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Supplementary Text 1

User guide on how to create labels. This section gives a detailed explanation of how to create labels
for ChIP-seq data sets.

Tracks to visually inspect. Start by viewing all relevant tracks at the same time in a genome browser:

• Counts of aligned reads for several samples of a single type of ChIP-seq experiment. For example, if
you have both H3K4me3 and H3K36me3 data, then start by visualizing and labeling just the H3K4me3
samples. If you are interested in differences between samples or cell types, make sure to include all the
different sample types (e.g. both knock-out and wild-type samples).

• Counts of aligned reads for negative control ChIP-seq samples (also known as background or input
samples). These samples are important in order to determine which peaks are specific to the antibody
used in the ChIP-seq experiment. Non-specific peaks appear up in both experimental and negative
control samples.

• Other genome browser tracks such as alignability/mappability and GC content. These tracks may
influence how to interpret the aligned read coverage signal in terms of peaks and background.

• Peak calls can be displayed in order to visualize peak calling errors that need correction via labels.

• Labels can be displayed in order to see which genomic regions have already been labeled.

If your computer screen is too small to display all relevant tracks, then labeling can be used on subsets
of the data. For example, if there are 500 ChIP-seq samples to analyze, we would recommend starting by
visualizing and labeling a subset of 10–30 samples. If you are interested in differences between samples,
make sure that the subset contains examples of several different sample types, so you can observe and label
differences between sample types. For example, the figure below shows 27 samples of three cell types (bcell,
tcell, monocyte).
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Genome browser axis settings. Typically genome browsers have two options for the display of
the y-axis scale. If all samples are of the same sequencing depth (for example 10x) and are expected to
have about the same amount of coverage, then the y axis can be forced to have the same scale across all
samples. For samples sequenced at different depths (for example 5x and 50x), the y-axis should be set to
automatically rescale to the maximum of each sample. For example, this autoscale setting is useful to see
peaks in background in the figure above (the normalized coverage counts range from 5 to 93, but peaks and
background are still visually obvious when the y axis is autoscaled).

Choosing genomic regions to label. There are several methods that can be used to find genomic
regions to label:

• If you expect peaks in certain genomic regions (e.g. genes, promoters), then you can start by looking
in those parts of the genome.

• If you have preliminary peak calls for the samples you want to label, then you can view a genome
subset with peaks that have certain properties (e.g. small p-value, large length, large height).
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• Otherwise, you can start in a random region of the genome, and then zoom in or out until you locate
some peaks that are visually obvious.

Continue browsing through the genome until you are confident to have labeled an unbiased, representative
subset of relevant peaks.

Grouping nearby labels into windows. We recommend creating “labeled windows,” which are
genomic regions with groups of nearby labels. The reason we create windows is in order to make it easy to
visually check the labels, after labeling has been performed. It is not easy to visually check a single label by
itself in the genome. For example a positive peaks label may not be obvious unless the genome browser is
zoomed out enough to see the nearby background noise (and perhaps a negative noPeaks label). Therefore,
each labeled window should

• Contain at least one region where all samples have a positive label (peaks, peakStart, peakEnd). Thus
the maximum of an autoscaled y axis will equal the maximum coverage of a peak.

• Contain at least one region where all samples have a negative label (noPeaks). Thus the contrast
between peaks and background will be easy to verify.

• Ideally contain at least one genomic region which has positive labels for some samples, and negative
labels for the other samples. These labels further clarify the definition of a significant difference between
peaks and background.

Examples of labeled windows that satisfy all three criteria are shown in the figures above and below. Since
the labels in each figure constitute a single window, it is easy to verify them by simply plotting the coverage
data and labels in the entire window.

Labeling broad domains. Broad ChIP-seq marks such as H3K36me3 data are sometimes interpreted
in terms of “domains” which may consist of one or more “peaks” perhaps separated by small regions of
background. To label these data, there are several possibilities:

• If the data appear to be one broad peak covering the entire domain, then one large peakStart and one
large peakEnd label can be used to indicate that one large peak should be called in this region (and
not several smaller peaks).

