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Appendix Figure S1: Noise can drive lateral inhibition. The presence of the trigger signal T at the center of the tissue
is not needed in order to obtain a fine-grained pattern. Indeed, noise helps initial asymmetries self-amplify and can drive the
formation of a fine-grained pattern [2, 1]. We show how the same gene circuit can achieve inhibition with or without an initial
trigger. We show simulations with distinct numbers of cells (15 (A) or 33 (B)). It has also been suggested that noise has a
beneficial role in refining lateral inhibition patterns [1].
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Appendix Figure S2: Minimal induction and inhibition circuits classified into dynamical mechanisms. Within
a given mechanism we find at least two equivalent circuits, depending on which gene receives the trigger signal T . (A)
Auto-activation leads to an independent expansion of the signaling gene. Activate-activator drives an in phase expansion
of both genes. Inhibit-inhibitor leads to an out of phase expansion as the signaling gene ’pushes away’ the cell-autonomous
gene. (B) Inter-cellular auto-inhibition of the signaling gene causes the neighbor cell to lose its inhibitory potential on
next cell, which in turn adopts a constitutive high concentration. In inhibit-activator single cells adopt high expression
levels for both genes. Last, in activate-inhibitor intra-cellular inhibition causes single cells to adopt opposite concen-
tration levels for black and yellow gene. The parameter sets used for each simulation [w1;w5;αA;αD] correspond to the
strength of inter-cellular (w1) and intra-cellular (w5) interactions (see labels in Fig 2B) and α parameters of both genes:
D0=[1.02;0;0;7.56], D1=[1.84;1.36;6.68;15.01], D2=[2.67;2.80;26.46;6.30], D3=[5.11;1.25;6.43;22.10], D4=[-6.38;-4.95;-26.15;-
18.16], D5=[-8.87;-0.12;-1.10;4.74], H0=[-8.86;0;0;-1.67], H1=[-1.8;8.41;1.88;-8], H1’=[-1.31;-0.75;11.44;-10.15], H2=[-8.08;1.19;-
8.78;15.70], H3=[-8.30;3.64;-8.25;15.15], H4=[4.20;-0.15;5.07;-5.62], H5=[2.40;-5.58;7.99;2.57].
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Appendix Figure S3: Distinct mechanisms make use of distinct regulatory logics. (A) Table of regulatory logic used
by each minimal induction and inhibition circuit. We consider that when α belongs to a [-60:0] range, a gene is constitutively
expressed: the gene is transcribed in the absence of input or despite a negative input. When α belongs to [0:60] different
amounts of total input are necessary for the gene to be expressed. Introducing α in our regulatory function is key to the finding
of a high diversity of mechanisms. Indeed, each mechanism makes use of distinct regulatory logic. For example, mechanisms
that hold negative interactions within their circuitry, such as auto-inhibition (H0-H1-H1’) or inhibit-inhibitor (D4), tend to
necessitate constitutive expression of one or both genes to achieve the pattern. (B-C) For every parameter set of each minimal
circuit we plot the corresponding values of αA and αD.
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Appendix Figure S4: Specialization of bi-functional topologies. For each bi-functional topology (green nodes in Fig 3A) we show the
proportion of the 107 sampled parameters that yield induction or inhibition by showing each node as a pie chart. We observe that most bi-
functional topologies are strongly biased towards one of the functions (i.e. pie-charts which appear almost entirely blue or entirely red) and that
the distribution of probabilities to achieve each function depends on the connectivity of a particular topology in the atlas. For example, topologies
biased towards induction tend to connect to lower-complexity induction mono-functional topologies.
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Appendix Figure S5: Complete atlas of multi-functional gene circuits. (A) Complexity atlas showing (in black) the
72 topologies able to switch between induction and inhibition depending on the tissue context. The black stalactites help us
identify the 13 minimal core multi-functional motifs. (B) Table of multi-functional motifs classified into two distinct classes:
hybrid and emergent. (C) Robustness of the 13 minimal multi-functional motifs is measured as parameter robustness, i.e. the
number of successful multi-functional parameter-sets out of 107 sampled.
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Appendix Figure S6: Modular candidates for multi-functionality. (A) Hybrid circuits are found connected to two
lower-complexity induction and inhibition core circuits. (B) Hybrid circuits are the compatible union between a core induction
and inhibition circuits.
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Appendix Figure S7: Function-switching mechanism of Pattern-Convertor. (A-B) We discuss this mechanism fol-
lowing a simple toy model. The auto-inhibition core circuit found within the circuit’s architecture -H0- leads to a lateral
inhibition pattern for the signaling gene (black) in both tissues. However, when the context signal C is present, the amplitude
of the pattern (difference in concentrations of the signaling gene for two consecutive cells) is higher. The cell-autonomous
gene (yellow) functions as a convertor as it feeds from the signaling gene (black). Each cell-autonomous gene reads-out three
positive inputs from the signaling gene: two from neighboring cells and one from the same cell. Because the signaling gene
holds an alternating pattern, the sum of these inputs on the cell-autonomous gene differs between two consecutive cells. The
cell-autonomous gene converts the low-amplitude inhibition pattern of the signaling gene into an inhibition pattern and the
high-amplitude inhibition pattern of the signaling gene into an induction one. (C) Inputs received by the cell-autonomous
gene in two consecutive cells depending on the tissue. The shape of the regulatory function allows the following switching-
mechanism: in tissue A (C=0) the input received by celli is sufficient to activate the cell-autonomous gene in that cell, while in
its neighbor celli+1 it is not (inhibition); instead in tissue B (C=1) both cells receive sufficient input to be activated (induction).
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Appendix Figure S8: Phase portrait analysis of induction and inhibition minimal circuits. (A) In order to follow how the concentration
of each of the four species of a circuit evolve we provide Dc1/Dc2 and Ac1/Ac2 phase portraits. (B) The annihilation that causes the system to
shift to a [high-high] inductive state is characteristic of all minimal induction circuits, which share a general arrangement of their phase portraits.
(C) The arrangement of nullclines and steady-states (attractors at [high-low] and [low-high], and an unstable steady state in between) is identical
for all minimal inhibition circuits.
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Appendix Figure S9: Bifurcation as a function-switching mechanism. We chose to explore hybrid C and follow how
concentrations of the species Dc1 and Dc2 evolve as the context signal C gradually adopts distinct values from 0 to 1. We follow
the switch from inhibition to induction in 3 panel rows which represent respectively (A) the final multicellular pattern (B)
concentrations of Dc1(t) and Dc2(t) and (C) the corresponding phase portraits. The context behaves as a bifurcation parameter
leading a supercritical pitchfork bifurcation [3]. In this type of bifurcation two stables states move towards each other, later
collide and mutually annihilate to create a new stable state. This way, from an initial [high Dc1 - low Dc2](attractor θ4)
inhibition state in tissue A, the system follows the moving attractor as Dc1 is kept high and Dc2 increases to finally transition
to a [high Dc1 -high Dc2] (attractor θ2) induction state. This way, an inhibition pattern gradually reduces its amplitude to
continuously transition to induction.
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