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1st Editorial Decision 02 March 2017 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your study. As you will see below, the reviewers 
appreciate that the proposed approach is going to be of interest for the field. However, they raise a 
series of concerns, which we would ask you to address in a revision. The reviewers' 
recommendations are quite clear so I think that there is no need to repeat the points listed below. Of 
course, please feel free to contact me in case you would like to discuss any of the issues raised by 
the reviewers.  
 
--------------------------------------------------------  
 
REFEREE REPORTS 
 
Reviewer #1:  
 
In this paper, the authors present a deep learning based approach called DeepLoc for automatically 
classifying protein localisation in fluorescence images of yeast cells. They test the method do 
reanalyse an imaging data set they previously produced in their lab (Chong et al. 2015) and to 
compare ith with the previous analysis that was approached using support vector machine (SVM) 
classifiers (ensLOC). The authors demonstrate that DeepLoc outperforms ensLOC by requiring less 
training and producing more accurate classifications. They also show that it can be more easily 
transferred to imaging data sets obtained using different instruments or using cells that differ in their 
overall morphology (e.g. after treatment with α-factor) or where different fluorophore tag have been 
used.  
This is a well-executed study that demonstrates the utility of deep learning for studies of protein 
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localisation and quantification. Importantly, it addresses the question of transferability, a typical 
problem of machine learning based solutions. I also appreciate the fact that the authors made all the 
data and the code publicly available. Therefore, it will be of interest both for biologist users of 
machine learning solutions in imaging and for the developers of such approaches.  
I only have a few comments regarding the clarity of the descriptions.  
When using DeepLoc to study protein localisation upon α-factor treatment the authors write that 
they "identified 297 proteins (Table S1) whose localization changed significantly". However, in 
Table S1 I found for 193 out of the 297 proteins that the "predominant untreated localization" and 
the "predominant alpha factor localization" are the same. Please clarify.  
In the following paragraph, the authors write that they used DeepLoc to also extract pixel intensities 
of alpha treated cells and that these intensities correlated positively with gene expression changes. 
The significance of this finding and its connection to the DeepLoc-based localization changes is not 
clear to me. Were local concentrations measured? If yes, a comparison with gene expression 
changes does not teach us anything new. If not, how does this profit from the approach presented?  
When writing about the transferability of DeepLoc to new microscopy data sets the authors write 
that they "incorporated five new localization classes (...) (e.g. Cytoplasmic foci, eisosomes, and lipid 
particles) (...) (Fig. 4A)" that are absent from ensLOC. What exactly are these five new classes? Fig. 
4A presumably shows the classes derived by ensLOC since the strains referred to in this section 
carried RFP-tagged genes. Please clarify.  
Finally, as a more general point, I wondered why the authors compared their DeepLoc approach to 
the SVM based ensLOC rather than other deep learning based approaches for protein localization in 
yeast such as the ones mentioned in the Introduction. I presume the authors have their reasons but 
they do not discuss them.  
 
 
 
Reviewer #2:  
 
In the submitted manuscript, the authors describe a deep learning approach (DeepLoc) for high-
content microscopy. The authors applied DeepLoc on a data set of yeast cells that express GFP-
tagged proteins and predict their subcellular localization using a supervised machine learning 
approach. DeepLoc was benchmarked against a previous machine learning approach the authors 
developed (ensLoc). A particular application of the DeepLoc networks was the use directly at the 
pixel level of 'boxed' cells without first segmenting cells and extracting features.  
 
This is a timely manuscript as with the availability of deep learning methods and standardized deep 
learning software, such as the TensorFlow framework, constructing, training and deploying deep 
learning algorithms becomes more readily accessible for image analysis applications.  
 
The authors first introduce DeepLoc by benchmarking it against their previously published 
workflow which used an ensemble of support vector machines (ensLOC) and relies on phenotypic 
features extracted from segmented cells. They show the advantages to classify cells after training 
and testing DeepLoc with the data set from the ensLOC publication, both qualitatively and 
quantitatively. In addition to the comparison to established machine learning approaches and 
explanations, the second part of the paper focuses on the unique advantages of the methodology. 
This is done by first, analyzing a data set for which a classification using ensLOC workflow failed 
and second by analyzing two datasets that have been acquired under changed experimental 
conditions. For the first part of the analysis, cells with a different morphology than the wild-type 
cells were classified in the subcellular localization classes. This demonstrated that a classification 
based on learned parameters of DeepLoc are more robust towards morphological changes of the 
cells than approaches relying on segmentation. The second analysis demonstrates the adaptability of 
DeepLoc and the associated workload to achieve this. Transfer learning is applied to adopt the 
network to data sets that have been acquired using other technical equipment and from other labs. 
For both analysis workflows, the results using DeepLoc are reported and discussed, direct 
comparisons to other methods are however not provided. DeepLoc is described as an open-source 
software that can be easily updated to new tasks and experimental conditions.  
 
Overall, this is a well written manuscript and an interesting adaptation of deep learning networks for 
high-content screening analysis. The quantitative assessment of the method compared to a previous 
analysis showed direct evidence for a better performance.  
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Major points:  
 
1) An important advantage of the authors approach compared to previous studies is the avoidance of 
cell segmentation and feature derivation. However, the reviewer wonders whether this might be 
restricted to data sets were individual cells can be clearly separated from each other in order to be 
able to extract "single cell" images. This might not be the case for many image-based high content 
screens which then again would require cell segmentation.  
2) In the results the author mention that a smaller training set was used than for training the ensLOC 
SVM classifier. In the methods part, this is further specified and noted that "positive" examples were 
sampled for the training set. What does this mean?  
3) Evaluation of the abundance changes required features derived from segmented cells (CellProfiler 
features), this disagrees with the general concept of the study to circumvent a cell segmentation.  
4) It is not clear why the abundance changes were included. It is for example mentioned that 
proteins rarely change in both, localization and abundance. There should be no striking correlation 
between protein abundance and localization, accordingly the DeepLoc analysis does not provide any 
advance for the analysis of abundance changes. Fig 3B: in the main text the authors mention that the 
micrographs show abundance/localization changes, only localization changes are however 
mentioned in the figure legend. How does DeepLoc perform without the abundance feature?  
5) The Figure legend 2 A/B and the corresponding part of the main text are not sufficient to fully 
understand what is shown.  
6) The performance of DeepLoc after transfer learning is evaluated with the accuracy only. Why 
was not precision and recall used as for evaluation of DeepLoc after the initial training?  
7) The classification of the pheromone screen is not quantitatively evaluated, this should be included 
in the discussion  
8) More information and technical details should be provided in the method section about the 
implementation of DeepLoc.  
9) Data and software should be made available for download. The Github repository mentioned in 
the manuscript could not be found. The implementation of the model and the source code was not 
found by the reviewer and should be provided.  
 
Minor points:  
 
1) The manuscript uses quite a bit of technical "jargon" terminology common to the deep learning 
field but not suitable for a more general audience. The authors should make efforts to explain this 
better to a broader "systems biology" audience.  
2) Figure 2A-B could be enhanced by a more quantitative comparison of cluster quality of the two 
approaches.  
3) How does the network discover invariant features that allow the identification of spatial 
compartments? This would be good to explain and discuss in more detail.  
4) In most cases no exact numbers (e.g. for performance parameters) are given but rather ˜ and <  
5) Sheet W1 in table S2 not provided (mentioned in methods: Evaluating DeepLoc Performance  
6) In legend of Figure 2A, 256 features are mentioned, however it is difficult to understand how 
those features are derived as it is not implicitly mentioned in the main text (Information can be 
found in the methods part and understanding of the deep network approach is required to derive the 
information)  
7) In the results part of the pheromone screen "a MAPK" is mentioned, the corresponding figure 
(Fig. 3B) contains protein names and a yeast biology background is required to figure out which 
protein the MAPK is  
8) In the methods part, it is explicitly explained how and to which size (in pixels) the images are 
cropped. The size of the raw image is however missing.  
 