• If the data appear to be several smaller peaks separated by small spaces, which visually make up a
domain if concatenated, then such peaks would still be informative of the domain extension. In this
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case, one small peakStart label and one small peakEnd label can be used to indicate that a consistent
peak model should at least recover the start and end of the domain.

• If there is one (or very few) small peak(s) located somewhere in the domain, then the start and the end
of the data may not be obvious. In this case, one can add peakStart and peakEnd labels to indicate
that a small peak to be called, or perhaps not add any labels at all (if the interpretation of the peaks
in the data is not clear).

Example of a labels file. Below is an example of an labels file that TDH created by manual visual
inspection of the H3K4me3 immune cell samples (tcell, bcell, and monocyte). Genomic regions were copied
from the UCSC genome browser web page, and pasted into a text file. It is divided into 4 genomic windows
of nearby labels, each of which is separated by two returns/newlines. Each line represents a label for several
cell types. The cell types that are not listed all get a noPeaks label in the indicated region. For example,
the first line means that monocyte and tcell samples get a peakStart label at the indicated region, and the
bcell samples get a noPeaks label in the same region.

chr11:118,092,641-118,095,026 peakStart monocyte tcell

chr11:118,095,334-118,096,640 peakEnd monocyte tcell

chr11:118,101,452-118,118,472 peaks

chr11:118,121,649-118,124,175 peaks monocyte tcell bcell

chr11:111,285,081-111,285,355 peakStart monocyte

chr11:111,285,387-111,285,628 peakEnd monocyte

chr11:111,299,681-111,337,593 peaks

chr11:111,635,157-111,636,484 peakStart monocyte tcell bcell

chr11:111,637,473-111,638,581 peakEnd monocyte tcell bcell

chr1:32,717,194-32,721,976 peaks tcell

chr1:32,750,608-32,756,699 peaks

chr1:32,757,261-32,758,801 peaks tcell bcell monocyte

chr2:26,567,544-26,568,406 peakStart bcell tcell monocyte

chr2:26,568,616-26,568,862 peakEnd bcell tcell monocyte

chr2:26,569,573-26,571,905 peakEnd bcell tcell monocyte

chr2:26,578,595-26,632,223 peaks

chr2:26,634,282-26,636,118 peaks monocyte
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Supplementary Text 2

Details of peak calling algorithms. In the following paragraphs, we describe the details of the peak
calling algorithms we tested.

We used Model-based Analysis of ChIP-Seq for the macs algorithm Zhang et al. [2008]. We downloaded
MACS version 2.0.10 12162013 (commit ca806538118a85ec338674627f0ac53ea17877d9 on GitHub). We used
the qvalue cutoff parameter -q for λ, with grid of 59 values from 0.8 to 10−15. We used the --broad

command line option for the macs.broad algorithm. With broad settings there are two separate qvalue
cutoff parameters: (-q and --broad-cutoff). So we used the same grid of 59 qvalue cutoffs for -q, and
then defined

broad-cutoff = q× 1.122, (1)

since broad-cutoff is required to be larger than -q. The default macs algorithms use a default qvalue cutoff
of λ̃ = 0.05.

We downloaded CCAT version 3.0 from http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm Xu
et al. [2010]. The example/config histone.txt file was used for the ccat.histone algorithm, and the
example/config TF.txt file was used for the ccat.tf algorithm. We set minScore to 0 in both files, then
analyzed the significant.region files after running CCAT. Column 7 in these files is the “fold-change
score.” We defined a grid of fold-change score thresholds λ ∈ {0.1, . . . , 400}, and we defined the CCAT
model with parameter λ as all rows of the significant.region file which have a fold-change score greater
than λ. The default CCAT algorithm uses a minScore of λ̃ = 5.

