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1 Methods

1.1 Pseudo-code of the main algorithm

This pseudo-code presents the main steps of an iteration of the algorithm
presented in the main article. During an iteration, np processors are used
to propose np new samples according to the prefetching prediction. Only nk
samples will be kept depending on the prediction accuracy, with nk ∈ [1, nk].

Steps may be applied by either All the np processors or by only the
Master processor for sequential steps. The presented steps are simplified in
order to highlight the main concepts of the presented methods. The exact
steps can be found in the commented source code.
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Algorithm 1 Main steps of an iteration of the prefetching and adaptive
MCMC algorithm (simplified). Equations are defined in the main article

All: Propose a new sample Φ according to the prefetching prediction.
The proposal are defined by main article Eq. (2), (3) or (4) and is chosen
in function of the presence of correlations between parameters.
All: Compute α(Θ,Φ).
All: Send α to the master processor.
Master: Apply the sequential acceptance check for the sequence of α
representing the prefetching prediction.
Master: Send the result of the acceptance check (the nk kept samples Θ
and the full sequence of α (np elements)).
All: Receive the result of acceptance check and apply it locally.
All: Update ᾱ and λ using the sequence of α (using Eqs. (1)).
All: Use the nk kept samples to update Θ̄ and Σ (using Eqs. (1)).
All: Each k iteration, apply a component-wise update.

- Propose univariate moves for each dimension i ∈ d (decompose a
multivariate proposal from Eq. (1), (2) or (3)).

- Compute αi, the acceptance probability of each univariate move.
- Update the local scaling λi using the same formula as for the global

scaling λ (Eqs (1)).
- Normalize the vector of λi to obtain W .
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1.2 Detecting the adaptive proposal convergence

The stochastic approximation scheme used to learn the values of λ, Λ and Σ
is theoretically guaranteed to converge as the number of iterations tends to
infinity. However, continuously refining the approximation of these values
has a significant computational cost that may not be worth paying once a
certain level of accuracy is reached. Indeed, in order to achieve an effective
proposal kernel these variables must adequately approximate the form of the
posterior distribution but are not required to exactly matching it. Therefore,
in our framework, the convergence of these variables is monitored and their
learning phase is stopped once a decent level of stability is reached such as
to compromise between their accuracy and the computational effort spent
for their approximation.
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Figure 1: Early convergence detection. Upper figures show examples of
learned variables values and their respective averages while dots represent
the detection of a soft or hard convergence. Distance to convergence are
shown with plain line in lower figures while the red dotted line depicts the
tolerance threshold ε(k) of the soft method and its relaxation.

Detecting the convergence of these variables without increasing the com-
putational cost of the algorithm is challenging given that their approximated
value through time may be highly volatile and sometimes nearly periodic
(Fig. 1). Therefore the convergence detection at iteration k is based on

multiple measures of stability υ
(k)
i on different temporal scales such as the

current value, the last l values (sliding window) or the batch of average val-

ues (fixed batch windows). These measures υ
(k)
i represent, for instance, the

3



distance between the current value and the average of the sliding window or
the relative standard deviation of the batch windows.

Using these measures, the hard convergence of the learning phase can be
defined as

m⋂
i=1

(υ
(k)
i < τi),

with τi being pre-defined convergence thresholds, each associated to one

measure υ
(k)
i . However, this condition of convergence may be difficult to

achieve given that all the separate criterion must be fulfilled at the same
time. Therefore a softer approach was designed to accept a small divergence
ε on the set of thresholds τi such that[

m∑
i=1

max

(
υ

(k)
i − τi
τi

, 0

)]
< ε.

In addition of being more flexible, this approach enables the relaxation
of ε as the number of iterations k increases and thus offers an interesting
leverage to loosen the convergence criterion. This relaxation defines ε as

ε = β1 · β2 · ε0,

where β1 is the relaxation factor local to each of the learned variables and β2

is the global relaxation factor that consider the overall state of the learning
phase.