General remarks:  
 
The conclusions such as the performance in comparison to previous approaches by the authors and 
the success of the transfer learning are well supported by the data shown in the manuscript.  
 
The manuscript could be in general improved by providing more details about the implementation of 
the deep learning network and guidance to readers how deep convolutional neural networks can be 
implemented for other image analysis approaches. It would be also helpful if the authors discuss 
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their approach in more detail in comparison to other approaches (e.g. Krauss et al., 2016; Duerr et 
al., 2016).  
 
 
 
Reviewer #3:  
 
Although the theory behind deep learning based classification approaches is decades old, driven by 
increases in computational power, and the assembly of large training data sets, the last few years 
have witnessed an explosion in the use of deep learning methods in a number of diverse settings. 
The classification of cellular phenotypes imaged as part of high-throughput microscopy-based 
screens represents an obvious, but very exciting, application of deep learning tools; as their use 
could potentially be an ideal means by which to automatically and rapidly categorize phenotypes 
that can be complex and subtle.  
 
This work by Kraus et al. builds on their previous studies of using deep learning (Kraus et al., 
Bioinformatics 2016) to classify image-based phenotypes. Here they develop "DeepLoc", a 
convolution Neural Network (NN) to analyze the distribution of fluorescently-tagged proteins in 
Saccharomyces cerevesiae. The authors make use of a large data set of images of yeast where 
proteins have been tagged on a genome-scale. In this work the authors primarily compare the 
performance of DeepLoc to "ensLoc", a previously derived method to classify the distribution of 
tagged proteins that implements an ensemble of Support Vector Machine (SVM) based classifiers. 
Furthermore, the authors use DeepLoc to classify protein sub-cellular localization in a new data set 
where yeast have been treated with alpha-Factor, and on data sets generated by other laboratories.  
 
While I was initially quite excited to see the application of a deep learning tool to an image-based 
screen, I was underwhelmed by this study. In large part this is due to the fact that, while in some 
regards DeepLoc shows improved classification performance compared to ensLoc, in many 
particular cases the performance of DeepLoc is less than impressive. Furthermore, because of the 
way DeepLoc was implemented, I don't think it represents a truly big step forward in terms of high-
content image analysis. Critically, the deployment of DeepLoc did not result in any biological 
insight to appeal to the broad readership of Molecular Systems Biology. At this time I would 
recommend publication in a more specialized journal.  
 
Major points:  
 
1) The increased precision of DeepLoc to ensLoc on single cells is particularly impressive "across 
the board" (ability to classify different sub-cellular localizations). There is also clearly a 
performance improvement when classifying based on population averages, but it isn't as stunning as 
when analyzing single cells, and is based largely on DeepLoc's ability to better classify 4-5 
phenotypes.  
 
In my mind this is really the most impressive result of the work. But I don't think it is represents a 
truly significant, and novel, impact on the field of image analysis and/or functional genomics.  
 
I do wonder how much of the improved precision is due to the differences in segmentation. Could it 
be that ensLOC struggles to classify certain phenotypes using single cell analysis because of 
segmentation issues and/or morphological differences between cells that are somewhat reduced 
when using bounding boxes - which ignore cell morphology?  
 
In fact, I would expect that differences between a bounding box and cell segmentation approach 
might be washed away when looking at population averages. Can the authors account for these 
differences to show that it indeed is the classifier, and not simply the segmentation that is driving 
performance improvement - especially on single cells?  
 
I would really like to see the performance of DeepLoc on whole images (no bounding box), because 
I think the ability to classify phenotypes in the absence of segmentation is what the field is really 
looking for.  
 
2) The authors argue that analysis of the alpha-factor screens is a powerful application of DeepLoc 
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because there is no need "for additional, non-wild-type training, while re-implementing a SVM 
ensemble would have necessitated weeks of training and optimization."  
 
To me the analysis of this screen (and the re-analysis of other screens below) doesn't really 
demonstrate the broad utility of this approach. In the case of the alpha-factor screen, I wouldn't 
expect DeepLoc's classification method to be particularly "challenged" because the cells are not 
segmented in a way that would confound the analysis. In fact, I might even predict that an ensemble-
based method would perform equally well between untreated and alpha-factor treated conditions if a 
bounding box type segmentation was used.  
 
3) The authors then test DeepLoc on additional data sets, but I think here the results are far less 
impressive. Accuracies of ~40% (or even less sometimes) are hardly evidence of significant 
methodological improvements. To put it another way, I still think any biologist who wants to 
perform a rigorous analysis of these data, or any other new data sets would be better off spending 
time developing an ensemble based method than using DeepLoc.  
 
4) Finally, there is no real biological insight gained from the application of DeepLoc. So while the 
method may provide a faster means by which to analyze data, in the absence of such insight its not 
clear to me why it should be used.  
 
5) The current manuscript seems to largely ignore the extensive amount of work that has been done 
on quantifying sub-cellular localization of proteins using other methods. In fact, comparing 
DeepLoc to some of these other tools (other than just ensLoc) may be warranted.  
 
6) Why does this work represent an significant advance over the authors' recently published work in 
Bioinformatics?  
 
 
Additional specific comments:  
 
- Why did the authors test their method on only a subset of the data set used for training ensLoc 
(~22,000 out of 70,000 images)? It is acceptable to train the CNN on a balanced subset, but why was 
the entire set not used to measure performance? Such as test would provide a better estimation of the 
generalizability of the trained features.  
 
- Related to the above point, the details on choosing the subset are not provided.  
 
- The authors generate patches of 64x64 pixels that are centered on single cells. More information 
should be provided on the size of the cell and how often the selected patch size does not cover the 
entire cell segment.  
 
- It will be useful if an analysis of when CNN fails is provided.  
 
- When using DeepLoc in classifying cells in response to alpha factor the authors state "DeepLoc 
produced reasonable protein classification for single cells within hours ...". Exact numbers on the 
average precision of applying DeepLoc should be provided given a representative sample. 
 
 
1st Revision - authors' response 10 March 2017 

Reviewer #1 

Comments to the Authors: 

When using DeepLoc to study protein localisation upon α-factor treatment the authors write that 
they "identified 297 proteins (Table S1) whose localization changed significantly". However, in 
Table S1 I found for 193 out of the 297 proteins that the "predominant untreated localization" and 
the "predominant alpha factor localization" are the same. Please clarify.  
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We thank the reviewer for this comment, and we apologize for any confusion. This table (now Table 
EV1) lists 297 proteins in which a significant localization change occurred after alpha-factor 
treatment. In this table we have provided quantitative t-test scores for each subcellular localization 
class for each of the 297 cell populations. We have also listed the predominant localizations in 
untreated as well as alpha-factor treated conditions, which are simply the classes with the highest 
localization scores. In 193 of these cell populations, the predominant localization remains the same 
across conditions, though the scores were significantly different.  
 
For example, cells expressing YOX1-GFP in alpha-factor became significantly more cytoplasmic (t-
test “Cytoplasm” = -17.4) and significantly less nuclear (t-test “Nuclei” = 10.9). However, in both 
untreated and alpha-factor conditions, the predominant localization was still “Cytoplasm”. All 
scores are available at “http://cyclops.ccbr.utoronto.ca” and can be validated by searching “Yox1”.  
 
To clarify, we have added the following to Identifying Significant Localization and Abundance 
Changes in α-Factor in the Materials and Methods section (Page 17, Paragraph 1): 
 
“For some of these proteins, the dominant localization was the same in both conditions although the 
distributions of localization scores differed significantly.” 
 
 
In the following paragraph, the authors write that they used DeepLoc to also extract pixel intensities 
of alpha treated cells and that these intensities correlated positively with gene expression changes. 
The significance of this finding and its connection to the DeepLoc-based localization changes is not 
clear to me. Were local concentrations measured? If yes, a comparison with gene expression 
changes does not teach us anything new. If not, how does this profit from the approach presented?  
 
