the solubility calculated above, the amount of N₂O used is 13.0 mmol (42 psi of gas phase and 3.1 mmol in 5 mL of THF). Upon reaction completion after heating at 65 °C for 48 h, the pressure decreased to totally 58 psi. 10.8 mmol of N₂ (83% yield, 360 TON) was formed based on analysis of the gas phase using a standard calibration curve. 12.5 mmol of H₂O (96% yield, 417 TON) was determined by ¹H NMR of the reaction solution using mesitylene as internal standard with careful calibration. Note that the water signal in ¹H NMR shifts along with the concentration changes.

I. N₂ determination by GC:

GC condition: HP 6890 Series GC System; column: SUPELCO 1-2382, 5Ft×1/8In S.S.

SUPPORT 45/60 CARBOXENTM 1000, Packed Column. Inlets: 87 °C; Flow: 29.1; Oven: 35 °C, hold 2 min; 10 °C/min to 60 °C, hold 0 min; 30 °C/min to 200 °C. Carrier Gas: He. Detector: TCD 250 °C.

1) Control experiment: $50\% N_2 + 50\% N_2O$

2) Control experiment: 100% N₂O

3) Gas phase of final product: N_2

II. H₂O determination by ¹H NMR:

To quantify the amount of H_2O , mesitylene was added as internal standard based on 9 methyl hydrogens of mesitylene with calibration.

i. Calibration experiments:

To a 20 mL vial were added mesitylene, THF, and H_2O , and the resulting mixture was examined by ¹H NMR.

Exp.	Mesitylene	H_2O	(mmols H ₂ O× 2) / (mmols mesitylene× 9)		Calibration
	/ mg	/ μL	Calculated	Observed	
1	9.7	10	1.53/1	1.97/1	1.53/1.97 = 0.777
2	5.5	20	5.39/1	7.12/1	5.39/7.12 = 0.757
3	11.3	30	3.93/1	4.84/1	3.93/4.84 = 0.812
4	8.3	50	8.93/1	11.68/1	8.93/11.68 = 0.762
5	7.9	70	13.13/1	16.47/1	13.13/16.47 = 0.797

¹H NMR conditions: Bruker-300 MHz spectrometer; d1 = 10 seconds, r1 = 1, and ns = 16.

Average of calibration numbers = 0.781

ii. Determination of H_2O amount in the reaction mixture: 8.6 mg of mesitylene was added as internal standard into the reaction mixture, in which 13.0 mmol of N₂O was used (see procedure on page S3). ¹H NMR analysis indicated that 12.5 mmol of H₂O (96% yield based on N₂O) was generated after calibration.

Yield of $H_2O = 12.5/13.0 = 96\%$

4. Formation of complex 14

Complex 14 was prepared by deprotonation of complex (PNP)RuH(CO)Cl followed by addition of water in THF- d_8 . It is stable in the presence of excess water, and was characterized in situ.

Procedure: To a dried NMR tube were added (PNP)RuHCl(CO) **Ru-5-Cl** (10.3 mg, 0.02 mmol), ^{*i*}BuOK (2.7 mg, 1.2 equiv, 0.024 mmol), and THF- d_8 (0.7 mL) in a glovebox. The resulting mixture was shaken at room temperature for 3 h to afford a solution of **5** in THF- d_8 .¹ After injection of 0.1 mL of H₂O, the mixture was shaken for an additional 15 min. Complex **14** was obtained according to NMR analysis, which was performed *in-situ* without further purification.