The local relaxation factor β1 ensures that after a certain amount of time
spent learning a given variable, ε is gradually relaxed such as to facilitate
the convergence detection for volatile variables. Therefore, β1 is defined as

β1 = max

(
1,

k

Klim

)Γ1

,

where Klim defines a threshold of iterations after which the local relaxation
should occur and Γ1 tunes the rate of relaxation increase through time.

The global relaxation factor β2 avoid that the overall adaptive process
get stuck in the learning phase because of a small amount of non-converging
variables. Assuming that a proportion ρ of the approximated variables has
been detected as having converged, the factor β2 is given as

β2 = max

(
1,

ρ

ρlim

)Γ2

,

where ρlim defines the threshold of proportions required to activate the
global relaxation and Γ2 serves the same purpose as Γ1.
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1.3 Creating smaller blocks

In theory, updating all parameters during one step of the M-H algorithm
with an adequate proposal kernel offers the best possible mixing [2]. How-
ever, in practice, proposal kernels moving large amount of parameters affect
negatively the efficiency and the stability of our framework. Indeed, its effi-
ciency was identified to depend on the computational cost of linear algebraic
operations that exponentially grows with the number of parameters. In ad-
dition to this unpleasant effect, the stability of adaptive proposals suffers
from the difficulty to accurately approximate high-dimensional covariance
matrices.

A natural solution addressing these problems is to consider the use of
blocks containing small subsets of the d parameters. Each of these blocks
would propose moves on their parameters according to a proposal kernel
dedicated to the block. However, to adequately benefit from this readily
applicable solution, several considerations on the composition and size of
the blocks have to be taken into account.
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Figure 2: Alpha’s efficiency, representing the average expected samples per
prefetching iteration, in function of the number of parameters per block and
processors

Indeed, the target acceptance rate α? defining the efficiency of our frame-
work decreases as the number of processors increases (Fig. 2). However,
small α? tends to produce large and bold moves that are difficult to tune re-
liably when few parameters are updated. Fortunately, increasing the number
of parameters per block tends to limit the boldness of these moves. Indeed,
assuming that the parameters in a block are independent, the optimal ac-

5



ceptance rate of a block of parameter identified by i is given by

αi? ≈
∏d(i)

j=1
αj (1)

where d(i) is the size of the block i and αj stands for the acceptance rate of
the univariate moves along direction j. Therefore, parameters blocks should
be big enough to benefit from the previously identified stability induced by
large blocks.

Moreover, the creation of blocks of parameters, or blocking [3], is often
used to decompose the likelihood in smaller sub-likelihoods, if the model
permits. These sub-likelihoods define conditional probabilities that compose
the full likelihood and an update of their assigned parameters enables their
sampling at a lower computational cost.

All these considerations affecting the efficiency of the resulting sampler
must be taken into account to define the optimal size of a parameters block.
This daunting task is therefore either avoided by solely considering uni-
variate proposal kernels or delegated to the end user. For this last option,
general guidelines, obtained from empiric experiments with our framework,
advises users to define block size in the range of 10 to 50 parameters.

Given that such block of parameters are not sufficiently large enough to
consider that their size d(i) tends to infinity, the pre-fetching performance
model defined in Eq. 4 (main article) has to be slightly adapted. A small
correction on E1(α(i)) is applied to take into account the block size di as
follows

E1(α(i)) ∝ α(i) ·
[
ϕ−1

(αi
2

)]ρ
with ρ = 2− 1.1e−di/10 and where ϕ stands for the standard normal distri-
bution. This correction is based on empirical observations made by Roberts
et al. [4] and the one made during experiments with our framework.

Additionally to the block size, one last important aspect regarding the
definition of block remains unaddressed: the choice of parameters that must
be grouped together. This choice is an even bigger challenge than the one
caused by the block size. Indeed, the mixing of the MCMC sampler depends
directly from this choice given that it determines, by choosing which param-
eters to group in blocks, the parameters correlations that can be exploited.

2 Results

Cluster setting. All presented analysis were done on a dedicated cluster
partition of Intel Xeon X5650 (2.67GHz) nodes with 64GB of RAM at the
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University of Geneva.