We agree with the reviewer that the incorporation of abundance measurements after alpha-factor 
treatment may seem out of place in our study, which primarily emphasizes protein localization data. 
There are number of reasons why we included protein abundance measurements. Firstly, the alpha-
factor dataset has not been previously published; here, we are providing a quantitative repository of 
changes in both localization and abundance for the yeast community to further investigate and to 
serve as a benchmark for future research. We also provided all of our quantitative measurements on 
the Cyclops database (http://cyclops.ccbr.utoronto.ca) where similar high-content screening data is 
published on both protein localization and abundance. The inclusion of protein abundance 
information therefore makes our assessment complementary to the other screening analyses in our 
database. Finally, because this screen is previously unpublished, and we were unable to obtain high-
throughput, quantitative protein abundance or localization changes in alpha-factor, we felt our best 
option for validating the efficacy of our screen was to benchmark against gene expression. In this 
instance, we found that many of the proteins that increase in their abundance after alpha-factor 
treatment are also known to be regulated at the level of transcription.  
 
To help clarify our intentions, we have included the following in the Using DeepLoc to Identify 
Protein Dynamics in Response to Mating Pheromone section of the Results (Page 8, Paragraph 3): 
 
“While unrelated to the localization analysis by DeepLoc, this evaluation of protein abundance 
further validates the effectiveness of our screening protocol; it also provides a complementary 
overview of proteomic responses to those made by Chong et al. (2015) on the Cyclops database.” 
 
 
When writing about the transferability of DeepLoc to new microscopy data sets the authors write 
that they "incorporated five new localization classes (...) (e.g. Cytoplasmic foci, eisosomes, and lipid 
particles) (...) (Fig. 4A)" that are absent from ensLOC. What exactly are these five new classes? Fig. 
4A presumably shows the classes derived by ensLOC since the strains referred to in this section 
carried RFP-tagged genes. Please clarify.  
 
To clarify, this dataset (WT-2017) is not the same dataset that was previously analyzed using 
ensLOC, but rather a new dataset that we generated in our lab. As mentioned in the text, this new 
dataset was also generated in untreated conditions, but on a different microscope and with different 
red fluorescent markers (e.g. an mCherry-tagged histone protein to mark the nucleus of the cell).  
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When analyzing this dataset, we wanted to be even more comprehensive in our coverage of 
subcellular localization classes. As mentioned in the text, we also wanted to see if DeepLoc would 
be able to distinguish classes that look highly similar under manual inspection, but are known to 
have different biological roles. For these reasons, we included five classes in this analysis that had 
not been incorporated into ensLOC. These classes are: Cytoplasmic Foci, Eisosomes, Lipid 
Particles, Bud Site, and Punctate Nuclear. 
 
 
Finally, as a more general point, I wondered why the authors compared their DeepLoc approach to 
the SVM based ensLOC rather than other deep learning based approaches for protein localization in 
yeast such as the ones mentioned in the Introduction. I presume the authors have their reasons but 
they do not discuss them.  
 
We thank the reviewer for this comment. There are a number of reasons why we chose to compare 
DeepLoc performance with the SVM-based ensLOC. Firstly, with respect to traditional machine 
learning approaches (i.e. not employing deep learning), Koh et al. (2015) compared ensLOC to 
previous methods for quantitatively analyzing protein localization in yeast and reported that ensLOC 
outperforms the previous approaches. Here, we treat ensLOC as the current gold-standard for yeast 
images as it is the only quantitative method to be developed and reliably deployed to several other 
proteome wide perturbation screens. 
 
With respect to other deep learning-based approaches, there were two that we mentioned in the 
Introduction:  
 
1. The Kraus et al. (2016) paper used similar yeast images, but in this instance models were trained 
on whole images and does not allow for single cell comparisons. This approach does not provide 
predictions for single cells and cannot be directly compared to the ensLOC performance on the same 
individually labeled cells.  
 
2. Parnamaa and Parts (2016) also used a similar dataset in their pre-print, but again, this set was not 
labeled at the single cell level. 
 
We clarify these points regarding other deep learning analyse in the Discussion (Page 11, Paragraph 
3): 
 
“These results differentiate DeepLoc from previous implementations of deep learning for high-
throughput cell image data. Recent publications demonstrate the improved accuracy achieved by 
deep learning based classifiers for high content screening (Kraus et al, 2016; Pärnamaa & Parts, 
2016; Dürr & Sick, 2016) and for imaging flow cytometry (Eulenberg et al, 2016). These reports 
validate their proposed models on held out test sets from the same source as the training data and 
typically evaluate less phenotypes than DeepLoc (i.e. 4 mechanism of action clusters in Dürr & Sick 
(2016) and 5 cell cycle stages in Eulenberg et al. (2016)). In Kraus et al. (2016), we describe a deep 
learning framework for classifying whole microscopy images that is not designed to classify single 
cells. Here we train DeepLoc on 15 sub-cellular localizations classes from one genome-wide screen, 
deploy DeepLoc to a second genome-wide screen of cells with substantially altered cell morphology 
that was not amenable to classification with EnsLoc, and then use transfer learning to deploy 
DeepLoc to image sets that were screened differently than the training set with minimal additional 
labeling.” 
 
 
 

Reviewer #2 

Major Points: 

1. An important advantage of the authors approach compared to previous studies is the avoidance of 
cell segmentation and feature derivation. However, the reviewer wonders whether this might be 
restricted to data sets were individual cells can be clearly separated from each other in order to be 
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able to extract "single cell" images. This might not be the case for many image-based high content 
screens which then again would require cell segmentation. 

We thank the reviewer for this comment. To clarify, in many instances the bounding box that is 
centered on a single cell will still contain additional cells in the field, and we see that these images 
still work well in our framework. Below, we provide an image of cells used as training input for the 
“Cell Periphery” class in DeepLoc; you will observe that many of the images used for training 
contain multiple cells or parts of other cells. We feel that this provides some evidence that DeepLoc 
will still be able to carry out classification tasks containing multiple cells or cells that cannot be 
segmented. 

 

To clarify, we have included the following in the Training and Validating a Deep Neural Network 
(DeepLoc) for Classifying Protein Subcellular Localization in Budding Yeast section of the Results 
(Page 5, Paragraph 1):  
 
“However, instead of training a classifier on feature sets extracted from segmented cells, we trained 
DeepLoc directly on a defined region of the original microscopy image centered on a single cell, but 
often containing whole, or partial cells in the periphery of the box. The use of these “bounding 
boxes” removes the sensitivity of the image analysis to the accuracy of segmentation that is typical 
of other machine learning classifiers.” 
 

2. In the results the author mention that a smaller training set was used than for training the ensLOC 
SVM classifier. In the methods part, this is further specified and noted that "positive" examples were 
sampled for the training set. What does this mean? 

To clarify, the ensLOC classifier consisted of training 60 binary SVMs each with a unique training 
set of positive and negative samples (e.g. for the “Cytoplasm” classifier, there were images of single 
segmented cells with GFP-fusion proteins that localize in the cytoplasm (positive samples)) and then 
single segmented cells with GFP-fusions that localize to  all other classes were labeled as negative 
samples. In contrast, we trained DeepLoc as one model in a multi-class setting. This meant that we 
could not reliably use the ‘negative’ samples from the original training set, because they weren’t 
annotated to belong to a particular localization class (rather they were annotated as not belonging to 
particular class and were a mix of many different localizations). We further reduced the dataset size 
by subsampling classes that had many samples.  
 
To clarify, we have included the following in the Training DeepLoc subsection in the Materials and 
Methods section (Page 15, Paragraph 2):  
 
“The original labeled dataset was composed of 60 sub-datasets, each containing ‘positive’ and 
‘negative’ samples, to train the 60 binary SVM classifiers used in ensLOC. Instead of using all of 
the ~70,000 cells previously annotated, we sampled only positive examples such that each 
localization compartment contained ~500-1,500 cells and we trained DeepLoc as a multi-class 
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classifier.” 
 

