Chemical Synthesis of (+)-Ryanodine and (+)-20-Deoxyspiganthine

Chen Xu, Arthur Han, Scott C. Virgil, Sarah E. Reisman*

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125 reisman@caltech.edu

Supporting Information:

Table of Contents

1. General Procedures	S3
2. Positional Numbering System	S3
3. Synthetic Scheme of Inoue's Synthesis of Ryanodine and Conversion of Ryanodol to Ryanodine	S4
3. Synthetic Procedures	S5
4. ¹ H and ¹³ C NMR Comparison Tables for (+)-Ryanodine and (+)-20-Deoxyspiganthine	S23
5. Single Crystal X-ray Diffraction Data	S27
6. References	S32
7. ¹ H and ¹³ C NMR Spectral Data	

1. General Procedures

Unless otherwise stated, reactions were performed under an inert atmosphere (dry N₂ or Ar) with freshly dried solvents utilizing standard Schlenk techniques. Glassware was oven-dried at 120 °C for a minimum of four hours, or flame-dried utilizing a Bunsen burner under high vacuum. Tetrahydrofuran (THF), methylene chloride (CH₂Cl₂), N.N-dimethylformamide (DMF), benzene (PhH), and toluene (PhMe) were dried by passing through activated alumina columns. 2-Methyltetrahydrofuran (anhydrous, >99%, inhibitor-free) was purchased from Sigma-Aldrich and stored under argon. Methanol (HPLC grade) was purchased from Fisher Scientific. Pyridine (Pyr) was distilled from calcium hydride immediately prior to use. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by UV (254 nm), p-anisaldehyde, CAM, and/or KMnO₄ staining. Flash column chromatography was performed using silica gel (SiliaFlash® P60, particle size 40-63 microns [230 to 400 mesh]) purchased from Silicycle. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD with Prodigy Cryoprobe (at 400 MHz and 101 MHz, respectively), Varian Inova 500 (at 500 MHz and 126 MHz, respectively), or Varian Inova 600 (at 600 MHz and 150 MHz, respectively), and are reported relative to internal CHCl₃ (¹H, δ = 7.26), C₆H₆ (¹H, δ = 7.16), or CD₂HOD (¹H, δ = 3.31), and CDCl₃ (¹³C, δ = 77.0), C₆D₆ (¹³C, δ = 128.0), or CD₃OD (¹³C, δ = 49.0). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). HRMS were acquired using an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed (MM) ionization mode. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm.

Reagents were purchased from commercial vendors as follows: *trans*-Dichlorobis(triphenylphosphine) palladium was purchased from Strem Chemicals and stored in a nitrogen-filled glovebox. Sodium hydride (dry, 95%), 2-(trichloroacetyl)pyrrole, solid potassium bis(trimethylsilyl)amide (KHMDS, 95%), and tris(dimethylamino)sulfonium difluorotrimethylsilicate (TAS-F) were purchased from Sigma-Aldrich and stored in a nitrogen-filled glovebox. Platinum oxide (Adam's catalyst) and vanadyl acetylacetonate were purchased from Strem Chemicals. *Tert*-butyl hydroperoxide (TBHP, 5.5 M in decane over 4 Å MS), solid LiBH₄ (>95%), lithium (wire stored in mineral oil, 99.9% trace metal basis), and 4,4'-di-*tert*-butylbiphenyl were purchased from Sigma-Aldrich.

2. Positional numbering system

The carbon numbering system and ring assignment as outlined by Deslongchamps¹⁻⁵ and used by Inoue⁶⁻⁹ are utilized throughout this Supplementary Materials file for ¹H and ¹³C NMR assignments of all intermediates. Assignments were made with the aid of 2D ¹H-¹H (NOESY and COSY) and ¹H-¹³C coupling experiments (HSQC and HMBC).

3. Synthetic Scheme of Inoue's Synthesis of Ryanodine and Conversion of Ryanodol to Ryanodine

Scheme S1. Inoue's Total Synthesis of Ryanodine and Conversion of Ryanodol to Ryanodine

a. 10-step conversion of (+)-ryanodol to (+)-ryanodine

b. Total chemical synthesis of (+)-ryanodol and (+)-ryanodine

ryanodine (1) [42 synthetic steps]

OH

4. Synthetic Procedures

Preparation of boronate ester 13:

In slight modification of a procedure⁹ detailed by Inoue and coworkers, PhH (66 mL) was added to a mixture of **12** (1.06 g, 1.71 mmol, 1.0 equiv) and MeB(OH)₂ (1.02 g, 17.1 mmol, 10 equiv) in an oven-dried, 200 mL round-bottomed flask. The resultant mixture was concentrated *in vacuo*. This azeotropic procedure of adding PhH (66 mL) and concentrating was repeated 10 times to complete the conversion of **12** to boronate ester **13**. Purification of the crude mixture by SiO₂ flash chromatography (25% EtOAc/hexanes) afforded the desired product **13** as a white foam (920 mg, 1.43 mmol, 84% yield).

TLC (25% EtOAc/hexanes): R_f 0.40 (UV, KMnO₄).

¹**H** NMR (400 MHz, CDCl₃): δ 7.43 – 7.30 (m, 10H, *Ph*CH₂OCH₂O), 5.30 (p, *J* = 1.6 Hz, 1H, C₁₈), 5.25 (d, *J* = 6.5 Hz, 1H, PhCH₂OC*H*₂O), 5.09 (d, *J* = 7.0 Hz, 1H, PhCH₂OC*H*₂O), 5.05 (d, *J* = 6.6 Hz, 1H, PhCH₂OC*H*₂O), 4.90 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.86 (dt, *J* = 1.9, 1.0 Hz, 1H, C₁₈), 4.82 (d, *J* = 7.0 Hz, 1H, PhCH₂OC*H*₂O), 4.68 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.78 (d, *J* = 11.3 Hz, 1H, PhC*H*₂OCH₂O), 4.46 (d, *J* = 11.3 Hz, 1H, PhC*H*₂OCH₂O), 4.16 (d, *J* = 10.6 Hz, 1H, C₁₀), 2.53 (d, *J* = 19.8 Hz, 1H, C₁₄), 2.41 (d, *J* = 19.9 Hz, 1H, C₁₄), 2.32 (s, 3H, C₁₇), 2.21 – 2.09 (m, 1H, C₉), 1.99 (ddd, *J* = 14.6, 4.4, 1.9 Hz, 1H, C₇), 1.90 (q, *J* = 11.3 Hz, 1.5 Hz, 3H, C₁₉), 1.94 – 1.79 (m, 1H, C₈), 1.66 (dtd, *J* = 13.5, 4.6, 1.7 Hz, 1H, C₈), 1.61-1.52 (m, 1H, C₇), 1.31 (s, 3H, C₂₀), 1.18 (d, *J* = 6.5 Hz, 3H, C₂₁), 0.37 (s, 3H, BC*H*₃).

¹³C NMR (101 MHz, CDCl₃): δ 199.5 (*C*₃=O), 168.3 (C₁), 166.6 (*C*₁₅=O), 145.8 (C₂), 137.8 (C_{Ph}), 136.8 (C_{Ph}), 135.3 (C₁₃), 128.6 (C_{Ph}), 128.5 (C_{Ph}), 127.9 (C_{Ph}), 127.8 (C_{Ph}), 118.7 (C₁₈), 97.1 (C₁₁), 97.1 (C₁₂), 94.3 (C₄), 93.5 (PhCH₂OCH₂O), 91.0 (C₆), 90.6 (PhCH₂OCH₂O), 79.6 (C₁₀), 71.0 (PhCH₂OCH₂O), 70.8 (PhCH₂OCH₂O), 46.7 (C₅), 40.6 (C₁₄), 32.5 (C₉), 27.7 (C₈), 21.5 (C₁₉), 21.3 (C₇), 18.9 (C₂₁), 15.3 (C₁₅), 15.1 (C₁₇), -5.1 (BCH₃).

FTIR (NaCl, thin film): 2956, 2872, 1755, 1716, 1361, 1268, 1022, 1020 cm⁻¹. HRMS (MM:ESI–APCI): calc'd for $[M+H]^+$ 643.3078, found 643.3072. $[\alpha]_D^{25}$: +175° (c = 0.505, CHCl₃).

