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1 Supplementary Methods

To enable scalable computation with population genetic Markov models we developed sev-
eral approaches to make the computations feasible, as described in the subsequent sections.
First, we calculate the relevant Wright-Fisher transition matrix with a recursive algorithm
for rapidly computing whole rows, and a row-parallel implementation (section 1.4). Sec-
ond, we solve restricted linear systems (section 1.2) using LU decomposition followed by
back substitution with routines that exploit sparsity and parallelism. By far the most
time-consuming step is the LU decomposition itself. Given the LU decomposition of the
relevant sparse matrix, the remaining computations take only seconds even for population
sizes around Ne = 100, 000.

WFES is written in C and is designed to be fast, scalable, and easy to modify. Our
implementation exploits routines in the Intel MKL PARDISO [Intel, Inc., 2016, Schenk et al.,
2000, 2001] library, a state of the art linear solver commonly used for high-performance
computing applications. For convenience, our distribution (https://github.com/dekoning-
lab/wfes) includes the freely-distributable libraries needed to compile and run the program.
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1.1 Finite absorbing Markov chain theory

In this section, we describe several well known results from the theory of absorbing Markov
chains without giving explicit proofs. These can generally be found in Kemeny and Snell
[1960], alongside examples and further reading.

Given the transition matrix of any Wright-Fisher model, P , having two absorbing states
(for extinction and fixation) and an effective population size of Ne, we first re-order the
rows and columns without changing the actual entries. Following standard theory [Kemeny
and Snell, 1960], this re-ordering groups all of the transient states in their original suborder,
followed by all of the absorbing states in their original suborder, so that the matrix is
represented as

P =

(
Q R
0 I2

)
, (1)

where Q is a (2Ne − 1) × (2Ne − 1) matrix of transient-to-transient state transitions, R is
a nonzero (2Ne − 1) × 2 matrix of transient-to-absorbing state transitions, I2 is the 2 × 2
identity matrix reflecting absorbing-to-absorbing state transitions, and 0 is an 2× (2Ne− 1)
matrix where every entry is 0, reflecting the absorbing-to-transient state transitions. Then

N =

∞∑
k=0

Qk = (I −Q)−1 (2)

is called the fundamental matrix of the Markov chain. (Note that the symbol N is used
following convention, and is not related to the population size or Ne.) Each entry Nij of the
fundamental matrix gives the expected number of times the chain is in state j, given that
the chain started in transient state i. The variance on this is the (i, j)th entry of

N2 = N(2Ndg − I) − Nsq (3)

where Ndg is a diagonal matrix with the same diagonal as N, and Nsq is the Hadamard
product of N with itself, or entry-wise squared.

Summing the ith row will give the expected time until absorption, given that the chain
started in transient state i (and unconditional on any specific absorbing state). Equivalently,
we can take the ith entry of the vector

t = N1 (4)

In biological terms, this is the expected time until either fixation or extinction occurs. The
variance on this is the ith entry of

v = (2N − It)t − tsq (5)

where tsq is the Hadamard product of t with itself.
The probability of absorbing in state j having started in state i is the (i, j)th entry of

the matrix
B = NR (6)

In our case, B will be a (2N −1)×2 matrix, where the first and second columns correspond
to probabilities of extinction and fixation respectively.

The expected number of times the chain is in state j, conditional on starting in transient
state i and absorbing in state k is

Eik(j) =
Bjk

Bik
Nij (7)

Then the expected number of steps before absorption, conditional on starting in transient
state i and absorbing in state k is

2N−1∑
j=1

Eik(j) (8)
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For completeness, we also give this same result in matrix form. Define Dk as a diagonal
matrix with diagonal entries bjk, for a fixed absorbing state k. Then the expected number
of steps before absorption having started in transient state i and conditional on absorbing
in state k is the ith entry of

t̃ = D−1k NDk1 (9)

where 1 again is a vector of 1s. The variance on this is the ith entry of

ṽ = (2D−1k NDk − It)̃t − t̃sq (10)

Higher moments for the quantities given are quite complicated. Closed form expressions
for higher-order moments were recently derived in Nemirovsky [2013].

Many other quantities can be calculated using similar approaches. For example, we
recently used this approach to develop an exact method for computing the expected age of
an allele and its variance, which is implemented in WFES and is fully described in de Sanctis
and de Koning [2016]. As other quantities are added in future versions of WFES they will be
fully documented in the online documentation on Github.

1.2 Rapid solution of restricted linear systems

Significant computational savings occur when assuming that we know i. For example, it
is commonly assumed that i = 1 or, equivalently, that the mutant enters the population
as a single copy. In this case, the above calculations require only the first row of N. This
simplifies our computation considerably, because instead of computing an entire matrix
inverse, we can instead just solve the linear system

(I −Q)TN1 = I1 (11)

for N1, where I1 is the first column of the identity matrix. We solve this system by first
obtaining a decomposition of (I −Q)T .