2.1 Multivariate normal based models

Multivariate normal distributions are used to validate and study the be-
haviour of the methods previously discussed. The likelihood function used
is the probability of the data X formed by m samples generated from a mul-
tivariate normal distribution N (µ,Σ) with µ ∈ Rd and Σ ∈ Rd×d. Setting
Θ = (µ,Σ), the likelihood function becomes f(X|Θ) =

∏m
k=1 fΘ (xk) with

fΘ being the probability density function of the multivariate normal distri-
bution given the parameters Θ. This model is used first with a set of d inde-
pendent normal distributions such that Σ = diag (V ) with V =

(
σ2

1, .., σ
2
d

)
and thus Θ = (µ, V ) is sampled. Second, we use covariance matrices Σ
expressing the correlations between several of the d dimensions of the dis-
tribution. For this variant, we sample Θ = (µ) while Σ is fixed.

2.1.1 Validation against an optimal proposal.

Our adaptive methods were more effective than the sub-optimal proposal
distributions (PF) at sampling the parameters Θ = (µ, V ) of a simple model
formed by independent normal distributions (Fig. 3a). Moreover, they were
able to accurately learn the optimal proposals since their average ESS was
comparable to the one of the optimal choice of the proposal distributions
(OPPF). The MIXED and PCA methods showed a similar behaviour than STD

on this model since nearly no correlation were detected to trigger the switch
from the adaptive proposal based on independent parameters (Eq. 3 of main
article) to the one exploiting correlations (Eqs. 1 or 2 of main article).

The improvements in ESS as a function of the number of processors was
far from linear and represents well the limitation defined in the efficiency
Eq. 4 (main article) of the pre-fetching method. This equation balances the
sampling efficiency E1 (α) and the estimated amount of samples produced
per iteration D (α, np). The former is optimal for a set α while the latter
depends on α but also np. Indeed, as the number of processors np grows, we
wish to increase the amount of samples D (α, np) by improving the quality
of prediction. This can be achieved by reducing α but it contradicts the
previous statement that α should be constant to optimize E1 (α). This
phenomena is well explained by the slow decay of the optimal target α?
in function of np, which leads to a rapid loss of sampling information per
iteration (inverse of ACT; Fig. 3b) and a steady increase of samples kept
per iteration (Fig. 3c).
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Figure 3: Averaged result for independent normal models with d = 20,
3 × 103 iterations and 5 runs. Left figure shows the mean ESS per pa-
rameter in function of the number of processor for each method (error bars
represent standard deviation). Right figure represent the reduction in sam-
pling effectiveness (top) and increase of the number of samples per iterations
(bottom) as the number of processor increases.

2.1.2 Exploiting parameters correlation.

The PCA method outperformed significantly all other methods when sam-
pling the parameters Θ = (µ) of multivariate normal distributions with
known Σ expressing several correlations (Fig. 4a). All the adaptive meth-
ods showed comparable or superior average ESS than the OPPF method that
performed independent normally distributed moves with the optimal vari-
ances. Since the PF method performed extremely poorly compared to the
other methods, we discarded its results.

While the MIXED method obtained slightly better results than OPPF, it
underperformed compared to PCA due to the component-wise scaling of the
covariance matrix Σ along each dimension, which impaired the information
about correlations. This behaviour and the one of the different methods
is well illustrated by the standard deviation of ACT over the number of
processor (Fig. 4b). By correctly exploiting the observed correlations, PCA
was the only method to carry out a balanced sampling over all parameters.
The other methods over and under-sampled some of them, which lead to
high variance in the ACT.
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Figure 4: Averaged results for a correlated multivariate normal with d = 20,
6×103 iterations and 5 runs. The figure on the left shows the mean ESS per
parameter as a function of the number of processor for each method. The
figure on the right represents the average ACT per parameter. Error bars
represent the standard deviation.

2.2 Performance gain on PyRate model

In addition of the empiric dataset used in the main article, our framework
was challenged on this model using computer simulations. This dataset was
simulated using the simulator of the PyRate model [5]. Close to 4,000 fossil
occurrences assigned to 203 species were simulated over a 30 millions years
(myr) time span. The preservation rate was set to 2.0 while two different
speciation and extinction rates were defined over time. The speciation rate
started at 0.4 from 30 to 20 myr and then reduced to 0.1, while the extinction
rate started at 0.05 from 30 to 15 myr and then augmented to 0.4.