Preparation of alcohol 14:

To an oven-dried, 200 mL round-bottomed flask was added enone **13** (920 mg, 1.43 mmol, 1.0 equiv) and anhydrous THF (57 mL). The solution was cooled to -10 °C in an ice/acetone bath and solid LiBH₄ (156 mg, 7.16 mmol, 5.0 equiv) was added. After 1 h, a second portion of solid LiBH₄ (156 mg, 7.16 mmol, 5.0 equiv) was

added before warming the reaction mixture to 0 °C with an ice/water bath. Stirring was continued at 0 °C for another 1 h before a third portion of solid LiBH₄ (156 mg, 7.16 mmol, 5.0 equiv) was added. The reaction was allowed to stir at 0 °C an additional 1 h before sat. aq. NH₄Cl (40 mL) was slowly added to the reaction at 0 °C [Caution! Vigorous evolution of H₂ gas occurs, particularly in the initial stages of addition. Careful, controlled dropwise addition is advised in order to avoid a violent reaction]. The mixture was diluted with EtOAc (40 mL), the two layers separated, and the organic layer washed with sat. aq. NH₄Cl (40 mL). The combined aqueous layers were extracted with EtOAc (2 x 20 mL), and the combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by SiO₂ flash chromatography (30 to 40 to 50% EtOAc/hexanes) to afford recovered starting material enone **13** (61 mg, 0.095 mmol, 7% yield) and the desired alcohol **14** as a white foam (650 mg, 1.01 mmol, 71% yield, 76% BRSM).

TLC (40% EtOAc/hexanes): R_f 0.30 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.41 – 7.30 (m, 10H, *Ph*CH₂OCH₂O), 5.25 (d, *J* = 6.8 Hz, 1H, PhCH₂OC*H*₂O), 5.23 (t, *J* = 1.7 Hz, 1H, C₁₈), 5.09 (d, *J* = 6.9 Hz, 1H, PhCH₂OC*H*₂O), 4.98 (d, *J* = 6.8 Hz, 1H, PhCH₂OC*H*₂O), 4.93 – 4.90 (m, 1H, C₃), 4.90 – 4.87 (m, 1H, C₁₈), 4.89 (d, *J* = 8.0 Hz, 1H, PhC*H*₂OCH₂O), 4.80 (d, *J* = 7.0 Hz, 1H, PhCH₂OC*H*₂O), 4.77 (d, *J* = 11.6 Hz, 1H, PhC*H*₂OCH₂O), 4.62 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.42 (d, *J* = 11.4 Hz, 1H, PhC*H*₂OCH₂O), 4.10 (d, *J* = 10.4 Hz, 1H, C₁₀), 3.79 (d, *J* = 19.9 Hz, 1H, C₁₄), 2.33 (d, *J* = 19.8 Hz, 1H, C₁₄), 2.21 – 2.10 (m, 1H, C₉), 2.08 (d, *J* = 4.4 Hz, 1H, O*H*), 1.92 (d, *J* = 2.4 Hz, 3H, C₁₇), 1.88 – 1.83 (m, 3H, C₁₉), 1.98-1.89 (m, 1H, C₇), 1.93-1.82 (m, 1H, C₈), 1.69-1.61 (m, 1H, C₈), 1.64-1.53 (m, 1H, C₇), 1.31 (s, 3H, C₂₀), 1.18 (d, *J* = 6.5 Hz, 3H, C₂₁), 0.33 (s, 3H, BC*H*₃).

¹³C NMR (101 MHz, CDCl₃): δ 168.6 (C_{15} =O), 145.8 (C₂), 138.2 (C₁₃), 138.0 (C_{Ph}), 137.1 (C_{Ph}), 135.0 (C₁), 128.5 (C_{Ph}), 128.4 (C_{Ph}), 127.8 (C_{Ph}), 127.8 (C_{Ph}), 127.6 (C_{Ph}), 117.7 (C₁₈), 102.3 (C₁₂), 98.7 (C₄), 97.2 (PhCH₂OCH₂O), 92.1 (C₆), 91.0 (C₁₁), 90.5 (PhCH₂OCH₂O), 84.6 (C₃), 80.3 (C₁₀), 70.8 (PhCH₂OCH₂O), 70.6 (PhCH₂OCH₂O), 49.3 (C₅), 39.0 (C₁₄), 32.6 (C₉), 27.9 (C₈), 21.5 (C₁₉), 21.0 (C₇), 19.1 (C₂₁), 16.5 (C₂₀), 13.3 (C₁₇), -5.1 (BCH₃).

FTIR (NaCl, thin film): 3453, 2924, 1747, 1362, 1037 cm⁻¹.

HRMS (MM:ESI–APCI): calc'd for [M+NH₄]⁺ 662.3500, found 662.3509.

 $[\alpha]_{D}^{25}$: +67° (*c* = 0.385, CHCl₃).

Preparation of pyrrole ester 16:

An oven-dried, 50 mL round-bottomed flask was charged with NaH (95%, 51 mg, 2.0 mmol, 4.0 equiv) in a nitrogen-filled glovebox. The flask was capped with a rubber septum, removed from the glovebox and cooled to 0 °C. Alcohol **14** (322 mg, 0.5 mmol, 1.0 equiv) in anhydrous DMF (5.0 mL) was next *rapidly* added and another portion of DMF (5.0 mL) was then used to render the transfer quantitative. The resulting reaction mixture was stirred for 30 min at 0 °C before 2-(trichloroacetyl)pyrrole (425 mg, 2.0 mmol, 4.0 equiv) in anhydrous DMF (5.0 mL) was added dropwise via syringe. After continued stirring for 30 min at 0 °C, the resulting dark-brown mixture was warmed to ambient temperature and stirring was continued for 48 h. The reaction was diluted with Et_2O (15 mL) and then carefully quenched with the addition of sat. aq. NH₄Cl (15 mL). The layers were separated

and the organic layer was washed with H_2O (2 x 20 mL). The combined aqueous layers were extracted with Et_2O (3 x 20 mL) and the combined organic layers were then washed with brine (20 mL), dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The crude residue was purified by SiO_2 flash chromatography (15 to 20 to 25 to 30% EtOAc/hexanes) to afford pyrrole ester **16** (212 mg, 0.287 mmol, 57% yield) and chloride **16'** (69.7 mg, 0.089 mmol, 18% yield). The stereochemistry of the chloride substituted C_{14} –H was determined by nOe analysis.

An oven-dried, 50 mL Schlenk tube was charged with chloride **16'** (69.7 mg, 0.089 mmol, 1.0 equiv) and benzene (8.9 mL) under N₂. The Schlenk tube was then placed in a preheated oil bath (90 °C) before a solution of AIBN (14.6 mg, 0.089 mmol, 1.0 equiv) and Bu₃SnH (0.178 mL, 0.178 mmol, 2.0 equiv) in benzene (8.9 mL) was added dropwise via syringe at 90 °C. Upon complete addition, the reaction mixture was stirred for 1 h at 90 °C at which point TLC analysis indicated the complete consumption of starting material. The reaction mixture was cooled to ambient temperature, transferred to a 50 mL round-bottomed flask and concentrated in *vacuo*. The crude residue was purified by SiO₂ flash chromatography (25% EtOAc/hexanes) to afford pyrrole ester **16**, which was combined with the pure material obtained in the previous step to give a combined 277 mg of pyrrole ester **16** (0.376 mmol, 75% combined yield).

Pyrrole ester 16:

TLC (25% EtOAc/hexanes): Rf 0.30 (UV, p-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H, N*H*), 7.44 – 7.29 (m, 10H, *Ph*CH₂OCH₂O), 7.05 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 6.94 (ddd, *J* = 3.8, 2.4, 1.4 Hz, 1H, C₂₄), 6.32 (dt, *J* = 3.9, 2.5 Hz, 1H, C₂₅), 6.25 (q, *J* = 2.3 Hz, 1H, C₃), 5.26 (d, *J* = 6.8 Hz, 1H, PhCH₂OC*H*₂O), 5.14 (p, *J* = 1.6 Hz, 1H, C₁₈), 5.04 (d, *J* = 6.9 Hz, 1H, PhCH₂OC*H*₂O), 5.01 (d, *J* = 6.8 Hz, 1H, PhCH₂OC*H*₂O), 4.91 (d, *J* = 11.8 Hz, 1H, PhC*H*₂OC*H*₂O), 4.91-4.88 (m, 1H, C₁₈), 4.77 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.77 (d, *J* = 6.9 Hz, 1H, PhCH₂OC*H*₂O), 4.64 (d, *J* = 6.9 Hz, 1H, PhC*H*₂OCH₂O), 4.40 (d, *J* = 11.3 Hz, 1H, PhC*H*₂OCH₂O), 4.12 (d, *J* = 10.5 Hz, 1H, C₁₀), 3.57 (d, *J* = 19.8 Hz, 1H, C₁₄), 2.46 (d, *J* = 19.7 Hz, 1H, C₁₄), 2.16 (dddd, *J* = 11.6, 8.9, 6.6, 5.1 Hz, 1H, C₉), 1.98 (d, *J* = 2.5 Hz, 3H, C₁₇), 1.97-1.90 (m, 1H, C₇), 1.93-1.85 (m, 1H, C₈), 1.69-1.60 (m, 1H, C₈), 1.64-1.56 (m, 1H, C₇), 1.75 (d, *J* = 1.2 Hz, 3H, C₁₉), 1.19 (d, *J* = 6.5 Hz, 3H, C₂₁), 1.11 (s, 3H, C₂₀), 0.38 (s, 3H, BC*H*₃).