The HMCan algorithm was proposed to correct for GC-content and copy number differences Ashoor et al.
[2013]. We downloaded HMCan commit 9d0a330d0a873a32b9c4fa72c94d00968132b9ef from BitBucket. We
used the default GC content normalization file provided by the authors. We used two different parameter
files to test two different peak detectors:

name mergeDistance
hmcan 200

hmcan.broad 1000

We then ran HMCan with finalThreshold=0, and defined λ as a threshold on column 5 in the regions.bed
file. Default models use a finalThreshold of λ̃ = 10.

We downloaded RSEG version 0.4.8 from http://smithlabresearch.org/software/rseg/ Song and
Smith [2011]. Upon recommendation of the authors, we saved computation time by running rseg-diff

using options -training-size 100000 and -i 20. We used the -d option to specify a dead regions file for
hg19 based on our alignment pipeline. We defined the significance threshold λ as the sum of posterior scores
(column 6 in the output .bed file). For the default RSEG algorithm, we used all the peaks in the output file,
meaning a posterior score threshold of λ̃ = 0.

We downloaded SICER version 1.1 from http://home.gwu.edu/~wpeng/SICER_V1.1.tgz Zang et al.
[2009]. We defined the significance threshold λ as the FDR (column 8) in the islands-summary output file.
For the default SICER algorithm, we used an FDR of λ̃ = 0.01 as suggested in the README and example.

The HOMER set of tools was proposed for DNA motif detection Heinz et al. [2010]. We used the
findPeaks program in HOMER version 4.1 with the -style histone option. We defined the significance
threshold λ as the “p-value vs Control” column. We defined the default model as all peaks in the output
file.
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Supplementary Text 3

Definition of the label error. In this section we give the precise mathematical definition of the label
error.

Data definition Let there be n labeled training samples, all of the same histone mark type. For simplicity,
and without loss of generality, let us consider just one chromosome with b base pairs. Let x1 ∈ Zb+, . . . ,xn ∈
Zb+ be the vectors of coverage across that chromosome. For example b = 249, 250, 621 is the number of base
pairs on chr1, and xi ∈ Zb+ is the H3K4me3 coverage profile on chr1 for one sample i ∈ {1, . . . , n}.

We also have exactly four sets of labeled regions Ri, Ri, R
+
i , R

−
i for each sample i ∈ {1, . . . , n}:

Data Type Color Symbols
Coverage x1, . . .xn

Weak labels peaks R+
1 , . . . , R

+
n

noPeaks R−1 , . . . , R
−
n

Strong labels peakStart R1, . . . , Rn
peakEnd R1, . . . , Rn

For each sample i ∈ {1, . . . , n}, R+
i is a set of regions, and each region r ∈ R+

i is an interval of base pairs,
e.g. r = (100, 200).

A peak detection function or peak caller c : Zb+ → {0, 1}b takes a coverage profile x ∈ Zb+ and returns a
binary peak call prediction y = c(x) ∈ {0, 1}b.

The goal is to learn how to call peaks c(xi) which agree with the labeled regions R+
i , R

−
i , Ri, Ri for some

test samples i. To quantify the error of the peak calls with respect to the labels, we define the following
functions.

Weak label error The weak labels R+
i , R

−
i count whether or not there are any peaks overlapping a region.

They are called weak because each “peaks” label ∈ R+
i can only produce a false negative (but not a false

positive), and each “noPeaks” label ∈ R−i can only produce a false positive (but not a false negative). Fig. 3
shows how the “peaks” label counts false negatives and the “noPeaks” label counts false positives. Let

B(y, r) =
∑
j∈r

yj (2)

be the number of bases which have peaks overlapping region r. Then for a sample i, the number of weak
false positives is

WFP(y, R−i ) =
∑
r∈R−

i

I [B(y, r) > 0] , (3)

where I is the indicator function. The weak false positive (WFP) function counts the number of “noPeaks”
regions r ∈ R−i which have at least one overlapping peak.

The number of weak true positives is

WTP(y, R+
i ) =

∑
r∈R+

i

I [B(y, r) > 0] . (4)

The weak true positive (WTP) function counts the number of “peaks” regions r ∈ R+
i which have at least

one overlapping peak.