2.2.1 Mixing efficiency.

Due to the targeted learning, adaptive methods were more efficient at sam-
pling the PyRate model with simulated data when compared to PF and even
surpassed slightly OPPF (Fig. 5). Among adaptive methods, PCA showed the
best performance because of the correlation that existed in the model. In-
deed, while this amount of correlation is rather small, PCA was able to detect
and exploit it.
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Figure 5: Speedup for PyRate model on simulated data using OPPF with 1
processor as the reference. The figure shows the ESS, respectively average
squared distance (ASD) between moves, speedup in function of the number
of processors for each method. Settings for this simulation were d ≈ 400,
4× 106 iterations and 4 runs.

Since the efficiency of the framework not only depends on the perfor-
mance gain of the methods but also on their added computational cost and
communications overhead, we compared the performance of our new meth-
ods with the reference non-adaptive method OPPF without pre-fetching (see
Eq. 5 of main article). In this case, OPPF was set with the mean variance of
each type of parameters (rates, times). In contrast, PF represented a sub-
optimal choice with mean variance wrongly estimated by a tenfold factor.

The overheads due to processor communication of the pre-fetching meth-
ods amounted, on average, to 3% (4 processors) and 10% (32 processors) of
the time spent per iteration. In contrast, the cost of the adaptive phase
decreased from 13% (1 processor) to 6% (32 processors) and this decrease
came from the faster convergence of the chain, the parallel component-wise
update and the added information provided by the adaptive process. This
decrease of the adaptive phase cost directly highlights how the adaptive
proposals benefit from their coupling with pre-fetching.
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2.2.2 Impact on the burn-in.

The length of the burn-in phase was assessed using the multivariate potential
scale reduction factor R̂ [1], which compares the within and pooled variance
of multiple MCMC runs. This measure highlighted that adaptive methods
were much faster than their non-adaptive counterpart to reach the MCMC
convergence on the PyRate model with simulated data (Fig. 6). This is of
utmost importance since the time required to converge towards the equilib-
rium of the Markov chain, or burn-in, impacts significantly the sampling of
MCMC methods. Indeed, samples derived from this phase cannot be ex-
ploited. Moreover, empirical observations showed that the convergence of
the adaptive process occurred after the equilibrium was reached. This makes
it possible to use the convergence of the adaptive process as an indication
for the burn-in and to start sampling only when it is detected.
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Figure 6: Convergence of adaptive versus non-adaptive methods on the
PyRate model. The figure represents the potential scale reduction factor R̂
based on 5 MCMC runs on simulated data. The black dotted lines represent
the convergence threshold R̂ = 1.1.

A clear pattern about the learning process emerged from the large amount
of experiments that we performed. First, the learned variables (Σ, λ, etc.)
varied quickly during the burn-in, which created wide moves and improved
the speed of convergence of the Markov chain. Second, the covariance ma-
trix Σ converged to its final value and the scaling factors λ and Λ continued
to be adapted once the equilibrium was reached. Third, λ and Λ converged
when the target acceptance rate α? was reached.
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2.2.3 Block size

The size of parameters blocks were previously identified as playing an impor-
tant role in the efficiency our framework. These theoretical postulates were
confirmed by observations made during experiments on the PyRate model.
On this model the use of blocks of parameters had a significant influence on
the sampling performances. The ESS per second as a function of the size
of blocks indicated that a block should have at least 2 parameters (Fig. 7).
Indeed, blocks were made such as to group the two parameters related to
the birth and death times of a species. This grouping enabled the strong
correlation between both parameters to be exploited by our framework.
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Figure 7: Illustrations of the effect of block size on the PyRate model on
simulated data. This figure shows the averaged effective sample size per
second (with its standard deviation) of the PCA method in function of the
number of parameters per block as well as the number of processors.