¹³C NMR (101 MHz, CDCl₃): δ 168.1 (C_{15} =O), 159.8 (C_{22} =O), 143.3 (C_{2}), 138.0 (C_{13}), 137.3 (C_{Ph}), 137.0 (C_{Ph}), 137.0 (C_{Ph}), 137.0 (C_{13}), 128.5 (C_{Ph}), 128.4 (C_{Ph}), 128.0 (C_{Ph}), 127.8 (C_{Ph}), 127.6 (C_{Ph}), 124.2 (C_{26}), 121.6 (C_{23}), 117.9 (C_{18}), 116.1 (C_{24}), 110.9 (C_{25}), 102.5 (C_{12}), 98.7 (C_{4}), 97.2 (PhCH₂OCH₂O), 92.1 (C_{6}), 91.1 (C_{11}), 90.5 (PhCH₂OCH₂O), 83.4 (C_{3}), 80.2 (C_{10}), 70.9 (PhCH₂OCH₂O), 70.6 (PhCH₂OCH₂O), 49.3 (C_{5}), 39.3 (C_{14}), 32.6 (C_{9}), 27.9 (C_{8}), 21.1 (C_{19}), 21.1 (C_{7}), 19.0 (C_{21}), 16.2 (C_{20}), 13.4 (C_{17}), -4.9 (BCH₃).

FTIR (NaCl, thin film): 3307, 2928, 1750, 1707, 1042, 1016 cm⁻¹.

HRMS (MM:ESI–APCI): calc'd for [M+H]⁺ 738.3450, found 738.3456.

 $[\alpha]_{D}^{25}$: +2° (*c* = 0.630, CHCl₃).

Chloride 16':

TLC (25% EtOAc/hexanes): R_f 0.45 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 9.28 (s, 1H, N*H*), 7.43 – 7.29 (m, 10H, *Ph*CH₂OCH₂O), 7.07 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 7.00 (ddd, *J* = 3.9, 2.5, 1.4 Hz, 1H, C₂₄), 6.34 (dt, *J* = 3.8, 2.5 Hz, 1H, C₂₅), 6.30 (q, *J* = 2.4 Hz, 1H, C₃), 5.64 (s, 1H, C₁₄), 5.24 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 5.19 – 5.10 (m, 1H, C₁₈), 5.05 (d, *J* = 6.9 Hz, 1H, PhCH₂OC*H*₂O), 5.01 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.90 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.88 – 4.84 (m, 1H, C₁₈), 4.76 (d, *J* = 6.9 Hz, 1H, PhCH₂OC*H*₂O), 4.74 (d, 11.3 Hz, 1H, PhC*H*₂OCH₂O), 4.65 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.40 (d, *J* = 11.3 Hz, 1H, PhC*H*₂OCH₂O), 4.10 (d, *J* = 10.5 Hz, 1H, C₁₀), 2.22 – 2.10 (m, 1H, C₉), 2.09 – 2.00 (m, 2H, C₇), 1.98 (d, *J* = 2.5 Hz, 3H, C₁₇), 1.92 – 1.79 (m, 1H, C₈), 1.75 (d, *J* = 1.2 Hz, 3H, C₁₉), 1.68 (d, *J* = 1.4 Hz, 1H, C₈), 1.35 (s, 3H, C₂₀), 1.19 (d, *J* = 6.4 Hz, 3H, C₂₁), 0.39 (s, 3H, BC*H*₃).

¹³C NMR (101 MHz, CDCl₃): δ 165.8 (C_{15} =O), 159.3 (C_{22} =O), 143.5 (C_{2}), 137.9 (C_{13}), 136.9 (C_{Ph}), 136.8 (C_{Ph}), 136.8 (C_{1}), 128.6 (C_{Ph}), 128.4 (C_{Ph}), 128.0 (C_{Ph}), 127.7 (C_{Ph}), 127.7 (C_{Ph}), 124.5 (C_{26}), 121.1 (C_{23}),

118.4 (C₁₈), 116.5 (C₂₄), 111.2 (C₂₅), 101.9 (C₁₂), 98.9 (C₄), 97.2 (PhCH₂O*C*H₂O), 92.1 (C₆), 91.2 (C₁₁), 90.6 (PhCH₂O*C*H₂O), 82.9 (C₃), 80.2 (C₁₀), 70.9 (Ph*C*H₂OCH₂O), 70.7 (Ph*C*H₂OCH₂O), 57.2 (C₁₄), 54.7 (C₅), 32.8 (C₉), 27.9 (C₈), 23.3 (C₇), 21.1 (C₁₉), 19.0 (C₂₁), 15.2 (C₂₀), 13.5 (C₁₇), -5.0 (B*C*H₃). **FTIR (NaCl, thin film):** 3326, 2947, 1758, 1710, 1361, 1154, 1044, 1015, 747 cm⁻¹. **HRMS (MM:ESI-APCI):** calc'd for [M+H]⁺ 772.3060, found 772.3066. $[\boldsymbol{\alpha}]_D^{25}: -52^{\circ}$ (*c* = 0.595, CHCl₃).

Table S1. Representative examples of unsuccessful pyrrole coupling attempts

Preparation of diol 17:

In slight modification of a procedure⁹ detailed by Inoue and coworkers, pyrrole ester **16** (332 mg, 0.450 mmol, 1.0 equiv) was dissolved in MeOH (45 mL) and KHF₂ (3.0 M in H₂O, 3 mL, 20 equiv) was then added. The resulting solution was warmed to 40 °C and stirring continued for 4 h at which point LCMS showed full consumption of the starting material. The reaction mixture was then cooled to ambient temperature and filtered through a plug of Na₂SO₄ (18 g) and silica gel (18 g) to remove H₂O and HF generated from KHF₂ (Note: If the reaction mixture was directly concentrated without filtration, the acidity of the reaction mixture resulted in the removal of the C₁₀ BOM group), washing with EtOAc to ensure complete elution of the desired product. The filtrate was concentrated *in vacuo* and the crude residue was purified by SiO₂ flash chromatography (40% EtOAc/hexanes) to afford free diol **17** as a white foam (288 mg, 0.403 mmol, 90% yield).

TLC (40% EtOAc/hexanes): R_f 0.40 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H, N*H*), 7.45 – 7.29 (m, 10H, *Ph*CH₂OCH₂O), 7.04 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 6.90 (ddd, *J* = 3.8, 2.4, 1.5 Hz, 1H, C₂₄), 6.30 (dt, *J* = 3.9, 2.5 Hz, 1H, C₂₅), 6.26 (q, *J* = 2.3 Hz, 1H, C₃), 5.19 (d, *J* = 6.3 Hz, 1H, PhCH₂OC*H*₂O), 5.10 (p, *J* = 1.6 Hz, 1H, C₁₈), 4.94 (s, 2H, PhCH₂OC*H*₂O), 4.91 (d, *J* = 6.3 Hz, 1H, PhCH₂OC*H*₂O), 4.91 – 4.87 (m, 1H, C₁₈), 4.83 (d, *J* = 12.2 Hz, 1H, PhC*H*₂OCH₂O), 4.71 (d, *J* = 8.0 Hz, 1H, PhC*H*₂OCH₂O), 4.69 (d, *J* = 8.0 Hz, 1H, PhC*H*₂OCH₂O), 4.65 (d, *J* = 12.2 Hz, 1H, PhC*H*₂OCH₂O), 4.43 (s, 1H, OH, C₄O*H*), 4.05 (s, 1H, C₁₂O*H*), 3.94 (d, *J* = 10.3 Hz, 1H, C₁₀), 3.42 (d, *J* = 19.8 Hz, 1H, C₁₄), 2.42 (d, *J* = 19.7 Hz, 1H, C₁₄), 2.17 – 2.03 (m, 1H, C₉), 1.94 (d, *J* = 2.4 Hz, 3H, C₁₇), 1.83 (ddd, *J* = 14.4, 4.1, 1.9 Hz, 1H, C₈), 1.75 (d, *J* = 1.2 Hz, 3H, C₁₉), 1.67 (ddt, *J* = 10.3, 4.1, 1.5 Hz, 1H, C₇), 1.62 – 1.52 (m, 1H, C₈), 1.46 (td, *J* = 12.7, 4.1 Hz, 1H, C₇), 1.13 (s, 3H, C₂₀), 1.12 (d, *J* = 5.8 Hz, 3H, C₂₁).