Strong label error The strong labels Ri, Ri count the number of peak starts and ends occuring in the
given regions. They are called strong because each label can produce a false positive (more than one peak
start/end predicted in the region) or a false negative (no peak start/end predicted). Fig. 3 shows how these
“peakStart” and “peakEnd” labels count both false negatives and false positives.

6



First, let y0 = yb+1 = 0 and define the set of first bases of all peaks as

I(y) = {j ∈ {1, . . . , b} : yj = 1 and yj−1 = 0} (5)

and the set of last bases of all peaks as

I(y) = {j ∈ {1, . . . , b} : yj = 1 and yj+1 = 0} . (6)

For a sample i, the number of strong false positives is

SFP(y, Ri, Ri) =
∑
r∈Ri

I
[
|r ∩ I(y)| > 1

]
+
∑
r∈Ri

I
[
|r ∩ I(y)| > 1

]
. (7)

The strong false positive (SFP) function counts the number of “peakStart” and “peakEnd” regions which
contain more than one peak start/end.

The number of strong true positives is

STP(y, Ri, Ri) =
∑
r∈Ri

I
[
|r ∩ I(y)| > 0

]
+
∑
r∈Ri

I
[
|r ∩ I(y)| > 0

]
. (8)

The strong true positive (STP) function counts the number of “peakStart” and “peakEnd” regions which
contain at least one peak start/end.

Total label error For a sample i, the total number of false positives is

FP(y, Ri, Ri, R
−
i ) = WFP(y, R−i ) + SFP(y, Ri, Ri), (9)

the total number of true positives is

TP(y, Ri, Ri, R
+
i ) = WTP(y, R+

i ) + STP(y, Ri, Ri), (10)

the total number of false negatives is

FN(y, Ri, Ri, R
+
i ) = |Ri|+ |Ri|+ |R+

i | − TP(y, Ri, Ri, R
+
i ). (11)

The label error E quantifies the number of incorrect labels:

E(y, Ri, Ri, R
+
i , R

−
i ) = FP(y, Ri, Ri, R

−
i ) + FN(y, Ri, Ri, R

+
i ). (12)

The label error E can be easily computed using the C code in the R package PeakError on GitHub: https:
//github.com/tdhock/PeakError.

ROC analysis A peak caller with a scalar parameter λ ∈ R that controls the number of peaks detected
can be characterized as a function cλ : Zb+ → {0, 1}b. Receiver Operating Characteristic (ROC) curves can
be used to show how the true positive and false positive rates vary as a function of λ. Define the false
positive rate as

FPR(λ) =

∑n
i=1 FP

[
cλ(xi), Ri, Ri, R

−
i

]
|Ri|+ |Ri|+ |R−i |

(13)

and the true positive rate as

TPR(λ) =

∑n
i=1 TP

[
cλ(xi), Ri, Ri, R

+
i

]
|Ri|+ |Ri|+ |R+

i |
. (14)

ROC curves are traced by plotting TPR(λ) versus FPR(λ) for all possible values of the peak detection
parameter λ.
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Supplementary Figure 1

Default and learned peak detectors in H3K4me3 data. It is clear that default parameter values yield
false negatives and false positives. Parameter training for macs yields a perfect peak detection model.

Supplementary Figure 2

Default and learned peak detectors in H3K36me3 data. It is clear that default parameter values
yield false positives. Parameter training for hmcan.broad yields a perfect peak detection model.
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Supplementary Figure 3
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Supplementary Figure 4
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ROC curves for 4-fold cross-validation test error, for all algorithms and all data sets. Unlike
usual ROC curves, these are not monotonic, since some of the parameters (e.g. the macs qvalue parameter)
affect peak size as well as the number of peaks. It is clear that default parameters tend to have higher false
positive rates than learned parameters. It is also clear that some algorithms are better than others for all
possible thresholds.
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Supplementary Figure 5

test data set: H3K4me3_PGP_immune test data set: H3K4me3_TDH_immune
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Models trained on same or different person

Train on one person, test on another. H3K4me3 immune cell data sets were labeled by TDH and PGP.
We trained models using labels from one or the other person, and then tested those models on labels from
the same or a different person. It is clear for all models that it does not make much difference in terms of
test error when training using labels from one or another person.