The solution is yellow; ¹H NMR (400 MHz, THF- d_8) δ 7.91 (t, ³ J_{HH} = 8.0 Hz, 1H, Ar-H), 7.62 (d, ³ J_{HH} = 8.0 Hz, 2H, Ar-H), 3.90-3.82 (m, CH₂ × 2), 3.10-3.10 (m, CH × 2), 3.62-3.50 (m, CH × 2), 1.75-1.60 (m, CH₃ × 2), 1.55-1.40 (m, CH₃ × 2), -14.7 (t, ² J_{HP} = 18 Hz, Ru–H); ¹³C NMR (101 MHz, THF- d_8) δ 209.1 (t, ² J_{CP} = 11.7 Hz, CO), 163.5 (t, ² J_{CP} = 5.6 Hz, Py-C), 137.8 (s, Py-CH), 120.7 (t, ³ J_{CP} = 5.0 Hz, Py-CH), 40.9 (t, ¹ J_{CP} = 9.8 Hz, CH₂), 26.8 (t, ¹ J_{CP} = 10.9 Hz, CH), 25.2 (t, ¹ J_{CP} = 12.5 Hz, CH), 20.3 (t, ² J_{CP} = 2.6 Hz, CH₃), 20.0 (t, ² J_{CP} = 3.5 Hz, CH₃), 18.9 (s, CH₃), 17.9 (s, CH₃).

In-situ ¹H-NMR and ¹³C-NMR of complex 14

MS-ESI spectra for 14: Upper: calculated data of 14 ($C_{20}H_{37}NO_2P_2Ru$); Lower: observed data for $C_{20}H_{36}NOP_2Ru$, which is corresponds to $[M-OH]^+$.

5. Mechanistic Studies.

i. Reaction of 5 with H₂, followed by N₂O

Procedure: To a dried 4 mL vial were added (PNP)RuHCl(CO) **Ru-5-Cl** (5.4 mg, 0.01 mmol), ^{*i*}BuOK (1.3 mg, 0.01 mmol), and THF (0.5 mL) in a glovebox. The resulting mixture was stirred at room temperature for 2 h to afford a solution of **5** in THF.¹ After transfer into a dried NMR tube, 0.25 mL of H₂ (1 equiv) was injected. The mixture was shaken for a few seconds. The orange color changed to light yellow, which corresponds to complex **15** according to NMR analysis. Then 0.5 mL of N₂O (2 equiv) was injected. After 24 h, ³¹P NMR analysis showed full conversion of complex **15** to complex **14**.

ii. Reaction of 4 with N₂O, followed by H₂

Procedure: To a dried 4 mL vial were added (PNP)RuHCl(CO) **Ru-5-Cl** (3.3 mg, 0.006 mmol), 'BuOK (0.9 mg, 0.008 mmol), and THF (0.5 mL) in a glovebox. The resulting mixture was stirred at room temperature for 15 h to afford a solution of **5** in THF.¹ After transfer into a dried NMR tube, excess N₂O was purged for changing the N₂ atmosphere to N₂O. The mixture was shaken for an additional 2 h. A complicated mixture A was obtained according to 31 P NMR analysis. Changing the N₂O atmosphere to H₂ by purging H₂ gas followed by shaking for another 24 h, afforded a complicated mixture B, which is almost the same as mixture A.

Procedure: To a dried 4 mL vial were added (PNP)RuHCl(CO) **Ru-5-Cl** (5.1 mg, 0.01 mmol), ^{*i*}BuOK (1.2 mg, 0.01 mmol), and THF (0.5 mL) in a glovebox. The resulting mixture was stirred at room temperature for 4 h to afford a solution of **5** in THF.¹ After transfer into a dried NMR tube, 0.5 mL of N₂O (2 equiv) and 0.5 mL of H₂ (2 equiv) were injected immediately before shaking. The mixture was shaken for a few seconds. The orange color changed to be light yellow, which corresponds to complex **15** according to ³¹P NMR analysis. Only **15** was detected by ³¹P NMR. This experiment indicated that reacting **5** with H₂ is much faster than its reaction with N₂O.

Procedure: To a dried 4 mL vial were added (PNP)RuHCl(CO) **Ru-5-Cl** (5.0 mg, 0.01 mmol), ^{*i*}BuOK (1.2 mg, 0.01 mmol), and THF (0.5 mL) in a glovebox. The resulting mixture was stirred at room temperature for 4 h to afford a solution of **5** in THF.¹ After transfer into a dried NMR tube, 18 μ L of H₂O (100 equiv) was added. The mixture was shaken for 30 mins and then excess H₂ was purged for changing the N₂ atmosphere to H₂ (the volume of gas phase in the NMR tube is about 2.5 mL, which corresponds to 10 equiv of H₂). After shaking for 20 mins, both **14** and **15** were detected by ³¹P NMR in a 2/1 ratio.