3. Evaluation of the abundance changes required features derived from segmented cells (CellProfiler 
features), this disagrees with the general concept of the study to circumvent a cell segmentation.  
 
We agree with the reviewer’s comment. As mentioned in our response to Reviewer 1, there are a 
variety of reasons why we incorporated the abundance data into our analysis of the alpha-factor 
screen (benchmarking the dataset, comparability with the other analyses on the Cyclops database, 
completeness for the yeast community). This analysis was separate from DeepLoc, which uses 
neither the abundance data, nor the other extracted features in its classifications. 

To help clarify, we have included the following in the Using DeepLoc to Identify Protein Dynamics 
in Response to Mating Pheromone section of the Results (Page 8, Paragraph 3): 
 
“While unrelated to the localization analysis by DeepLoc, this evaluation of protein abundance 
further validates the effectiveness of our screening protocol; it also provides a complementary 
overview of proteomic responses to those made by Chong et al. (2015) on the Cyclops database.” 
 

4. It is not clear why the abundance changes were included. It is for example mentioned that proteins 
rarely change in both, localization and abundance. There should be no striking correlation between 
protein abundance and localization, accordingly the DeepLoc analysis does not provide any advance 
for the analysis of abundance changes. Fig 3B: in the main text the authors mention that the 
micrographs show abundance/localization changes, only localization changes are however 
mentioned in the figure legend. How does DeepLoc perform without the abundance feature? 

Please see above.   

 

5. The Figure legend 2 A/B and the corresponding part of the main text are not sufficient to fully 
understand what is shown. 

We appreciate this feedback from the reviewer. While the technical details are thoroughly explained 
in the Materials and Methods section, we have amended the main text in an effort to simplify our 
analysis. 

The following has been amended/added to the Visualizing Network Features section of the Results 
(Page 6, Paragraph 1): 

 
“To address whether this difference was relevant in our experiments, we visualized the activations 
of the final convolutional layer in 2D using t-distributed stochastic neighbor embedding (t-SNE) 
(Maaten & Hinton, 2008) for a single cell test set (Fig. 2A). t-SNE is a popular non-linear 
dimensionality reduction algorithm often used to visualize the structure within high dimensional 
data in 2D or 3D space.” 
 

6. The performance of DeepLoc after transfer learning is evaluated with the accuracy only. Why was 
not precision and recall used as for evaluation of DeepLoc after the initial training? 

To clarify, we used precision/recall in the initial evaluation of DeepLoc because some classes were 
heavily imbalanced. For example, the spindle class only had 185 single cell training samples while 
other classes had a maximum of 1,500 samples.  
 
In contrast, when analyzing transfer learning we controlled the number of samples per class and 
ensured that the classes were balanced during training. Therefore it was more appropriate to report 
accuracy for this evaluation. For the sampling sizes for which we show the confusion matrices, one 
can see the performance of different classes. We included the prediction accuracy calculations along 
the y-axis of these plots. 
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Furthermore, because many proteins localize to multiple classes, we felt that our approach made the 
most sense. 
 

7. The classification of the pheromone screen is not quantitatively evaluated, this should be included 
in the discussion. 

We appreciate this feedback from the reviewer; unfortunately, a quantitative evaluation of the 
pheromone screen would have necessitated extensive additional analyses as we did not have a 
manually annotated set of single cell images, nor a systematic gold-standard for protein localization 
after alpha-factor treatment. Note that in our comparison to ensLOC, we had access to the single cell 
training sets that were previously generated by our group, but which took a substantial amount of 
time to manually annotate. We also had gold-standard protein localization data from previous 
manual assessments of the ORF-GFP Fusion Collection in untreated conditions. 
 
Instead we aimed to show that the model could be deployed to a new set that was not previously 
labeled. We manually confirmed the results from DeepLoc and all the images and predictions are 
reported in the Cyclops database (http://cyclops.ccbr.utoronto.ca). In addition, we performed 
enrichment analysis on the 100 proteins representing the most substantial localization changes and 
found that many of these are already implicated in the mating response program.  We hope that our 
analysis of the proteome in alpha-factor treated cells will catalyse further experiments and validation 
by the yeast community. 
 

8. More information and technical details should be provided in the method section about the 
implementation of DeepLoc. 

We thank the reviewer for this comment. We added an expanded view figure (Figure EV1) to better 
illustrate how computations are carried out in the convolutional neural network.  

We believe that the details provided in Materials and Methods/Training DeepLoc section are 
sufficient to reproduce the DeepLoc model. We also provide the all the datasets and source code 
used to implement DeepLoc. We apologize for not including the temporary link we prepared for the 
code in the original submission (it is currently hosted at: 
http://spidey.ccbr.utoronto.ca/~okraus/DeepLoc_Supplemental_Software.zip). After publication we 
will host it on github as well so that we can continue to update the repository and track issues. 
Readers interested in more technical details than provided in the Materials and Methods section can 
check the repository and run the model on their own machines.  
 

9. Data and software should be made available for download. The Github repository mentioned in 
the manuscript could not be found. The implementation of the model and the source code was not 
found by the reviewer and should be provided. 

We sincerely apologize for this oversight. We intend to share the code in github post-publication 
and forgot to change the link in the paper to the temporary location of the source code. The code is 
currently hosted here: 

http://spidey.ccbr.utoronto.ca/~okraus/DeepLoc_Supplemental_Software.zip 

 

Minor Points: 

1. The manuscript uses quite a bit of technical "jargon" terminology common to the deep learning 
field but not suitable for a more general audience. The authors should make efforts to explain this 
better to a broader "systems biology" audience. 

We appreciate this feedback from the reviewer. In an effort to clarify the technical jargon in the 
main text we have added an expanded view figure (Figure EV1) to better illustrate how 
computations are carried out in the convolutional neural network; in this figure we did our best to 
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explain these complex concepts in more general terms. We have also referred the reader to multiple 
review papers on machine learning and neural networks in the introduction. We hope that these 
changes will be sufficient for the systems biology audience. 

 

2. Figure 2A-B could be enhanced by a more quantitative comparison of cluster quality of the two 
approaches. 

To address this concern, we calculated the Davies-Bouldin Index for the two feature representations. 
The index is typically used to compare different clustering algorithms. According to the metric, 
clustering results with low intra-cluster and high inter-cluster distances produce lower index values 
and are preferred. Here we compare the feature representations in figures 2A/B and treat the real 
localization labels as the cluster assignment for each data point. The neural network representation 
we use is network activations taken from the 8th layer (last convolutional layer before the 2 fully 
connected layers). For CellPorfiler we use 313 extracted features. 
 
The Index scores we calculated are: 
DeepLoc: 2.33, CellProfiler: 4.36 
 
However, an explanation of this metric requires additional “jargon-heavy” explanation in the main 
text of the manuscript. We feel that the figure and corresponding legend sufficiently illustrate our 
point to the reader. 
 

3. How does the network discover invariant features that allow the identification of spatial 
compartments? This would be good to explain and discuss in more detail. 

We thank the reviewer for this feedback. As mentioned above, we have added an expanded view 
figure (Figure EV1) to better illustrate how computations are carried out in the convolutional neural 
network, including details regarding the discovery of invariant features. 

 

4. In most cases no exact numbers (e.g. for performance parameters) are given but rather ˜ and <. 

We have updated numerous values throughout the results section of the manuscript to reflect exact 
values. 

 

5. Sheet W1 in table S2 not provided (mentioned in methods: Evaluating DeepLoc Performance) 

We apologize for any confusion. This sheet is in the supplement for the Chong et al. (2015) paper. 
We are not referring to our own supplementary material, though this will likely be more clear now 
that our own supplement will be labeled as an “Expanded View” with “EV” rather than “S”. 
 