¹³C NMR (101 MHz, CDCl₃): δ 168.2 (C_{15} =O), 160.4 (C_{22} =O), 140.9 (C_{2}), 138.9 (C_{13}), 137.7 (C_{Ph}), 137.4 (C_{Ph}), 136.6 (C_{1}), 128.7 (C_{Ph}), 128.4 (C_{Ph}), 128.2 (C_{Ph}), 127.7 (C_{Ph}), 127.7 (C_{Ph}), 123.9 (C_{26}), 121.9 (C_{23}), 117.4 (C_{18}), 115.8 (C_{24}), 110.7 (C_{25}), 97.3 (PhCH₂OCH₂O), 91.9 (C_{12}), 91.4 (C_{4}), 90.7 (C_{6}), 90.3 (PhCH₂OCH₂O), 88.6 (C_{11}), 82.9 (C_{3}), 80.6 (C_{10}), 71.9 (PhCH₂OCH₂O), 70.5 (PhCH₂OCH₂O), 49.3 (C_{5}), 39.8 (C_{14}), 33.2 (C_{9}), 28.1 (C_{7}), 21.1 (C_{19}), 21.0 (C_{8}), 18.9 (C_{21}), 15.9 (C_{20}), 13.2 (C_{17}).

FTIR (NaCl, thin film): 3448, 2929, 1744, 1703, 1159, 1115, 1010 cm⁻¹.

HRMS (MM:ESI–APCI): calc'd for [M+Na]⁺ 736.3098, found 772.3099.

 $[\alpha]_{D}^{25}$: -70° (*c* = 0.460, CHCl₃).

Preparation of anhydroryanodine (18):

An oven-dried, 2 dram vial was charged with **17** (15 mg, 0.021 mmol, 1.0 equiv), $Pd(OH)_2/C$ (20 wt %, 23 mg), followed by absolute EtOH (2.1 mL). The suspension was sparged with N₂ for 3 min, then H₂ for 3 min via a three-walled balloon. The suspension was subsequently stirred for 1 h at ambient temperature under H₂, then sparged with N₂ to remove excess H₂, diluted with EtOAc (5 mL), filtered through a short pad of Celite, and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (5% MeOH/CHCl₃) afforded (+)-anhydroryanodine (**18**) as a white powder (9 mg, 0.019 mmol, 90% yield).

TLC (5% MeOH/CHCl₃): R_f 0.35 (UV, *p*-anisaldehyde).

¹**H NMR (400 MHz, CD₃OD):** δ 7.09 (dd, J = 2.6, 1.5 Hz, 1H, C₂₆), 6.90 (dd, J = 3.8, 1.5 Hz, 1H, C₂₄), 6.28 (dd, J = 3.8, 2.5 Hz, 1H, C₂₅), 6.20 (q, J = 2.3 Hz, 1H, C₃), 4.03 (d, J = 10.3 Hz, 1H, C₁₀), 3.45 (d, J = 19.8 Hz, 1H, C₁₄), 2.80 (p, J = 7.1 Hz, 1H, C₁₃), 2.56 (d, J = 19.7 Hz, C₁₄, 1H), 1.89 (d, J = 2.3 Hz, 3H, C₁₇), 1.83 (td, J = 10.5, 5.8 Hz, 1H, C₉), 1.66-1.58 (m, 2H, C₇), 1.57-1.49 (m, 2H, C₈), 1.12 (d, J = 7.0 Hz, 3H, C₁₉), 1.11 (d, J = 7.0 Hz, 3H, C₁₈), 1.01 (d, J = 7.0 Hz, 3H, C₂₁), 0.99 (s, 3H, C₂₀).

¹³C NMR (101 MHz, CDCl₃): δ 172.3 (C_{15} =O), 161.8 (C_{22} =O), 144.6 (C_{2}), 138.3 (C_{1}), 125.8 (C_{26}), 123.2 (C_{23}), 117.0 (C_{24}), 111.1 (C_{25}), 94.0 (C_{12}), 92.7 (C_{4}), 90.2 (C_{6}), 84.7 (C_{3}), 84.2 (C_{11}), 72.6 (C_{10}), 40.5 (C_{14}), 35.2 (C_{9}), 28.7 (C_{7}), 28.2 (C_{13}), 26.3 (C_{8}), 21.5 (C_{18} / C_{19}), 19.5 (C_{21}), 18.8 (C_{18} / C_{19}), 14.3 (C_{20}), 12.4 (C_{17}).

FTIR (NaCl, thin film): 3408, 2963, 1740, 1690, 1409, 1315, 1165 cm⁻¹.

HRMS (MM:ESI-APCI): calc'd for [M–H]⁻ 474.2128, found 474.2112.

 $[\alpha]_{D}^{25}$: +18° (*c* = 0.345, MeOH).

Preparation of 19:

A 20 mL scintillation vial was charged with diene **17** (94 mg, 0.132 mmol, 1.0 equiv), PtO₂ (15 mg, 0.066 mmol, 0.5 equiv), followed by EtOAc (6 mL). The suspension was sparged with N₂ for 3 min, then H₂ for 3 min via a three-walled balloon. The suspension was subsequently stirred for 25 min at ambient temperature under H₂, then sparged with N₂ to remove excess H₂, diluted with EtOAc (5 mL), filtered through a short pad of Celite, and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (40% EtOAc/hexane) afforded **19** (85 mg, 0.119 mmol, 90% yield) as a white foam.

TLC (40% EtOAc/hexanes): R_f 0.40 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 9.29 (s, 1H, N*H*), 7.43 – 7.29 (m, 10H, *Ph*CH₂OCH₂O), 7.07 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 6.92 (ddd, *J* = 3.8, 2.4, 1.4 Hz, 1H, C₂₄), 6.33 (dt, *J* = 3.8, 2.6 Hz, 1H, C₂₅), 6.23 (q, *J* = 2.3 Hz, 1H, C₃), 5.18 (d, *J* = 6.4 Hz, 1H, PhCH₂OC*H*₂O), 4.92 (d, *J* = 6.4 Hz, 1H, PhCH₂OC*H*₂O), 4.92 (s, 2H, PhCH₂OC*H*₂O), 4.83 (d, *J* = 12.2 Hz, 1H, PhC*H*₂OCH₂O), 4.71 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.67 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.65 (d, *J* = 12.2 Hz, 1H, PhC*H*₂OCH₂O), 4.39 (s, 1H, O*H*), 3.95 (s, 1H, O*H*), 3.92 (d, *J* = 10.4 Hz, 1H, C₁₀), 3.41 (d, *J* = 19.7 Hz, 1H, C₁₄), 2.80 (p, *J* = 7.0 Hz, 1H, C₁₃), 2.39 (d, *J* = 19.7 Hz, 1H, C₁₄), 2.18 – 2.03 (m, 1H, C₉), 1.91 (d, *J* = 2.4 Hz, 3H, C₁₇), 1.82 (dt, *J* = 13.2, 3.2 Hz, 1H, C₈), 1.70-1.63 (m, 1H, C₇), 1.60 – 1.51 (m, 1H, C₇), 1.46 (td, *J* = 12.3, 3.6 Hz, 1H, C₈), 1.13 (d, *J* = 7.0 Hz, 3H, C₁₉), 1.12 (d, 1.08 *J* = 7.0 Hz, 3H, C₂₁), 1.08 (s, 3H, C₂₀), 1.00 (d, *J* = 7.0 Hz, 3H, C₁₈).

¹³C NMR (101 MHz, CDCl₃): δ 168.1 (C_{15} =O), 160.4 (C_{22} =O), 143.0 (C₂), 137.7 (C_{Ph}), 137.1 (C_{Ph}), 136.6 (C₁), 128.7 (C_{Ph}), 128.4 (C_{Ph}), 128.3 (C_{Ph}), 128.2 (C_{Ph}), 127.7 (C_{Ph}), 127.7 (C_{Ph}), 124.0 (C₂₆), 122.1 (C₂₃), 115.7 (C₂₄), 110.9 (C₂₅), 97.4 (PhCH₂OCH₂O), 92.0 (C₁₂), 91.0 (C₄), 90.8 (PhCH₂OCH₂O), 90.2 (C₆), 88.5 (C₁₁), 84.0 (C₃), 80.7 (C₁₀), 71.8 (PhCH₂OCH₂O), 70.5 (PhCH₂OCH₂O), 49.3 (C₅), 39.9 (C₁₄), 33.2 (C₉), 28.0 (C₇), 26.8 (C₁₃), 21.2 (C₁₈), 21.0 (C₈), 19.0 (C₁₉), 18.9 (C₂₁), 15.9 (C₂₀), 11.8 (C₁₇).

FTIR (NaCl, thin film): 3455, 2927, 1744, 1708, 1159, 1026 cm⁻¹.

HRMS (MM:ESI–APCI): calc'd for [M+Na]⁺ 738.3254, found 738.3262.

 $[\alpha]_{D}^{25}$: +36° (*c* = 0.380, CHCl₃).