We do have to calculate the entire B matrix in order to obtain conditional times to
absorption. Fortunately, B only has two columns. We solve for the first by considering
another system of linear equations

(I −Q)B1 = R1 (12)

where B1 is the first column of B and R1 is the first column of R. Given that the de-
composition of (I − Q)T was obtained in solving for N1, the solution to this system is
trivial.

Since the Wright-Fisher model only contains two absorbing states, we can now compute

B2 = 1 −B1 (13)

where 1 is a vector of 1s and B2 is the second column of B. Then B1,1 is the probability of
extinction and B1,2 is the probability of fixation given that we started with a single copy.
We can now use equation 7 to compute the expected time to fixation, given that fixation
occurs, and likewise for extinction.

1.3 Parameterization of the Wright-Fisher model

The Wright-Fisher model describes the time-evolution of a bi-allelic locus in a population
of fixed size with Ne individuals and non-overlapping generations. In its standard form,
the model describes the number of mutant alleles in the next generation as a binomial
draw from the number in the current generation. Assuming a diploid population with 2Ne

chromosomes,

Pi,j =

(
2Ne

j

)
(ψi)

j(1 − ψi)
2Ne−j , (14)
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where ψi is the probability of being a mutant allele in the next generation given i alleles
in the current generation, and Pi,j expresses the chance of the population moving from i to
j copies of a mutant allele within one generation.

Following Ewens [2004], we parameterize the fitness of diploid individuals as follows,
where a is the wild-type state and A the mutant:

Genotype Fitness
AA 1 + s
Aa 1 + sh
aa 1

Given this fitness model and bi-directional mutation, the corresponding transition prob-
ability matrix can be expressed using the above formula for Pi,j and

ψi =

[
(1 + s)i2 + (1 + sh)i(1 − i)

]
(1 − u) +

[
(1 + sh)i(1 − i) + (1 − i)2

]
v

(1 + s)i2 + 2(1 + sh)i(1 − i) + (1 − i)2
(15)

where v is the forward mutation rate, u the backward mutation rate, s the selection
coefficient, and h the dominance coefficient.

1.3.1 Haploid model

For reference, we also implemented an analogous haploid model (with Ne chromosomes),
including selection and bi-directional mutation:

Pi,j =

(
Ne

j

)
(ψ′i)

j(1 − ψ′i)
Ne−j , (16)

ψ′i =
i(s+ 1)(1 − u) + (Ne − i)v

i(s+ 1) +Ne − i
(17)

1.4 Rapid calculation of the transition matrix

To efficiently calculate the Wright-Fisher transition probability matrix, we note the following
recurrence relation for each row based on equation 14

pi,0 = (1 − ψi)
2Ne (18)

pi,j = pi,j−1 ·
2Ne − j + 1

j
· ci (19)

where ψi and ci = ψi/(1 − ψi) must only be computed once for each row. Since each row
of the matrix is independent of the others, rows can be calculated in parallel. To do this
efficiently, we assign blocks of rows to different threads and store the collected results in a
sparse matrix data structure.
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2 Supplementary Results

2.1 Comparison of exact and approximate results

Supplementary Figure 1 shows how the probability of fixation changes under strong selec-
tion for the exact method (WFES), forward simulation (WF Monte Carlo), and under several
diffusion approximations owing to Kimura. In this figure, as in the main text,“Kimura dif-
fusion” refers to Kimura’s analytic probability of fixation [Kimura, 1962] ignoring mutation
and dominance in a diploid population:

P
(1)
Fix =

1 − e−s

1 − e−2Nes
(20)

assuming that the initial number of copies of the mutant allele is p = 1/(2Ne). Similarly,
“Kimura diffusion (weak selection)” refers to the usual further approximation of this result
assuming small s:

P
(2)
Fix ≈ s

1 − e−2Nes
(21)

Note that the form of both of these equations is based upon the parameterization of the
Wright-Fisher model described above (Supplementary Methods section 1.3), which differs
slightly from the form used by Kimura.
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Figure 1: Probability of fixation for strongly selected alleles in a population of Ne = 10, 000.
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2.2 Effect of truncation

Each row of the Wright-Fisher matrix is essentially a binomial distribution. By cutting
off the long near-zero tails of the distribution, it is possible to increase the sparsity of the
system 2 (Supplementary Figure 2), thus lowering both the CPU and RAM requirements.

Figure 2: A small N = 10 WF transition matrix. The color of each cell represents the
probability of transition for i to j copies within a single generation. Note the sparsity of the
matrix.

We investigated the effects of different threshold values (ε) on the accuracy of the solver
in Supplementary Table 1.

A threshold of 1e−20 appears to provide good accuracy and performance for reasonably
large population sizes. We note that for larger population sizes (i.e. above N = 100, 000), the
threshold value will have to be lowered to obtain exact solutions (within machine precision)
on most current workstation computers.