To clarify further, we have added the following to the Evaluating DeepLoc Performance section of 
the Materials and Methods (Page 16, Paragraph 2): 
 

“To compare with Chong et al. (2015), we used the values reported in the WT1 sheet of Table S2 in 
their publication.” 

 

6. In legend of Figure 2A, 256 features are mentioned, however it is difficult to understand how 
those features are derived as it is not implicitly mentioned in the main text (Information can be 
found in the methods part and understanding of the deep network approach is required to derive the 
information) 
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We thank the reviewer for this feedback. As mentioned above, we have added an expanded view 
figure (Figure EV1) to better illustrate how computations are carried out in the convolutional neural 
network. In the Training and Validating a Deep Neural Network (DeepLoc) for Classifying Protein 
Subcellular Localization in Budding Yeast section of the Results (Page 5, Paragraph 1), we direct 
readers to this figure and its corresponding description: 
 
“We provide a brief overview of convolutional neural networks in Figure EV1 and refer readers to 
Goodfellow et al. (2016) and LeCun et al. (2015) for a more thorough introduction.” 

 

7. In the results part of the pheromone screen "a MAPK" is mentioned, the corresponding figure 
(Fig. 3B) contains protein names and a yeast biology background is required to figure out which 
protein the MAPK is. 

We apologize for any confusion, however, we clearly stated in the main text that the MAPK is the 
yeast protein Kss1. We wrote: “Importantly, DeepLoc identified novel movements of proteins 
already implicated in the mating response, such as the movement of Kss1, a MAPK that functions 
primarily to regulate filamentous growth, from the nucleus to the cytoplasm.” Based on this 
description, the reader can locate “Kss1” in the figure and know that this is the MAPK described in 
the main text. 

 

8. In the methods part, it is explicitly explained how and to which size (in pixels) the images are 
cropped. The size of the raw image is however missing. 

We apologize for this oversight. We have added this information into the Live Cell Image 
Acquisition section of the Material and Methods (Page 14, Paragraph 2-3): 

 “A total of 4 images were acquired in each channel (1349x1004 pixels), resulting in a total 
screening time of ~40 minutes per 384-well plate.” 

“A total of 10 images (1338x1003 pixels) were acquired in each channel, resulting in a total 
screening time of ~100 minutes per 384-well plate.” 

 

 

General Remarks: 

The manuscript could be in general improved by providing more details about the implementation of 
the deep learning network and guidance to readers how deep convolutional neural networks can be 
implemented for other image analysis approaches.  
 
It would be also helpful if the authors discuss their approach in more detail in comparison to other 
approaches (e.g. Kraus et al., 2016; Duerr et al., 2016).  
 

We appreciate this feedback. We have added the following to the Discussion (Page 11, Paragraph 
3): 

“These results differentiate DeepLoc from previous implementations of deep learning for high-
throughput cell image data. Recent publications demonstrate the improved accuracy achieved by 
deep learning based classifiers for high content screening (Kraus et al, 2016; Pärnamaa & Parts, 
2016; Dürr & Sick, 2016) and for imaging flow cytometry (Eulenberg et al, 2016). These reports 
validate their proposed models on held out test sets from the same source as the training data and 
typically evaluate less phenotypes than DeepLoc (i.e. 4 mechanism of action clusters in Dürr & Sick 
(2016) and 5 cell cycle stages in Eulenberg et al. (2016)). In Kraus et al. (2016), we describe a deep 
learning framework for classifying whole microscopy images that is not designed to classify single 
cells. Here we train DeepLoc on 15 sub-cellular localizations classes from one genome-wide screen, 
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deploy DeepLoc to a second genome-wide screen of cells with substantially altered cell morphology 
that was not amenable to classification with EnsLoc, and then use transfer learning to deploy 
DeepLoc to image sets that were screened differently than the training set with minimal additional 
labeling.” 
 
 
 

Reviewer #3 

Major Points: 

1. The increased precision of DeepLoc to ensLoc on single cells is particularly impressive "across 
the board" (ability to classify different sub-cellular localizations). There is also clearly a 
performance improvement when classifying based on population averages, but it isn't as stunning as 
when analyzing single cells, and is based largely on DeepLoc's ability to better classify 4-5 
phenotypes.  
 
In my mind this is really the most impressive result of the work. But I don't think it is represents a 
truly significant, and novel, impact on the field of image analysis and/or functional genomics.  
 

We hope that the revisions we have made to our paper in response to all reviewers’ comments will 
help highlight the importance of our work for the image analysis and functional genomics 
community.  We find that the classification performance at the single cell level is improved for 
every localization class and for most of them by a substantial margin. The improvements in protein 
level assignments may be less pronounced because these annotations are aggregated over cell 
populations while Chong et al. (2015) used an additional training step to calculate optimal 
thresholds for assigning sub-cellular localizations to proteins; in our analysis we simply calculated 
the mean prediction for each class across the cellular population; [2] the significant improvements 
for the 4-5 localizations classes mentioned are important for studying yeast protein dynamics, as 
failing to classify these classes correctly can result in substantially overlooking dynamics related to 
entire bio-processes or subcellular localizations. 
 

I do wonder how much of the improved precision is due to the differences in segmentation. Could it 
be that ensLOC struggles to classify certain phenotypes using single cell analysis because of 
segmentation issues and/or morphological differences between cells that are somewhat reduced 
when using bounding boxes - which ignore cell morphology?  
 

We appreciate this comment from the reviewer; however, in the Chong et al. (2015) publication, 
they mention that ensLOC included quality control classifiers to filter out mis-segmented, ghost 
objects, and dead cells. In the supplement for their work, they mention that 3-10% of objects were 
filtered our by these classifiers, and that they required at least 15 cells per condition for their 
analyses. Taking these figures into account, sub-cellular localization classes that were included in 
ensLOC were likely not hindered by segmentation errors.  
 
Interestingly, the reviewer’s point is a strength of DeepLoc, as we do not need to extract features 
that are dependent on segmentation performance, making DeepLoc robust to segmentation errors.  
 

In fact, I would expect that differences between a bounding box and cell segmentation approach 
might be washed away when looking at population averages. Can the authors account for these 
differences to show that it indeed is the classifier, and not simply the segmentation that is driving 
performance improvement - especially on single cells?  
 

While it is difficult to extract the exact same features from bounding boxes, we did evaluate the 
performance of a fully connected neural network with two hidden layers (same architecture as the 
fully connected layers in DeepLoc) on features extracted from CellProfiler. Here we see that the 
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performance is drastically improved for single cells over the ensemble of 60 binary SVMs used in 
ensLOC. We still see an overall improvement by training a convolutional network directly on the 
pixel intensity data (DeepLoc). These results show that the neural network classifier is a powerful 
alternative to SVMs and that training convolutional networks directly on pixel intensity data 
performs best. We feel that this additional analysis is unnecessary for our publication, but we can 
include it in the supplement if the editors feel it is essential. 
 

 

 

I would really like to see the performance of DeepLoc on whole images (no bounding box), because 
I think the ability to classify phenotypes in the absence of segmentation is what the field is really 
looking for.  
 

Our previous publication, Kraus et al. (2016), describes a convolutional architecture specifically for 
classifying whole images without segmentation. Although very useful, this model wasn’t designed 
to output classifications for single cells, which is a requirement for many high content-screening 
experiments in order to assess phenotype heterogeneity.  
 

2. The authors argue that analysis of the alpha-factor screens is a powerful application of DeepLoc 
because there is no need "for additional, non-wild-type training, while re-implementing a SVM 
ensemble would have necessitated weeks of training and optimization."  
 