Preparation of epoxide 20:

A 50 mL, oven-dried, round-bottomed flask was charged with **19** (144 mg, 0.201 mmol, 1.0 equiv), $VO(acac)_2$ (80 mg, 0.302 mmol, 1.5 equiv) and PhH (10.1 mL). The resulting green solution was stirred at ambient temperature for 5 min prior to the dropwise addition of TBHP (5.0-5.5 M in decane, 0.2 mL, 1.01 mmol, 5.0 equiv). The resulting dark-brown solution was stirred for 2 h at ambient temperature before additional TBHP (5.0-5.5 M in decane, 0.2 mL, 1.005 mmol, 5.0 equiv) was added to the reaction mixture. Stirring was continued

for 1 h until TLC analysis indicated complete consumption of starting material. The mixture was diluted with EtOAc (12 mL) and sat. aq. $Na_2S_2O_3$ (12 mL) was next slowly added. The two layers were separated, and the organic layer washed with sat. aq. $Na_2S_2O_3$ (2 x 12 mL) and sat. aq. $NaHCO_3$ (2 x 12 mL). The combined aqueous layers were extracted with EtOAc (2 x 6 mL), and the combined organic layers were washed with brine (6 mL), dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The crude residue was purified by SiO₂ flash chromatography (30 to 40% EtOAc/hexanes) to afford epoxide **20** (88 mg, 0.120 mmol, 60% yield).

TLC (40% EtOAc/hexanes): R_f 0.40 (UV, *p*-anisaldehyde).

¹**H** NMR (500 MHz, CDCl₃): δ 9.40 (s, 1H, N*H*), 7.42 – 7.29 (m, 10H, *Ph*CH₂OCH₂O), 7.09 (td, *J* = 2.8, 1.4 Hz, 1H, C₂₆), 6.93 (ddd, *J* = 3.8, 2.5, 1.4 Hz, 1H, C₂₄), 6.35 (dt, *J* = 3.7, 2.6 Hz, 1H, C₂₅), 5.76 (s, 1H, C₃), 5.19 (d, *J* = 6.6 Hz, 1H, PhCH₂OC*H*₂O), 5.03 (d, *J* = 6.6 Hz, 1H, PhCH₂OC*H*₂O), 4.90 (d, *J* = 6.2 Hz, 1H, PhCH₂OC*H*₂O), 4.86 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.82 (d, *J* = 6.1 Hz, 1H, PhCH₂OC*H*₂O), 4.69 (d, *J* = 11.8 Hz, 1H, PhC*H*₂OCH₂O), 4.65 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.65 (d, *J* = 12.0 Hz, 1H, PhC*H*₂OCH₂O), 4.00 (d, *J* = 10.5 Hz, 1H, C₁₀), 3.98 (d, *J* = 0.7 Hz, 1H, O*H*), 3.87 (d, *J* = 20.4 Hz, 1H, C₁₄), 3.19 (s, 1H, O*H*), 2.56 (d, *J* = 20.3 Hz, 1H, C₁₄), 2.18 – 2.07 (m, 1H, C₉), 1.86 – 1.80 (m, 1H, C₈), 1.77 (dd, *J* = 13.8, 6.6 Hz, 1H, C₁₃), 1.71 (s, 3H, C₁₇), 1.71-1.64 (m, 1H, C₇), 1.62-1.53 (m, 1H, C₈), 1.57 – 1.47 (m, 1H, C₇), 1.22 (d, *J* = 7.4 Hz, 3H, C₁₉), 1.16 (d, *J* = 6.5 Hz, 3H, C₂₁), 1.02 (d, *J* = 7.0 Hz, 3H, C₁₈), 1.00 (s, 3H, C₂₀).

¹³C NMR (126 MHz, CDCl₃): δ 168.1 (C_{15} =O), 159.3 (C_{22} =O), 137.9 (C_{Ph}), 136.3 (C_{Ph}), 128.6 (C_{Ph}), 128.4 (C_{Ph}), 128.3 (C_{Ph}), 128.2 (C_{Ph}), 127.7 (C_{Ph}), 127.6 (C_{Ph}), 124.6 (C_{26}), 121.5 (C_{23}), 115.8 (C_{24}), 111.0 (C_{25}), 97.6 (PhCH₂OCH₂O), 93.2 (C_{4}), 91.2 (C_{6}), 91.1 (C_{11}), 90.6 (C_{12}), 89.6 (PhCH₂OCH₂O), 81.3 (C_{10}), 81.0 (C_{3}), 76.2 (C_{1}), 74.8 (C_{2}), 71.3 (PhCH₂OCH₂O), 70.6 (PhCH₂OCH₂O), 50.3 (C_{5}), 38.6 (C_{14}), 32.6 (C_{9}), 29.4 (C_{13}), 27.9 (C_{7}), 20.6 (C_{8}), 18.9 (C_{21}), 17.6 (C_{18}), 17.2 (C_{19}), 16.3 (C_{20}), 14.5 (C_{17}).

FTIR (NaCl, thin film): 3282, 2933, 1748, 1715, 1020 cm⁻¹.

HRMS (MM:ESI-APCI) : calc'd for [M+Na]⁺ 754.3203, found 738.3215.

 $[\alpha]_{D}^{25}$: +40° (*c* = 0.450, CHCl₃).

Preparation of anhydroryanodine epoxide (21):

A 25 mL round-bottomed flask was charged with epoxide **20** (50 mg, 0.068 mmol, 1.0 equiv), Pd(OH)₂/C (20 wt %, 75 mg), followed by absolute EtOH (6.8 mL). The suspension was sparged with N₂ for 3 min, then H₂ for 3 min via a three-walled balloon. The suspension was subsequently stirred for 3 h at ambient temperature under H₂, then sparged with N₂ to remove excess H₂, diluted with EtOAc (5 mL), filtered through a short pad of Celite, and concentrated *in vacuo*. The resulting white powder was used in the next step without further purification.

A sample of anhydroryanodine epoxide (21) was purified by preparative thin-layer chromatography (5% MeOH/CHCl₃) for characterization purposes.

TLC (10% MeOH/CHCl₃): R_f 0.50 (UV, p-anisaldehyde).

¹**H NMR (400 MHz, CD₃OD):** δ 7.12 (dd, J = 2.5, 1.4 Hz, 1H, C₂₆), 6.93 (dd, J = 3.8, 1.5 Hz, 1H, C₂₄), 6.31 (dd, J = 3.8, 2.5 Hz, 1H, C₂₅), 5.66 (s, 1H, C₃), 4.09 (d, J = 10.5 Hz, 1H, C₁₀), 3.90 (d, J = 20.4 Hz, 1H, C₁₄), 2.75 (d, J

= 20.4 Hz, 1H, C₁₄), 1.91 – 1.81 (m, 1H, C₉), 1.77 (p, J = 7.2 Hz, 1H, C₁₃), 1.68 (s, 3H, C₁₇), 1.64 – 1.50 (m, 2H, C₈), 1.62-1.49 (m, 2H, C₇), 1.20 (d, J = 7.3 Hz, 3H, C₁₉), 1.11 (d, J = 6.4 Hz, 3H, C₂₁), 1.00 (d, J = 7.0 Hz, 3H, C₁₈), 0.93 (s, 3H, C₂₀).

¹³C NMR (101 MHz, CD₃OD): δ 171.5 (C_{15} =O), 160.8 (C_{22} =O), 126.3 (C_{26}), 122.6 (C_{23}), 117.1 (C_{24}), 111.3 (C_{25}), 95.0 (C_{12}), 92.6 (C_{4}), 91.9 (C_{11}), 85.2 (C_{6}), 82.1 (C_{3}), 77.3 (C_{1}), 75.3 (C_{2}), 72.9 (C_{10}), 50.2 (C_{5}), 39.4 (C_{14}), 34.7 (C_{9}), 30.6 (C_{13}), 28.6 (C_{8}), 25.9 (C_{7}), 18.7 (C_{21}), 18.2 (C_{19}), 17.6 (C_{18}), 15.5 (C_{17}), 14.7 (C_{20}).

FTIR (NaCl, thin film): 3419, 2967, 1749, 1707, 1402, 1324, 1128, 1085 cm⁻¹.

HRMS (MM:ESI-APCI): calc'd for [M-H]⁻ 490.2083, found 490.2103.

 $[\alpha]_{D}^{25}$: +18° (*c* = 0.705, MeOH).

Preparation of ryanodine (1):

Fresh LiDBB¹⁰ was prepared according to the following procedure: An oven-dried, 25 mL Schlenk tube containing a borosilicate glass-coated magnetic stirbar was charged with 4,4'-di-*tert*-butylbiphenyl (550 mg, 2.0 mmol) and freshly cut lithium wire (14.0 mg, 2.0 mmol) (Note: Immediately prior to use, lithium wire was washed with hexanes, hammered out into a foil, and cut into several small strips). The Schlenk tube was evacuated and refilled with Ar three times before anhydrous THF (12.5 mL) was added and the resulting reaction mixture was then cooled to 0 °C via an ice/water bath. After vigorously stirring (900-1000 rpm) at 0 °C for 10 min, the solution became a deep-green, characteristic of the DBB radical-anion. After the reaction mixture was stirred at 0 °C for approximately 4 h, the LiDBB solution (~0.16 M) was immediately used.