A second, less striking, observations could be made from these measures
for blocks having at least two parameters: the optimal blocks size slightly
changed with the number of processors employed (Fig. 7). For low amount
of processors, small blocks were more efficient given that the computational
overhead of the adaptive phase was low. However, as the number of pro-
cessors increased, larger blocks became more and more efficient due to the
parallel estimation of the component-wise scaling factors that scale with the
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number of processors as well as the increased stability of the global scaling
factor (Eq. (1)).

2.3 Detailed experiments settings and measures for substi-
tution models

MrBayes measures were done with the version 3.2.5 compiled with SSE sup-
port and MPI enabled.

2.3.1 Codon-substitution models

Settings Two different phylogenetic trees were simulated using INDEL-

ible : the first one Dataset 1 had 16 taxa and the second one Dataset

2 had 32 taxa. For each phylogenetic tree, two separate alignments of 100
codons were simulated under mild purifying selection (ω = 0.8).

Each method was run 4 times per simulated alignments with different
starting random seed for 200·103 iterations. Therefore each dataset consisted
of 8 independent MCMC runs. Measures were applied on the obtained
samples after removing a burn-in phase of 40 · 103 samples (20%). The
presented ESS and run time on each dataset correspond to the average
measures over all respective dataset runs.

Measures Detailed measures for these experiments are shown in table 1
and 2

2.3.2 Convergence measures on phylogenetic tree distributions.

Settings Two empirical DNA datasets available on TreeBASE were used
for this experiment :

• M2017 (legacy ID M336) has 27 taxa and 1949 sites;

• M2152 (legacy ID M520) has 67 taxa and 1098 sites.

Twenty runs with different seeds were simulated for each different meth-
ods for ≈ 6·106 iterations for M2017 and ≈ 4·106 iterations for M2152. These
runs started from the same initial random tree (generated by MrBayes). For
each method, we found sufficient to drop the top three worst runs in order
to remove run failing to reach convergence.

The average standard deviation of split frequency was measured accord-
ing to the following protocol :
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Table 1: Detailed results for Dataset 1

MrBayes

Nb. Proc. 1 4 8 16 32

Avg. ESS 446.69 - - - -

Avg. Time [s] 2189.93 - - - -

Default 1PPB

Nb. Proc. 1 4 8 16 32

Avg. ESS 692.82 1010.42 913.94 900.73 801.78

Avg. Time [s] 971.72 891.84 839.13 795.98 859.40

PCA 12PPB

Nb. Proc. 1 4 8 16 32

Avg. ESS 1006.67 3329.60 4972.90 6446.45 7574.92

Avg. Time [s] 2008.97 1967.85 1871.64 1950.95 2009.62

Table 2: Detailed results for Dataset 2

MrBayes

Nb. Proc. 1 4 8 16 32

Avg. ESS 212.84 - - - -

Avg. Time [s] 3676.83 - - - -

Default 1PPB

Nb. Proc. 1 4 8 16 32

Avg. ESS 356.85 479.40 432.09 371.37 334.15

Avg. Time [s] 1196.94 1090.12 980.53 915.22 980.07

PCA 12PPB

Nb. Proc. 1 4 8 16 32

Avg. ESS 556.51 1860.64 2743.32 3494.99 4021.09

Avg. Time [s] 2556.18 2405.78 2274.70 2191.97 2393.21
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1. we insured that the split frequencies were the same for long MCMC
run of MrBayes and our own implementation;

2. this reference split frequencies were then used to define the pairwise
ASDSF of each run of the experiment.

The pairwise ASDSF was computed using tree log files resulting from MrBayes

and our implementation by a tool made for the occasion in order to insure
comparable results.

Measures Detailed measures for these experiments are shown in figure 8
for empirical dataset M2017 and figure 9 for empirical dataset M2152. Each
figure has four plots representing in descending order :

1. the number of sample required to reach the threshold of 0.05 ASDSF;

2. the number of samples per iterations (gain from prefetching);

3. the time required to compute one iteration (total number of iterations
divided by total run time);

4. the time required to reach threshold of 0.05 ASDSF.

The red squares represent the average while red lines represent the median.
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Figure 8: Detailed measures for empiric dataset M2017

(a) Without MC3 (b) With MC3
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Figure 9: Detailed measures for empiric dataset M2152

(a) Without MC3 (b) With MC3
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