To me the analysis of this screen (and the re-analysis of other screens below) doesn't really 
demonstrate the broad utility of this approach. In the case of the alpha-factor screen, I wouldn't 
expect DeepLoc's classification method to be particularly "challenged" because the cells are not 
segmented in a way that would confound the analysis. In fact, I might even predict that an ensemble-
based method would perform equally well between untreated and alpha-factor treated conditions if a 
bounding box type segmentation was used.  
 

Our previous pipeline (ensLOC) failed to classify the alpha-factor screen and this screen was 
therefore left out of the Chong et al. (2015) publication and the Cyclops database (until it was 
recently analyzed with DeepLoc).  
 
Using a different segmentation approach (i.e. using bounding boxes) would change many of the 
values of the extracted features and require retraining ensLOC once again. Given that we have 
shown the improved performance of neural networks on extracted features compared to the SVM 
ensemble, we still believe that, regardless of the segmentation approach, DeepLoc will outperform 
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any existing classification approach based on extracting hand crafted features. Further, even if the 
performances were somewhat comparable, DeepLoc is a much more efficient model to train and 
deploy. DeepLoc is a single multiclass classifier requiring much less training data than the ensemble 
of 60 binary SVMs trained on 60 unique datasets with over 70,000 cells overall.  
 

3. The authors then test DeepLoc on additional data sets, but I think here the results are far less 
impressive. Accuracies of ~40% (or even less sometimes) are hardly evidence of significant 
methodological improvements. To put it another way, I still think any biologist who wants to 
perform a rigorous analysis of these data, or any other new data sets would be better off spending 
time developing an ensemble based method than using DeepLoc. 

Here our goal was to demonstrate how quickly DeepLoc can be transferred to a new dataset. In 
Figure 4D we show the confusion matrix after updating DeepLoc with only 5 samples per 
localization class. Although some classes perform around 40% accuracy half of the classes perform 
at an accuracy of 70% or greater. We doubt another method could reach the same overall 
performance given only 5 samples per class. This feature of DeepLoc is largely due to the fact that 
the network learned to represent many patterns that are relevant to protein sub-cellular localization 
from the Chong et al. dataset. For practical deployment of DeepLoc to new screens, we still 
recommend training with more single cell samples per class (~100). This dataset size is still much 
smaller than that used by Chong et al. or DeepLoc without transfer learning. 
 

4. Finally, there is no real biological insight gained from the application of DeepLoc. So while the 
method may provide a faster means by which to analyze data, in the absence of such insight its not 
clear to me why it should be used.  
 

As our paper describes a new computational tool, our main focus was not on the new biological 
insights that can be mined from our data.  We note that we not only use DeepLoc to analyse 
published datasets (from our lab and the Schuldiner lab), but also analyse two unpublished datasets, 
which are now available to the yeast community for further analyses.  In particular, we have used 
DeepLoc to assess a mating pheromone screen that could not be analyzed and included in our 
previous publication in Cell (2015). This previous publication is an important resource for the 
systems biology community as it was the first quantitative assessment of protein localization and 
abundance on a proteome-wide scale. The method we described here overcomes many of the 
computational barriers faced in quantitatively analyzing proteome wide screens, including 
overcoming sensitivities to segmentation and feature extraction pipelines, and providing a much 
simpler and more accurate classifier than large ensembles of SVMs. The screen we analyzed with 
DeepLoc (that could not be analyzed with ensLOC) provides valuable insight into the yeast mating 
process, including the identification of 300 proteins for which sub-cellular localization changes 
significantly in response to alpha-factor, some which are previously uncharacterized proteins. We 
provide all the localization change predictions and abundance data from this screen as a resource to 
the yeast community in the Cyclops database. We hope that other labs conducting protein 
localization screens in yeast will adopt DeepLoc and update it for their own experiments. 
 

5. The current manuscript seems to largely ignore the extensive amount of work that has been done 
on quantifying sub-cellular localization of proteins using other methods. In fact, comparing 
DeepLoc to some of these other tools (other than just ensLoc) may be warranted.  

We appreciate this feedback from the reviewer. As mentioned in previous responses above, we treat 
ensLOC as the gold-standard in quantifying protein localization since Koh et al. (2015) 
demonstrated its enhanced performance over earlier methods.  

6. Why does this work represent an significant advance over the authors' recently published work in 
Bioinformatics? 

The Bioinformatics, 2016 paper describes a neural network architecture for classifying whole 
microscopy images with whole image level annotations. Although this architecture is powerful for 
high-content screening analysis, it was not designed to provide single cell predictions. Here we 
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describe DeepLoc, a deep convolutional network for classifying protein localization in images of 
single cropped cells. We thoroughly compared DeepLoc to ensLOC on the tasks of single cell 
classification and protein level annotations. We subsequently show DeepLoc’s ability to classify 
divergent image sets without the need for substantial tuning and training, making it an invaluable 
tool for the imaging community to rapidly analyze their datasets. 
 

To clarify, we added the following text to the Discusion section (Page 11, Paragraph 3): 

“These results differentiate DeepLoc from previous implementations of deep learning for high-
throughput cell image data. Recent publications demonstrate the improved accuracy achieved by 
deep learning based classifiers for high content screening (Kraus et al, 2016; Pärnamaa & Parts, 
2016; Dürr & Sick, 2016) and for imaging flow cytometry (Eulenberg et al, 2016). These reports 
validate their proposed models on held out test sets from the same source as the training data and 
typically evaluate less phenotypes than DeepLoc (i.e. 4 mechanism of action clusters in Dürr & Sick 
(2016) and 5 cell cycle stages in Eulenberg et al. (2016)). In Kraus et al. (2016), we describe a deep 
learning framework for classifying whole microscopy images that is not designed to classify single 
cells. Here we train DeepLoc on 15 sub-cellular localizations classes from one genome-wide screen, 
deploy DeepLoc to a second genome-wide screen of cells with substantially altered cell morphology 
that was not amenable to classification with EnsLoc, and then use transfer learning to deploy 
DeepLoc to image sets that were screened differently than the training set with minimal additional 
labeling.” 
 

Additional Specific Comments: 

Why did the authors test their method on only a subset of the data set used for training ensLoc 
(~22,000 out of 70,000 images)? It is acceptable to train the CNN on a balanced subset, but why was 
the entire set not used to measure performance? Such as test would provide a better estimation of the 
generalizability of the trained features. 

We appreciate this feedback from the reviewer. As we mentioned in responses to the other 
reviewers, ensLOC was trained as an ensemble of 60 binary SVMs, requiring 60 unique datasets 
with positive and negative samples for each classifier; since we trained DeepLoc in a multi-class 
setting, we could only use the positive samples from the original dataset (as the negative samples are 
simply labeled as not belonging to a localization class). 
 

Related to the above point, the details on choosing the subset are not provided.  
After selecting the usable data from the 70,000 manually labeled images, we realized that some 
classes had many more labeled samples. We limited the maximum number of sample cells per class 
to 1,500.  
 

The authors generate patches of 64x64 pixels that are centered on single cells. More information 
should be provided on the size of the cell and how often the selected patch size does not cover the 
entire cell segment. 

Yeast cells change in there size over cell cycle progression but average ~49 pixels along the major 
axis, and 37 pixels along the minor axis of the cell.  We chose to use 64x64 pixels based on these 
measurements and after substantial trial and error during image analysis. As the network is trained 
on a variety of cells and orientations, occasional cropping of a segment of a cell, or the inclusion of 
neighboring cells doesn’t significantly affect the training performance. See the image below for 
training samples from the Cell Periphery class. Although the network sees a variety of sizes and 
orientations, it learns that a ring pattern in the green channel is common these images and learns to 
recognize the pattern as a discriminative feature. 
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To address the reviewer’s concern we have added the following into the Training DeepLoc section 
of the Materials and Methods (Page 16, Paragraph 2): 

“Yeast cells change in there size over cell cycle progression but average ~49 pixels along the major 
axis, and 37 pixels along the minor axis of the cell.”  

 

It will be useful if an analysis of when CNN fails is provided. 