An oven-dried, 50 mL round-bottomed flask containing a borosilicate glass-coated magnetic stirbar was charged with epoxide **20** (64 mg, 0.087 mmol, 1.0 equiv) and anhydrous THF (4.3 mL) under Ar. The resulting solution was cooled to -78 °C via a dry ice/acetone bath. Freshly prepared LiDBB (0.16 M, 5.4 mL, 0.87 mmol, 10 equiv) was added dropwise via syringe along the side of the flask until the dark green color persisted. The deep green mixture was stirred for 0.5 h at -78 °C and then sat. aq. NH₄Cl (10 mL) was added before the reaction mixture was warmed to ambient temperature. The organic layer was separated and the aqueous layer was extracted with CHCl₃ (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by SiO₂ flash chromatography (0 to 5 to 10% MeOH/CHCl₃) to afford ryanodine (1) as a white solid (28 mg, 0.057 mmol, 65% yield) (Note: The purification was made easier by first flushing with CHCl₃ (100 mL) until all of the excess 4,4'-di-*tert*-butylbiphenyl was removed).

TLC (10% MeOH/CHCl₃): R_f 0.33 (UV, p-anisaldehyde).

¹**H NMR (600 MHz, CD₃OD):** δ 7.04 (dd, J = 2.5, 1.5 Hz, 1H, C₂₆), 6.88 (dd, J = 3.7, 1.5 Hz, 1H, C₂₄), 6.24 (dd, J = 3.8, 2.5 Hz, 1H, C₂₅), 5.64 (s, 1H, C₃), 3.80 (d, J = 10.2 Hz, 1H, C₁₀), 2.57 (d, J = 13.6Hz, 1H, C₁₄), 2.27 (h, J = 6.8 Hz, C₁₃), 2.10 (td, J = 12.9, 5.2 Hz, 1H, C₇), 1.94 (d, J = 13.6 Hz, 1H, C₁₄), 1.85 (tdd, J = 10.2, 8.5, 5.6 Hz, 1H, C₉), 1.54 (dtd, J = 12.4, 5.2, 1.8 Hz, 1H, C₈), 1.48 (td, J = 13.0, 4.7 Hz, 1H, C₈), 1.40 (s, 3H, C₁₇), 1.26 (ddd, J = 12.7, 4.6, 2.0 Hz, 1H, C₇), 1.12 (d, J = 6.7 Hz, 3H, C₁₉), 1.02 (d, J = 6.5 Hz, 3H, C₂₁), 0.90 (s, 3H, C₂₀), 0.76 (d, J = 6.5 Hz, 3H, C₁₈).

¹³C NMR (101 MHz, CD₃OD): δ 161.8 (C_{22} =O), 125.6 (C_{26}), 123.3 (C_{23}), 117.0 (C_{24}), 110.9 (C_{25}), 102.9 (C_{15}), 96.7 (C_{12}), 92.3 (C_4), 90.8 (C_3), 87.4 (C_{11}), 86.5 (C_6), 84.3 (C_2), 72.8 (C_{10}), 65.9 (C_1), 49.6 (C_5), 41.8 (C_{14}), 35.4 (C_9), 30.9 (C_{13}), 29.3 (C_8), 26.8 (C_7), 19.5 (C_{19}), 19.0 (C_{21}), 18.9 (C_{18}), 12.6 (C_{20}), 10.2 (C_{17}). FTIR (NaCl, thin film): 3335, 2969, 1691, 1410, 1324, 1164, 988, 750 cm⁻¹. HRMS (MM:ESI-APCI): calc'd for [M-H]⁻ 492.2239, found 492.2250. [α]²⁵₂: +15° (c = 0.705, MeOH).

Table 1, entry 2:

An oven-dried, 1 dram vial was charged with anhydroryanodine epoxide **21** (5 mg, 0.010 mmol, 1.0 equiv) and THF (1 mL). The solution was cooled to -78 °C via a dry ice/acetone bath before a freshly prepared solution of LDA (1.0 M in THF, 60 µL, 0.060 mmol, 5.9 equiv) was added. After 1 h of stirring at -78 °C, the pale-yellow solution was transferred to a pre-cooled dark-blue solution of lithium (1.7 mg) in freshly distilled ammonia (3 mL) via syringe at -78 °C and the resulting reaction mixture was stirred for 15 min. After the addition of solid ammonium chloride (50 mg), stirring was halted and the colorless reaction mixture was removed from the dry ice/acetone bath and warmed to ambient temperature over 45 min, resulting in the slow evaporation of ammonia. The residue was dissolved in water (1 mL) and extracted with CHCl₃ (3 x 2 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude mixture was purified by preparative thin-layer chromatography (10% MeOH/CHCl₃) to afford ryanodine (1) (1 mg, 0.002 mmol, 20% yield).

Preparation of enone 22:

In a nitrogen-filled glovebox, an oven-dried, 20 mL scintillation vial was charged with vinyl triflate **8** (302 mg, 0.425 mmol, 1.0 equiv), $PdCl_2(PPh)_3$ (119 mg, 0.170 mmol, 40 mol %), anhydrous LiCl (108 mg, 2.55 mmol, 6.0 equiv), tributyl(2-propenyl)stannane (422 mg, 1.27 mmol, 3.0 equiv), and anhydrous 2-methyltetrahydrofuran (6.4 mL). The vial was sealed with a Teflon-lined cap, and placed in a preheated heating block at 90 °C. After 14 h, the vial was removed from the heating block and allowed to cool to ambient temperature, then sat. aq. KF (10 mL) was added. The biphasic mixture was vigorously stirred for 45 min, then diluted with EtOAc (30 mL). The two layers were separated and the organic layer washed with additional sat. aq. KF (10 mL). The combined aqueous layers were extracted with EtOAc (2 x 30 mL), and the combined organic layers next washed with brine (20 mL), dried over Na₂SO₄, filtered over Celite, and concentrated *in vacuo* to afford an orange oil. Purification by SiO₂ flash chromatography (30 to 40 to 50% EtOAc/hexanes) afforded the desired product **22** as a pale yellow foam (228 mg, 0.378 mmol, 89% yield).

TLC (40% EtOAc/hexanes): R_f 0.45 (UV, CAM).

¹**H** NMR (400 MHz, CDCl₃): δ 7.40 – 7.27 (m, 10H, *Ph*CH₂OCH₂O), 5.22 (p, *J* = 1.7 Hz, 1H, C₁₈), 5.07 (d, *J* = 5.4 Hz, 1H, PhCH₂OC*H*₂O), 5.02 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.97 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.84 (d, *J* = 5.4 Hz, 1H, PhCH₂OC*H*₂O), 4.79 (dd, *J* = 1.9, 1.0 Hz, 1H, C₁₈), 4.77 (d, *J* = 12.1 Hz, 1H, PhC*H*₂OC*H*₂O), 4.71 (d, *J* = 12.1 Hz, 1H, PhC*H*₂OC*H*₂O), 4.71 (d, *J* = 12.1 Hz, 1H, PhC*H*₂OC*H*₂O), 4.71 (d, *J* = 12.1 Hz, 1H, PhC*H*₂OC*H*₂O), 4.55 (s, 1H, OH), 4.00 (d, *J* = 10.5 Hz, 1H, C₁₀), 2.90 (d, *J* = 1.4 Hz, 1H, C₄), 2.36 (d, *J* = 19.6 Hz, 1H, C₁₄), 2.27 (dd, *J* = 19.6, 1.6 Hz, 1H, C₁₄), 2.20 (s, 3H, C₁₇), 2.12 – 2.04 (m, 1H, C₉), 1.96 – 1.89 (m, 1H, C₇), 1.87 (t, *J* = 1.3 Hz, 3H, C₁₉), 1.62 (td, *J* = 7.7, 7.1, 3.1 Hz, 2H, C₈), 1.58 – 1.49 (m, 1H, C₇), 1.28 (s, 3H, C₂₀), 1.05 (d, *J* = 6.6 Hz, 3H, C₂₁).

¹³C NMR (101 MHz, CDCl₃): δ 204.9 (C_3 =O), 169.6 (C₁), 167.1 (C_{15} =O), 145.9 (C₂), 137.0 (C_{Ph}), 136.8 (C_{Ph}), 136.3 (C₁₃), 128.7 (C_{Ph}), 128.6 (C_{Ph}), 128.1 (C_{Ph}), 128.1 (C_{Ph}), 128.0 (C_{Ph}), 127.7 (C_{Ph}), 117.6 (C₁₈), 97.0 (PhCH₂OCH₂O), 91.5 (C₆), 91.1 (C₁₁), 89.7 (PhCH₂OCH₂O), 89.3 (C₁₂), 79.9 (C₁₀), 71.0 (PhCH₂OCH₂O), 70.3 (PhCH₂OCH₂O), 66.0 (C₄), 45.4 (C₅), 39.2 (C₁₄), 33.2 (C₉), 27.9 (C₈), 21.7 (C₁₉), 21.1 (C₇), 19.9 (C₂₀), 18.5 (C₂₁), 14.6 (C₁₇).