Supplementary Figure 6

Windows labeled by 2 different people. Labels for 2 different annotators (top=AM, bottom=TDH) on
the same genomic regions and sample sets (H3K36me3 immune cell types). It is clear that the people focus
on different levels of detail, but have in general the same visual definition of a peak.
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Supplementary Figure 7

test data set: H3K4me3_TDH_immune test data set: H3K4me3_TDH_other
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Models trained on same or different cell types

Train on some cell types, test on others. TDH labeled H3K4me3 data sets of immune and other cell
types. We trained models on one or the other cell types, and then tested those models on the same or a
different set of cell types. It is clear that for some models such as macs and macs.broad, a model trained on
the different cell types yields higher test error than a model trained on the same cell types. It is also clear
that the train data do not make much difference for other models.
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Supplementary Figure 8

test data set: H3K36me3_TDH_immune test data set: H3K4me3_TDH_immune
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Models trained on same or different experiments

Train on one histone mark, test on another. TDH labeled H3K4me3 and H3K36me3 profiles for the
same set of immune cell samples. We trained models on one or the other histone mark, and then tested
those models on the same or a different histone mark. It is clear that a model trained on a different histone
mark yields higher test error than a model trained on the same histone mark.
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Supplementary Table 1

experiment H3K36me3 H3K36me3 H3K36me3 H3K4me3 H3K4me3 H3K4me3 H3K4me3 max nrsf srf
annotator AM TDH TDH PGP TDH TDH XJ NTNU NTNU NTNU
cell.types immune immune other immune immune other immune k562 k562 Gm12878
windows 23 4 4 30 27 29 12 207 191 171
noPeaks 752 230 72 1653 1656 536 702 248 264 184

peaks 403 638 287 218 243
peakStart 294 200 68 813 796 305 216 452 276 270
peakEnd 294 200 60 730 933 311 216 452 276 270

tcell 15 15 19 19 19
monocyte 5 5 6 6 6

bcell 1 1 2 2 2
kidney 1 1

kidneyCancer 1 1
skeletalMuscleCtrl 3 3
skeletalMuscleMD 3 4

leukemiaCD19CD10BCells 1
k562 2 2

Gm12878 2
Counts of labeled genomic windows, label types, and samples of each cell type in each of the 10 data sets that we analyzed.
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Supplementary Table 2

Peaks: 0 1 2 3 4 5 6 7 8 9 mean samples windows
H3K36me3 AM immune 24 232 159 22 9 9 6 10 1 11 1.88 21 23

H3K36me3 TDH immune 1 18 32 10 2 19 2 0 0 0 2.70 21 4
H3K36me3 TDH other 0 0 9 11 1 2 4 2 0 3 4.06 8 4

H3K4me3 PGP immune 88 261 200 124 73 31 24 4 3 2 2.09 27 30
H3K4me3 TDH immune 0 184 164 126 108 48 36 19 11 33 3.15 27 27

H3K4me3 TDH other 0 35 73 65 40 32 16 6 5 18 3.57 10 29
H3K4me3 XJ immune 1 137 133 30 12 6 4 1 0 0 1.86 27 12

max NTNU k562 69 121 103 68 25 15 6 3 2 2 1.93 2 207
nrsf NTNU k562 105 231 30 11 4 1 0 0 0 0 0.90 2 191

srf NTNU Gm12878 86 205 35 14 2 0 0 0 0 0 0.95 2 171

Counts of peaks per sample-window predicted by the PeakSeg model in the labeled genomic
windows of the ten data sets that we analyzed. For example, the first row of the table shows that the
H3K36me3 AM immune data set contains 21 samples, 23 windows, 24 sample-windows with no predicted
peaks, and a mean of 1.88 predicted peaks per sample-window.
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