This information is provided in the error matrices in Figures 4D/E and 5D/E for localization classes 
transfer learning performs more poorly (i.e. incorrect assignment of a protein to another class). 

When using DeepLoc in classifying cells in response to alpha factor the authors state "DeepLoc 
produced reasonable protein classification for single cells within hours ...". Exact numbers on the 
average precision of applying DeepLoc should be provided given a representative sample. 

As mentioned in previous responses above, we did not have a manually labeled set for the 
pheromone screen. Instead we aimed to show that the model could be deployed to a new set that was 
not previously labeled. We manually confirmed the results from DeepLoc and all the images and 
predictions are reported in Cyclops (http://cyclops.ccbr.utoronto.ca). In addition, we performed 
enrichment analysis on the 100 proteins representing the most substantial localization changes and 
found that many of these are already implicated in the mating response program. As we included 
quantitative evaluations based on manually labeled single cells for the Chong et al. data, as well as 
the two new datasets we used for transfer learning, we feel that quantifying the performance of 
DeepLoc on the alpha-factor screen with additional labeling would not add much value to the 
analysis.  
 
 
2nd Editorial Decision 14 March 2017 

Thank you for sending us your revised manuscript. We are satisfied with the modifications made 
and we think that the study is now suitable for publication.  
 
Before we formally accept the manuscript, we would like to ask you to address the following 
editorial issue in a minor revision:  
 
- In the Data Availability Section: Please include links providing direct access to the newly 
generated datasets (α-factor screen) in the Cyclops database and to the software at GitHub. In order 
to ensure long-term archival alongside the paper, we would also ask you to provide the DeepLoc 
code as a .zip file labeled Computer Code EV1.  
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2nd Revision - authors' response 16 March 2017 

We have amended our manuscript and supporting material to meet the specifications you outlined in 
your previous email, with one exception: Unfortunately, because of the way that the Cyclops 
database is set up, we are unable to provide a direct link to the location of the alpha-factor images 
and data. Instead, we have included the following description in the "Data Availability" section to 
guide the reader in navigating Cyclops:  
 
"The results and images for the α-factor screen are available on the Cyclops Database. Here, 
individual proteins can be queried using the search function, after which corresponding localization 
and abundance data from our analysis can be accessed under the "DeepLoc" subheading. Under this 
subheading, the data from our three untreated conditions (WT1, WT2, WT3) as well as the three α-
factor time-points (AF100, AF140, AF180) is available for both localization and abundance. In 
addition, individual micrographs can be accessed under the "Retrieve micrographs from other 
screen" tab, by selecting "AF100", "AF140", or "AF180": (http://cyclops.ccbr.utoronto.ca). Raw 
images will be made available upon request." 
 
 
3rd Editorial Decision 20 March 2017 

Thank you again for sending us your revised manuscript. We are now satisfied with the 
modifications made and I am pleased to inform you that your paper has been accepted for 
publication. 
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figure	  panels	  include	  only	  data	  points,	  measurements	  or	  observations	  that	  can	  be	  compared	  to	  each	  other	  in	  a	  scientifically	  
meaningful	  way.
graphs	  include	  clearly	  labeled	  error	  bars	  for	  independent	  experiments	  and	  sample	  sizes.	  Unless	  justified,	  error	  bars	  should	  
not	  be	  shown	  for	  technical	  replicates.
if	  n<	  5,	  the	  individual	  data	  points	  from	  each	  experiment	  should	  be	  plotted	  and	  any	  statistical	  test	  employed	  should	  be	  
justified

Please	  fill	  out	  these	  boxes	  ê	  (Do	  not	  worry	  if	  you	  cannot	  see	  all	  your	  text	  once	  you	  press	  return)

a	  specification	  of	  the	  experimental	  system	  investigated	  (eg	  cell	  line,	  species	  name).

C-‐	  Reagents

B-‐	  Statistics	  and	  general	  methods

the	  assay(s)	  and	  method(s)	  used	  to	  carry	  out	  the	  reported	  observations	  and	  measurements	  
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  being	  measured.
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  altered/varied/perturbed	  in	  a	  controlled	  manner.

the	  exact	  sample	  size	  (n)	  for	  each	  experimental	  group/condition,	  given	  as	  a	  number,	  not	  a	  range;
a	  description	  of	  the	  sample	  collection	  allowing	  the	  reader	  to	  understand	  whether	  the	  samples	  represent	  technical	  or	  
biological	  replicates	  (including	  how	  many	  animals,	  litters,	  cultures,	  etc.).

Each	  figure	  caption	  should	  contain	  the	  following	  information,	  for	  each	  panel	  where	  they	  are	  relevant:

2.	  Captions

The	  data	  shown	  in	  figures	  should	  satisfy	  the	  following	  conditions:

Source	  Data	  should	  be	  included	  to	  report	  the	  data	  underlying	  graphs.	  Please	  follow	  the	  guidelines	  set	  out	  in	  the	  author	  ship	  
guidelines	  on	  Data	  Presentation.

a	  statement	  of	  how	  many	  times	  the	  experiment	  shown	  was	  independently	  replicated	  in	  the	  laboratory.

Any	  descriptions	  too	  long	  for	  the	  figure	  legend	  should	  be	  included	  in	  the	  methods	  section	  and/or	  with	  the	  source	  data.

Please	  ensure	  that	  the	  answers	  to	  the	  following	  questions	  are	  reported	  in	  the	  manuscript	  itself.	  We	  encourage	  you	  to	  include	  a	  
specific	  subsection	  in	  the	  methods	  section	  for	  statistics,	  reagents,	  animal	  models	  and	  human	  subjects.	  	  

In	  the	  pink	  boxes	  below,	  provide	  the	  page	  number(s)	  of	  the	  manuscript	  draft	  or	  figure	  legend(s)	  where	  the	  
information	  can	  be	  located.	  Every	  question	  should	  be	  answered.	  If	  the	  question	  is	  not	  relevant	  to	  your	  research,	  
please	  write	  NA	  (non	  applicable).
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6.	  To	  show	  that	  antibodies	  were	  profiled	  for	  use	  in	  the	  system	  under	  study	  (assay	  and	  species),	  provide	  a	  citation,	  catalog	  
number	  and/or	  clone	  number,	  supplementary	  information	  or	  reference	  to	  an	  antibody	  validation	  profile.	  e.g.,	  
Antibodypedia	  (see	  link	  list	  at	  top	  right),	  1DegreeBio	  (see	  link	  list	  at	  top	  right).

7.	  Identify	  the	  source	  of	  cell	  lines	  and	  report	  if	  they	  were	  recently	  authenticated	  (e.g.,	  by	  STR	  profiling)	  and	  tested	  for	  
mycoplasma	  contamination.

*	  for	  all	  hyperlinks,	  please	  see	  the	  table	  at	  the	  top	  right	  of	  the	  document

8.	  Report	  species,	  strain,	  gender,	  age	  of	  animals	  and	  genetic	  modification	  status	  where	  applicable.	  Please	  detail	  housing	  
and	  husbandry	  conditions	  and	  the	  source	  of	  animals.

9.	  For	  experiments	  involving	  live	  vertebrates,	  include	  a	  statement	  of	  compliance	  with	  ethical	  regulations	  and	  identify	  the	  
committee(s)	  approving	  the	  experiments.

10.	  We	  recommend	  consulting	  the	  ARRIVE	  guidelines	  (see	  link	  list	  at	  top	  right)	  (PLoS	  Biol.	  8(6),	  e1000412,	  2010)	  to	  ensure	  
that	  other	  relevant	  aspects	  of	  animal	  studies	  are	  adequately	  reported.	  See	  author	  guidelines,	  under	  ‘Reporting	  
Guidelines’.	  See	  also:	  NIH	  (see	  link	  list	  at	  top	  right)	  and	  MRC	  (see	  link	  list	  at	  top	  right)	  recommendations.	  	  Please	  confirm	  
compliance.