FTIR (NaCl, thin film): 3387, 2928, 1748, 1698, 1027 cm⁻¹.

HRMS (MM:ESI-APCI): calc'd for $[M+H]^+$ 603.2952, found 603.2959.

 $[\alpha]_{D}^{25}$: +100° (c = 0.200, CHCl₃).

Preparation of TMS ether S13:

To an oven-dried, 100 mL round-bottomed flask was added enone **22** (944 mg, 1.57 mmol, 1.0 equiv), anhydrous CH_2Cl_2 (31 mL), and freshly distilled pyridine (1.27 mL, 15.7 mmol, 10 equiv). The solution was cooled to 0 °C in an ice/water bath and TMSOTf (0.85 mL, 4.70 mmol, 3.0 equiv) was added via syringe. The ice/water bath was then removed and stirring was continued at ambient temperature. Additional portions of TMSOTf (0.85 mL, 4.70 mmol, 3.0 equiv) and pyridine (1.27 mL, 15.7 mmol, 10.0 equiv) were added every 12 h until TLC analysis indicated complete consumption of the starting material (*ca.* 36 h). The reaction mixture was next diluted with CH_2Cl_2 (15 mL) and carefully quenched with the addition of sat. aq. NaHCO₃ (30 mL). The two layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL). The combined organic layers were washed with brine (15 mL), dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The crude residue was purified by SiO₂ flash chromatography (20 to 30 to 35% EtOAc/hexanes) to afford TMS ether **S13** (750 mg, 1.11 mmol, 71% yield) as a colorless foam.

TLC (30% EtOAc/hexanes): R_f 0.34 (UV, CAM).

¹**H** NMR (400 MHz, CDCl₃): δ 7.39 – 7.28 (m, 10H, *Ph*CH₂OCH₂O), 5.24 (p, *J* = 1.6 Hz, 1H, C₁₈), 5.08 (d, *J* = 7.0 Hz, 1H, PhCH₂OC*H*₂O), 5.01 (s, 2H, PhCH₂OC*H*₂O), 4.92 (d, *J* = 7.0 Hz, PhCH₂OC*H*₂O), 4.84 (d, *J* = 11.9 Hz, 1H, PhC*H*₂OCH₂O), 4.81 (d, *J* = 10.9 Hz, PhC*H*₂OCH₂O), 4.79 (s, 1H, C₁₈), 4.60 (d, *J* = 11.9 Hz, 1H, PhC*H*₂OCH₂O), 4.57 (d, *J* = 10.9 Hz, 1H, PhC*H*₂OCH₂O), 4.02 (d, *J* = 10.5 Hz, 1H, C₁₀), 3.00 (s, 1H, C₄), 2.33 (d, *J* = 19.5 Hz, 1H, C₁₄), 2.27 (d, *J* = 19.5 Hz, 1H, C₁₄), 2.20 (s, 3H, C₁₇), 2.14 – 2.00 (m, 1H, C₉), 1.99 – 1.90 (m, 1H, C₇), 1.88 (t, *J* = 1.2 Hz, 3H, C₁₉), 1.78 (qd, *J* = 13.0, 4.2 Hz, 1H, C₈), 1.71- 1.58 (m, 1H, C₈), 1.56 – 1.44 (m, 1H, C₇), 1.22 (s, 3H, C₂₀), 1.15 (d, *J* = 6.5 Hz, 3H, C₂₁), 0.11 (s, 9H, TMS).

¹³C NMR (101 MHz, CDCl₃): δ 205.0 (*C*₃=O), 170.8 (C₁), 167.3 (*C*₁₅=O), 145.6 (C₂), 137.9 (C_{Ph}), 137.0 (C_{Ph}), 136.1 (C₁₃), 128.6 (C_{Ph}), 128.4 (C_{Ph}), 128.0 (C_{Ph}), 127.7 (C_{Ph}), 127.7 (C_{Ph}), 127.6 (C_{Ph}), 117.5 (C₁₈), 98.1 (PhCH₂OCH₂O), 92.9 (C₁₁), 91.7 (C₁₂), 91.0 (C₆), 89.9 (PhCH₂OCH₂O), 81.7 (C₁₀), 70.5 (PhCH₂OCH₂O), 65.1 (C₄), 46.6 (C₅), 39.2 (C₁₄), 32.9 (C₉), 27.9 (C₈), 21.5 (C₁₉), 21.1 (C₇), 20.4 (C₂₀), 19.0 (C₂₁), 14.7 (C₁₇), 1.9 (Si(*Me*)₃).

FTIR (NaCl, thin film): 2954, 1751, 1699, 1025 cm⁻¹.

HRMS (MM:ESI-APCI): calc'd for $[M+H]^+$ 675.3348, found 675.3349.

 $[\alpha]_{D}^{25}$: +124° (*c* = 0.245, CHCl₃).

Preparation of alcohol 23:

To an oven-dried, 100 mL round-bottomed flask was added enone **S13** (749 mg, 1.11 mmol, 1.0 equiv) and anhydrous THF (22 mL). The solution was cooled to -10 °C in an ice/acetone bath and solid LiBH₄ (121 mg, 5.55 mmol, 5.0 equiv) was added. After 1 h, a second portion of solid LiBH₄ (121 mg, 5.55 mmol, 5.0 equiv) was added before warming the reaction mixture to 0 °C with an ice/water bath. Stirring was continued at 0 °C for 1 h after which a third portion of solid LiBH₄ (121 mg, 5.55 mmol, 5.0 equiv) was added to stir at 0 °C an additional 1 h before sat. aq. NH₄Cl (35 mL) was *slowly* added to the reaction. The mixture was diluted with EtOAc (15 mL), the two layers separated, and the organic layer washed with an additional portion of sat. aq. NH₄Cl (35 mL). The combined aqueous layers were extracted with EtOAc (3 x 40 mL), and the combined organic layers next dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by SiO₂ flash chromatography (30 to 40 to 50% EtOAc/hexanes) to afford the desired product **23** as a colorless foam (635 mg, 0.94 mmol, 85% yield).

TLC (40% EtOAc/hexanes): R_f 0.37 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.37 – 7.27 (m, 10H, *Ph*CH₂OCH₂O), 5.21 (p, *J* = 1.7 Hz, 1H, C₁₈), 5.22 – 5.19 (m, 1H, C₃), 5.02 (d, *J* = 6.6 Hz, 1H, PhCH₂OC*H*₂O), 4.97 (d, *J* = 7.9 Hz, 1H, PhCH₂OC*H*₂O), 4.95 (d, *J* = 7.9 Hz, 1H, PhCH₂OC*H*₂O), 4.92 (d, *J* = 6.6 Hz, 1H, PhCH₂OC*H*₂O), 4.90 (dd, *J* = 2.0, 1.0 Hz, 1H, C₁₈), 4.84 (d, *J* = 11.9 Hz, 1H, PhC*H*₂OC*H*₂O), 4.55 (d, *J* = 11.9 Hz, 1H, PhC*H*₂OC*H*₂O), 3.95 (d, *J* = 10.4 Hz, 1H, C₁₀), 3.33 (d, *J* = 19.6 Hz, 1H, C₁₄), 3.06 (dd, *J* = 8.0, 1.4 Hz, 1H, C₄), 2.17 (dd, *J* = 19.6, 1.4 Hz, 1H, C₁₄), 2.11 – 1.98 (m, 1H, C₉), 1.88 (t, *J* = 1.2 Hz, 3H, C₁₉), 1.89 – 1.86 (m, 1H, C₇), 1.81 (d, *J* = 2.2 Hz, 3H, C₁₇), 1.73 (d, *J* = 3.2 Hz, 1H, OH), 1.70 – 1.59 (m, 2H, C₈), 1.56 – 1.45 (m, 1H, C₇), 1.20 (s, 3H, C₂₀), 1.14 (d, *J* = 6.5 Hz, 3H, C₂₁), 0.10 (s, 9H, TMS).

¹³C NMR (101 MHz, CDCl₃): δ 169.4 (C_{15} =O), 146.3 (C₁), 139.0 (C₂), 138.2 (C_{Ph}), 138.0 (C₁₃), 137.3 (C_{Ph}), 128.5 (C_{Ph}), 128.3 (C_{Ph}), 127.9 (C_{Ph}), 127.8 (C_{Ph}), 127.7 (C_{Ph}), 127.4 (C_{Ph}), 116.7 (C₁₈), 98.2 (PhCH₂OCH₂O), 97.2 (C₁₂), 93.0 (C₁₁), 89.5 (C₆), 89.3 (PhCH₂OCH₂O), 82.3 (C₁₀), 74.5 (C₃), 70.3 (PhCH₂OCH₂O), 70.1 (PhCH₂OCH₂O), 58.0 (C₄), 47.1 (C₅), 39.2 (C₁₄), 33.3 (C₉), 28.0 (C₈), 21.4 (C₁₉), 21.2 (C₂₀), 20.3 (C₇), 19.1 (C₂₁), 12.7 (C₁₇), 1.8 (Si(*Me*)₃).