Table 1: WFES performance with truncation, Ne=50,000. Benchmarked on a 16-core Intel
Xeon CPU.

Epsilon Relative error% Memory usage, GB Runtime, s
1e− 25 0∗ 27.8 122.268
1e− 20 0∗ 24.5 110.040
1e− 15 0∗ 20.7 102.372
1e− 10 0.02 16.1 80.684
1e− 09 69.90 12.5 75.644

*Zero at machine precision.

2.3 Understanding the performance of WFES

Here we include additional results and details, which help to explain the computational
advantages of WFES.

The intent of our approach is to make computations feasible by only calculating what we
need, and by avoiding computing full, dense matrices. This is to reduce both time and space
complexity, which we more fully explain below. One of the main problems with calculating
the full matrix inverse (equation 2) is that it will be a dense matrix regardless of the sparsity
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of the underlying transition matrix. However, this full matrix is almost never required (see
Section 1.2).

2.3.1 Definition of sparsity

When matrices are sparse, both time and space complexity can be reduced by only storing
and working with the non-zero entries. Sparse linear algebra routines can then be used
[Schenk et al., 2001], which take advantage of sparsity to avoid unnecessary computations.
This can also have a very favourable impact on memory usage, as we explain in the next
section.

Unless a non-zero value of ε is used in WFES, sparse elements of the transition matrix
are defined as those that are evaluated to be zero at machine precision. Assuming 64-bit
double precision floating point numbers, this means that with ε = 0 an effective value of
ε = 2.22 × 10−308 is implied. For this reason, we emphasize that our meaning of “exact”
in WFES applies without caveats to the symbolic linear algebra solutions presented in this
supplement, which require no assumptions other than those made by the model itself. In
our implementation, however, the solutions are subject to machine precision.
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Figure 3: Percent non-zero entries for neutral Wright-Fisher transition matrices and their
LU factors. Sparsity is defined as the fraction of zero entries (i.e., 100% − fnz, given the
fraction of non-zero entries, fnz).
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2.3.2 Space complexity reductions from sparsity

As can be seen in Supplemental Figure 3 (red), as Wright-Fisher transition matrices grow
in size (for increasing effective population sizes), their sparsity generally increases. For a
population size of Ne = 100, 000, the fraction of non-zero entries in the transition matrix is
only about 2% of the total number of entries. For a matrix of this size, storing the entire
transition matrix at double precision would require 298GB of RAM (200, 001× 64/8 bytes).
Contrariwise, to store only the non-zero entries, we need < 6 GB (plus some additional
memory for indexing each non-zero entry).

Importantly, not only is the transition matrix of Wright-Fisher models sparse, but so too
are the LU factors of the transition matrix (Supplemental Figure 3 green, blue), which are
used to make all of the fast computations in WFES. As shown in Supplemental Figure 3, the
LU factors of the transition matrix are about as sparse as the transition matrix itself. Thus,
to get one row of the fundamental matrix, we only need to store the LU factors, which are
each about 98% sparse (see Supplemental Figure 3; 5.96GB for the non-zero entries of each)
together with a single row of N (1.5MB). As a result, to get a single row of the fundamental
matrix, we need only about 11.9GB (75X less memory compared to storing the full transition
matrix together with the full L and U matrices). Further, additional rows come at a cost
of a mere 1.5MB each. This reduction is very favourable for scalability with large effective
population sizes.

2.3.3 Peak RAM usage

WFES also makes use of some intermediate data structures and thus its peak memory usage
can be greater than is implied above. Supplemental Figure 4 shows peak memory usage for
increasing effective population sizes. For effective population sizes around Ne = 100, 000,
WFES uses a maximum of 74.1GB of RAM. As a general rule of thumb, workstations or
servers with 100GB of RAM should be able to comfortable perform any WFES calculations
for Ne ≤ 100, 000.

2.3.4 Runtime of component calculations

To show how the compute times of different phases in the WFES calculations scale with in-
creasing effective population size, Supplemental Figure 5 shows the wall-clock time required
for each phase of the calculations run on a 16-core Intel workstation. As can be seen in
the figure, the symbolic factorization step (to reduce fill-in for the LU factors) takes the
most time, with the calculation of the transition matrix itself requiring slightly less. The
final construction of the LU factors (the ‘numeric factorization’ step) takes the next greatest
amount of time, while the solution of the linear systems presented in Section 1 takes only a
few seconds, even for large effective population sizes. In this example, the ‘system solution’
time is the time required to solve all linear systems needed to compute sojourn times, and
fixation and extinction probabilities and times. Calculating allele age and other values can
increase this time by a second or two for very large population sizes.
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Figure 4: Peak total RAM used by WFES for runs with increasing effective population size.
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Note that the solution of linear systems takes merely seconds, even for large effective popu-
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