11.	  Identify	  the	  committee(s)	  approving	  the	  study	  protocol.

12.	  Include	  a	  statement	  confirming	  that	  informed	  consent	  was	  obtained	  from	  all	  subjects	  and	  that	  the	  experiments	  
conformed	  to	  the	  principles	  set	  out	  in	  the	  WMA	  Declaration	  of	  Helsinki	  and	  the	  Department	  of	  Health	  and	  Human	  
Services	  Belmont	  Report.

13.	  For	  publication	  of	  patient	  photos,	  include	  a	  statement	  confirming	  that	  consent	  to	  publish	  was	  obtained.

14.	  Report	  any	  restrictions	  on	  the	  availability	  (and/or	  on	  the	  use)	  of	  human	  data	  or	  samples.

15.	  Report	  the	  clinical	  trial	  registration	  number	  (at	  ClinicalTrials.gov	  or	  equivalent),	  where	  applicable.

16.	  For	  phase	  II	  and	  III	  randomized	  controlled	  trials,	  please	  refer	  to	  the	  CONSORT	  flow	  diagram	  (see	  link	  list	  at	  top	  right)	  
and	  submit	  the	  CONSORT	  checklist	  (see	  link	  list	  at	  top	  right)	  with	  your	  submission.	  See	  author	  guidelines,	  under	  
‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  submitted	  this	  list.

17.	  For	  tumor	  marker	  prognostic	  studies,	  we	  recommend	  that	  you	  follow	  the	  REMARK	  reporting	  guidelines	  (see	  link	  list	  at	  
top	  right).	  See	  author	  guidelines,	  under	  ‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  followed	  these	  guidelines.

18.	  Provide	  accession	  codes	  for	  deposited	  data.	  See	  author	  guidelines,	  under	  ‘Data	  Deposition’.

Data	  deposition	  in	  a	  public	  repository	  is	  mandatory	  for:
a.	  Protein,	  DNA	  and	  RNA	  sequences
b.	  Macromolecular	  structures
c.	  Crystallographic	  data	  for	  small	  molecules
d.	  Functional	  genomics	  data	  
e.	  Proteomics	  and	  molecular	  interactions
19.	  Deposition	  is	  strongly	  recommended	  for	  any	  datasets	  that	  are	  central	  and	  integral	  to	  the	  study;	  please	  consider	  the	  
journal’s	  data	  policy.	  If	  no	  structured	  public	  repository	  exists	  for	  a	  given	  data	  type,	  we	  encourage	  the	  provision	  of	  
datasets	  in	  the	  manuscript	  as	  a	  Supplementary	  Document	  (see	  author	  guidelines	  under	  ‘Expanded	  View’	  or	  in	  
unstructured	  repositories	  such	  as	  Dryad	  (see	  link	  list	  at	  top	  right)	  or	  Figshare	  (see	  link	  list	  at	  top	  right).
20.	  Access	  to	  human	  clinical	  and	  genomic	  datasets	  should	  be	  provided	  with	  as	  few	  restrictions	  as	  possible	  while	  
respecting	  ethical	  obligations	  to	  the	  patients	  and	  relevant	  medical	  and	  legal	  issues.	  If	  practically	  possible	  and	  compatible	  
with	  the	  individual	  consent	  agreement	  used	  in	  the	  study,	  such	  data	  should	  be	  deposited	  in	  one	  of	  the	  major	  public	  access-‐
controlled	  repositories	  such	  as	  dbGAP	  (see	  link	  list	  at	  top	  right)	  or	  EGA	  (see	  link	  list	  at	  top	  right).
21.	  As	  far	  as	  possible,	  primary	  and	  referenced	  data	  should	  be	  formally	  cited	  in	  a	  Data	  Availability	  section.	  Please	  state	  
whether	  you	  have	  included	  this	  section.

Examples:
Primary	  Data
Wetmore	  KM,	  Deutschbauer	  AM,	  Price	  MN,	  Arkin	  AP	  (2012).	  Comparison	  of	  gene	  expression	  and	  mutant	  fitness	  in	  
Shewanella	  oneidensis	  MR-‐1.	  Gene	  Expression	  Omnibus	  GSE39462
Referenced	  Data
Huang	  J,	  Brown	  AF,	  Lei	  M	  (2012).	  Crystal	  structure	  of	  the	  TRBD	  domain	  of	  TERT	  and	  the	  CR4/5	  of	  TR.	  Protein	  Data	  Bank	  
4O26
AP-‐MS	  analysis	  of	  human	  histone	  deacetylase	  interactions	  in	  CEM-‐T	  cells	  (2013).	  PRIDE	  PXD000208
22.	  Computational	  models	  that	  are	  central	  and	  integral	  to	  a	  study	  should	  be	  shared	  without	  restrictions	  and	  provided	  in	  a	  
machine-‐readable	  form.	  	  The	  relevant	  accession	  numbers	  or	  links	  should	  be	  provided.	  When	  possible,	  standardized	  
format	  (SBML,	  CellML)	  should	  be	  used	  instead	  of	  scripts	  (e.g.	  MATLAB).	  Authors	  are	  strongly	  encouraged	  to	  follow	  the	  
MIRIAM	  guidelines	  (see	  link	  list	  at	  top	  right)	  and	  deposit	  their	  model	  in	  a	  public	  database	  such	  as	  Biomodels	  (see	  link	  list	  
at	  top	  right)	  or	  JWS	  Online	  (see	  link	  list	  at	  top	  right).	  If	  computer	  source	  code	  is	  provided	  with	  the	  paper,	  it	  should	  be	  
deposited	  in	  a	  public	  repository	  or	  included	  in	  supplementary	  information.

23.	  Could	  your	  study	  fall	  under	  dual	  use	  research	  restrictions?	  Please	  check	  biosecurity	  documents	  (see	  link	  list	  at	  top	  
right)	  and	  list	  of	  select	  agents	  and	  toxins	  (APHIS/CDC)	  (see	  link	  list	  at	  top	  right).	  According	  to	  our	  biosecurity	  guidelines,	  
provide	  a	  statement	  only	  if	  it	  could.
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page	  19:	  "The	  results	  and	  images	  for	  the	  α-‐factor	  screen	  are	  available	  on	  the	  Cyclops	  Database:	  
(http://cyclops.ccbr.utoronto.ca).	  "

page	  19:	  "	  Primary	  Data:	  Koh	  JLY,	  Chong	  YT,	  Friesen	  H,	  Moses	  A,	  Boone	  C,	  Andrews	  BJ	  &	  Moffat	  J	  
(2015)	  CYCLoPs:	  A	  comprehensive	  database	  constructed	  from	  automated	  analysis	  of	  protein	  
abundance	  and	  subcellular	  localization	  patterns	  in	  Saccharomyces	  cerevisiae.	  G3	  5:	  1223–1232"
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page	  19:	  "The	  code	  for	  performing	  the	  experiments	  is	  available	  for	  download	  in	  the	  Supplemental	  
Software	  and	  an	  updateable	  version	  is	  available	  at	  (https://github.com/okraus,	  and	  a	  temporary	  
link	  prior	  to	  publication	  is	  available	  here:	  
http://spidey.ccbr.utoronto.ca/~okraus/DeepLoc_Supplemental_Software.zip)"
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page	  19:	  "The	  code	  for	  performing	  the	  experiments	  is	  available	  for	  download	  in	  the	  Supplemental	  
Software	  and	  an	  updateable	  version	  is	  available	  at	  (https://github.com/okraus,	  and	  a	  temporary	  
link	  prior	  to	  publication	  is	  available	  here:	  
http://spidey.ccbr.utoronto.ca/~okraus/DeepLoc_Supplemental_Software.zip)"

Will	  include	  code	  as	  supplemental	  zip	  file	  and	  host	  on	  Github.
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