Procedure: To a dried 4 mL vial were added (PNP)RuHCl(CO) **Ru-5-Cl** (5.0 mg, 0.01 mmol), ¹BuOK (1.2 mg, 0.01 mmol), and THF (0.5 mL) in a glovebox. The resulting mixture was stirred at room temperature for 4 h to afford a solution of **5** in THF.¹ After transfer into a dried NMR tube, 1 μ L of H₂O (6 equiv) was added. The mixture was shaken for 30 mins and then evaporated under vacuum for 24 h. Complex **5** was formed, as shown by ³¹P NMR.

7. Catalytic oxidation of silanes with nitrous oxide

Silanols **17a** and **17b** are not stable, and they transform to the siloxanes **18a** and **18b** on GC, respectively. Thus, the corresponding yields all are based on the isolated yields obtained by flash chromatograph.

Silanol 17c is stable for the yield determination by GC. While 16c is also stable on GC, the corresponding reaction with N_2O only afford silanol 17c. No 18c was observed.

Procedure: To a 90 mL Fisher-Porter tube were added **Ru-5** (0.01 mmol), PhMe₂SiH (136.5 mg, 1 mmol), and THF (4 mL) in a glovebox. The Fisher-Porter tube was then refilled with 50 psi of N₂O and heated at 65 °C for 36 h. Upon reaction completion, the solution was concentration and flash chromatography (neutral Al_2O_3 , eluent: hexane to hexane/ethyl acetate = 20/1 to 5/1) afforded compound **17a** (48.6 mg, 32%) and **18a** (92.9 mg, 64%).

Me Si Me[′] Ph **17a**

colorless liquid:⁸ ¹H NMR (300 MHz, CDCl₃) δ 7.73-7.50 (m, 2H), 7.50-7.22 (m, 3H), 2.63 (s,

1H), 0.40 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 133.0, 129.6, 127.8, -0.1.

colorless liquid:⁹ ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.41 (m, 4H), 7.40-7.16 (m, 6H), 0.27 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 139.8, 133.0, 129.2, 127.7, 0.9.

Procedure: To a 90 mL Fisher-Porter tube were added **Ru-5** (0.01 mmol), Ph₂MeSiH (100.4 mg, 0.5 mmol), and THF (4 mL) in glovebox. The Fisher-Porter tube was then refilled with 50 psi of N₂O and heat at 65 °C for 66 h. Upon reaction completion, concentration and flash chromatograph (neutral Al₂O₃, eluent: hexane to hexane/ethyl acetate = 20/1 to 5/1) afforded compound **17b** (32.1 mg, 30%) and **18b** (47.2 mg, 46%).

colorless liquid:⁸ ¹H NMR (300 MHz, CDCl₃) δ 7.82-7.50 (m, 4H), 7.50-7.28 (m, 6H), 2.16 (brs, 1H), 0.68 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.0, 133.9, 129.9, 127.9, -1.3.

colorless liquid:^{9 1}H NMR (300 MHz, CDCl₃) δ 7.75-7.50 (m, 4H), 7.50-7.24 (m, 6H), 0.63 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.5, 134.0, 129.6, 127.7, -0.6.

8. Spectra for catalytic oxidation of silane:

8. References:

1. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2006, 45, 1113-1115.

2. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840-10841.

3. Gunanathan, C.; Milstein, D. Angew. Chem. Int. Ed. 2008, 47, 8661-8664.

4. Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756-16758.

5. Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 8542-8543.

6. Jia, G.; Lee, H. M.; Williams, I. D. Organometallics 1997, 16, 3941-3939.

7. Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. Organometallics 2004, 23, 4026-4033.

8. The NMR spectra are matching with literature, see: John, J.; Gravel, E.; Hagège, A.; Li, H.; Gacoin,

T.; Doris, A. Angew. Chem. Int. Ed. 2011, 50, 7533-7536.

9. The NMR spectra match with literature reports, see: Motokura, K.; Naijo, M.; Yamaguchi, S.; Miyaji,

A.; Baba, T. Chem. Lett. 2015, 44, 1464-1466.