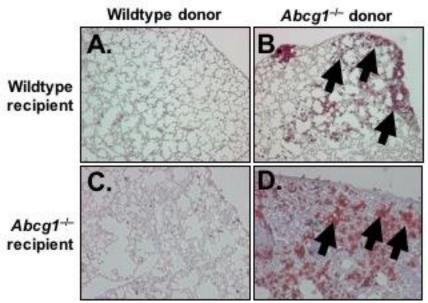
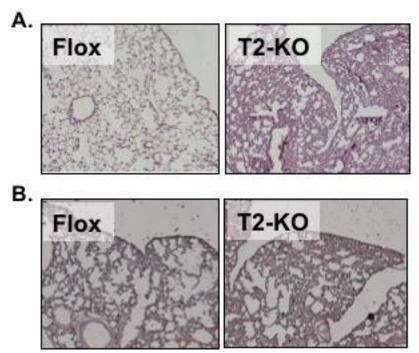
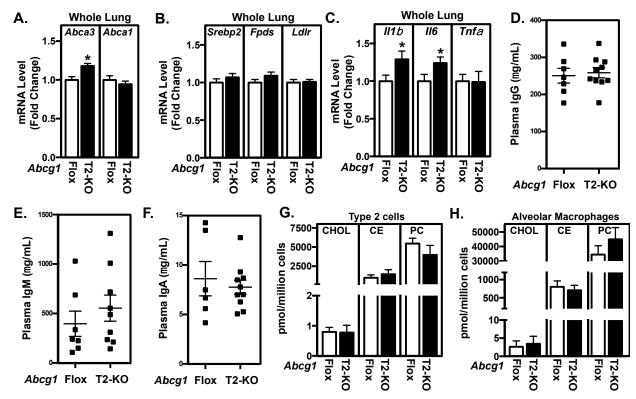
ABCG1 regulates pulmonary surfactant metabolism in mice and men

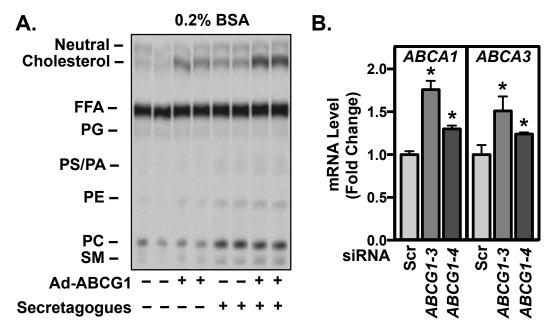

Thomas Q. de A. Vallim 1,2,3,4 , Elinor Lee 1,5 , David J. Merriott 2,* , Christopher N. Goulbourne 6 , Joan Cheng 2 , Angela Cheng 2 , Ayelet Gonen 7 , Ryan M. Allen $^{8,\#}$, Elisa N.D. Palladino 8,9 , David A. Ford 8,9 , Tisha Wang 1,5 , Ángel Baldán 8 , and Elizabeth J. Tarling 1,3,4

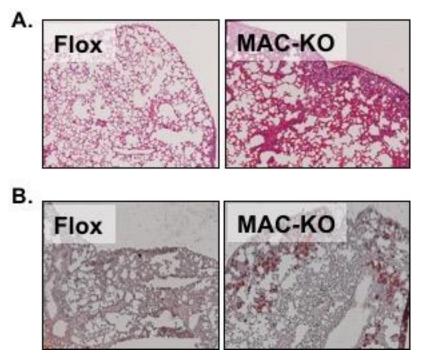
Running Title: Dissecting the Pulmonary Lipidosis of $Abcg1^{-/-}$ Mice


Supplemental Data

Supplemental Table S1. Characteristics of PAP patients.


Patient Characteristics	Cohort
Number of subjects	7
Males	6
Females	1
White	4
African-American	1
Hispanic	2
Median Age (yr)	
Male	46.5
Female	50


Supplemental Figure S1. (**A-D**) Frozen lung sections (10 μ M) from mice treated as in Figure 1 were stained with Oil red O to identify neutral lipids. Arrows indicate positively stained areas. (**A**) $Abcg1^{+/+}$ donor bone marrow (BM) $\rightarrow Abcg1^{+/+}$ recipient mice. (**B**) $Abcg1^{-/-}$ donor bone marrow (BM) $\rightarrow Abcg1^{-/-}$ recipient mice. (**C**) $Abcg1^{-/-}$ donor bone marrow (BM) $\rightarrow Abcg1^{-/-}$ recipient mice. (**D**) $Abcg1^{-/-}$ donor bone marrow (BM) $\rightarrow Abcg1^{-/-}$ recipient mice.


Supplemental Figure S2. Frozen lung sections (10 μ M) from $Abcg1^{fl/fl}$ (Flox) and $Abcg1^{T2-KO}$ (T2-KO) mice were stained with hematoxylin and eosin (**A**) or Oil red O (**B**).

Supplemental Figure S3. (**A-C**) Whole lung mRNA expression of (**A**) Abca1 and Abca3, (**B**) Srebp-2, Fdps, and Ldlr, and (**C**) $Il1\beta$, Il6, and $Tnf\alpha$ in $Abcg1^{fl/fl}$ (Flox) and $Abcg1^{T2-KO}$ (T2-KO) mice. Gene expression was normalized to 36B4 and presented as fold change. Data are expressed as mean mRNA level \pm SEM (n=4-6 mice/genotype). (**D-F**) Plasma was diluted 1:250-1:1000 and tested for binding to IgG (**D**), IgM (**E**) and IgA (**F**). HRP-conjugated antibodies were used for detection. Data are presented as mean antibody titer (ng/mL) \pm SEM (n=3-6 mice/genotype). (**G-H**) Cholesterol, cholesteryl ester, phosphatidylcholine and their derivatives were quantified by ESI-MS/MS in T2 cells (**G**) and alveolar macrophages (**H**) from $Abcg1^{fl/fl}$ and $Abcg1^{T2-KO}$ mice. Data are presented as mean lipid level (pmol/million cells) \pm SEM (n=3-6 mice/genotype). Significance was measured by Student's t test. * t < 0.05.

Supplemental Figure S4. (**A**) A549 T2 cells were infected as in Figure 4. Cells were pulse labeled with 14 C-acetate for 4 h, followed by a 2 h chase in media containing 0.2% BSA in the presence or absence of a secretagogue cocktail (100 μ M ATP, 0.1 μ M phorbol-12-myristate-13-acetate, 20 μ M terbutaline). Total secreted lipids were extracted from the media and separated by thin layer chromatography to determine the levels of phospholipids. (**B**) Increased *ABCA3* and *ABCA1* expression in A549 cells treated with *ABCG1* siRNA. Data are presented as mean \pm SEM (n = 6 replicates/condition). Significance was measured by one-way ANOVA followed by Bonferroni correction. * p < 0.05.

Supplemental Figure S5. Frozen lung sections (10 μ M) from $AbcgI^{fl/fl}$ (Flox) and $AbcgI^{MAC-KO}$ (MAC-KO) mice were stained with hematoxylin and eosin (**A**) or Oil red O (**B**).