FTIR (NaCl, thin film): 3459, 2954, 1716, 1026 cm⁻¹.

HRMS (MM:ESI–APCI): calc'd for [M+Na]⁺ 699.3324, found 699.3325.

 $[\alpha]_{D}^{25}: -17^{\circ} (c = 0.275, \text{CHCl}_3).$

Preparation of TBS-protected pyrrole 24:

To a 100 mL, oven-dried flask was added NaH (dry, 339 mg, 14.1 mmol, 1.0 equiv) in a nitrogen-filled glovebox. The flask was capped with a rubber septum, removed from the glovebox, and anhydrous DMF (12 mL) was then added. The resulting slurry was cooled to 0 °C in an ice/water bath and after 15 min, 2-(trichloroacetyl)pyrrole (3.0 g, 14.1 mmol, 1.0 equiv) in anhydrous DMF (12 mL) was added dropwise by cannula transfer over 10 min. [Caution! Rapid generation of H₂ gas. A vent needle was routinely used to prevent overpressurization.] Upon complete addition, the reaction mixture was warmed to ambient temperature and stirring was continued for another 30 min before TBSCI (2.55 g, 16.9 mmol, 1.2 equiv) in anhydrous DMF (12 mL) was added dropwise by cannula transfer over 10 min, during which time the yellow-brown solution fades to a pale pink slurry. The reaction was continued for 30 min then diluted with Et₂O (50 mL) and carefully quenched with the addition of sat. aq. NH₄Cl (50 mL). The layers were separated and the aqueous layer next extracted with Et₂O (2 x 50 mL). The combined organic layers were washed with H₂O (30 mL), brine (30 mL), then dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo* to afford an orange oil. Purification by SiO₂ flash chromatography (1 to 2 to 3% Et₂O/hexanes) afforded TBS-protected pyrrole **24** as a thick, slightly yellow oil (3.52 g, 10.8 mmol, 76% yield) that solidifies to a colorless solid upon cooling to -20 °C.

TLC (2% Et₂O/hexanes): R_f 0.44 (UV, *p*-anisaldehyde).

¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, J = 4.0, 1.3 Hz, 1H, C₂), 7.27 (dd, J = 2.5, 1.3 Hz, 1H, C₄), 6.40 (dd, J = 3.9, 2.5 Hz, 1H, C₃), 0.95 (s, 9H, Si(*t*-*Bu*)Me₂), 0.54 (s, 6H, Si(*t*-Bu)Me₂).

¹³C NMR (125 MHz, CDCl₃): δ 172.8 (*C*=O), 136.7 (C₄), 127.9 (C₁), 126.8 (C₂), 112.1 (C₃), 96.1 (*C*Cl₃), 27.3 (Si–C(*C*H₃)₃), 19.6 (Si–*C*(CH₃)₃), -1.4 (Si(*C*H₃)₂).

FTIR (NaCl, thin film): 2954, 2932, 2896, 2860, 1677 cm⁻¹. **HRMS:** calc'd for [M–H]⁻ 324.0150, found 324.0153.

Preparation of chloride 25:

In a nitrogen-filled glovebox, an oven-dried, 50 mL round-bottomed flask was charged with solid KHMDS (95%, 388 mg, 1.85 mmol, 2.0 equiv). The flask was capped with a rubber septum, removed from the glovebox, and anhydrous THF (3.7 mL) was added. The resulting mixture was stirred at ambient temperature for 10-15 min to ensure complete dissolution of the solid, then cooled to -10 °C in an ice/acetone bath and stirring continued for 15 min before adding alcohol **23** (625 mg, 0.92 mmol, 1.0 equiv) in anhydrous THF (7.0 mL) (Note: alcohol **23** was azeotroped with PhH three times immediately prior to use) dropwise via syringe before another portion of THF (1.2 mL) was used to render the transfer quantitative. The pale-yellow reaction mixture was stirred an additional 10 min at -10 °C before TBS-protected pyrrole **24** (754 mg, 2.31 mmol, 2.5 equiv) in

anhydrous THF (4.1 mL) was added dropwise via syringe (Note: pyrrole **24** was azeotroped with PhH three times immediately prior to use). The resulting dark pink-orange reaction mixture was allowed 20 min at -10 °C then quenched with the addition of sat. aq. NH₄Cl (5 mL), warmed to ambient temperature, and diluted with EtOAc (5 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (5 to 10 to 15% EtOAc/hexanes) afforded a 5.8:1 inseparable diastereomeric mixture of chloride **25** as a yellow-orange foam (515 mg, 0.56 mmol, 61% yield).

An analytical sample of the major diastereomer of chloride **25** was obtained by a second round of purification via SiO₂ flash chromatography (1.5% EtOAc/CH₂Cl₂). The stereochemistry of the major diastereomer of the chloride substituted C_{14} -H was determined by nOe analysis.

TLC (10% EtOAc/hexanes): R_f 0.32 (UV, p-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.38 – 7.33 (m, 10H, *Ph*CH₂OCH₂O), 7.11 (s, 1H, C₂₆), 7.10 (s, 1H, C₂₄), 6.38 (dd, J = 7.8, 2.4 Hz, 1H, C₃), 6.30 (t, J = 3.1 Hz, 1H, C₂₅), 5.26 (s, 1H, C₁₄), 5.10 (s, 1H, C₁₈), 5.00 (d, J = 6.5 Hz, 1H, PhCH₂OC*H*₂O), 4.99 (d, J = 6.3 Hz, 1H, PhCH₂OC*H*₂O), 4.96 (d, J = 6.4 Hz, 1H, PhCH₂OC*H*₂O), 4.89 (d, J = 6.6 Hz, 1H, PhCH₂OC*H*₂O), 4.87 (dd, J = 1.9, 1.0 Hz, 1H, C₁₈), 4.84 (d, J = 11.9 Hz, 1H, PhC*H*₂OCH₂O), 4.76 (d, J = 11.5 Hz, 1H, PhCH₂OCH₂O), 4.62 (d, J = 11.5 Hz, 1H, PhC*H*₂OCH₂O), 4.58 (d, J = 11.9 Hz, 1H, PhC*H*₂OCH₂O), 3.96 (d, J = 10.4 Hz, 1H, C₁₀), 3.43 (d, J = 7.9 Hz, 1H, C₄), 2.04 (m, 1H, C₉), 2.00 – 1.96 (m, 2H, C₇), 1.86 (d, J = 2.3 Hz, 3H, C₁₇), 1.73 (s, 3H, C₁₉), 1.66 – 1.59 (m, 2H, C₈), 1.21 (s, 3H, C₂₀), 1.15 (d, J = 6.5 Hz, 3H, C₂₁), 0.93 (s, 9H, Si(*t*-*Bu*)Me₂), 0.53 (s, 3H, Si(*t*-*Bu*)*Me*₂), 0.52 (s, 3H, Si(*t*-*Bu*)*Me*₂), 0.17 (s, 9H, TMS). ¹³C NMR (101 MHz, CDCl₃): δ 166.3 (*C*₁₅=O), 160.0 (*C*₂₂=O), 145.0 (C₂), 139.4 (C₁), 138.0 (C_{Ph}), 137.4 (C₁₃), 137.1 (C_{Ph}), 133.4 (C₂₄), 128.6 (C_{Ph}), 128.4 (C_{Ph}), 128.0 (C_{Ph}), 127.8 (C_{Ph}), 127.5 (C_{Ph}), 127.2 (C₂₃), 121.9 (C₂₆), 117.5 (C₁₈), 111.3 (C₂₅), 98.3 (PhCH₂OCH₂O), 96.6 (C₁₂), 94.1 (C₁₁), 89.5 (PhCH₂OCH₂O), 88.7 (C₆), 82.1 (C₁₀), 73.4 (C₃), 70.4 (PhCH₂OCH₂O), 70.3 (PhCH₂OCH₂O), 58.5 (C₄), 58.2 (C₁₄), 51.7 (C₅), 33.6 (C₉), 28.1 (C₈), 27.1 (Si(*t*-*Bu*)Me₂), 22.5 (C₇), 20.6 (C₁₉), 20.0 (C₂₀), 19.3 (Si-*C*(CH₃)₃), 19.1 (C₂₁), 12.9 (C₁₇), 1.8

 $(TMS), -1.9 (Si(t-Bu)Me_2), -1.9 (Si(t-Bu)Me_2).$

FTIR (NaCl, thin film): 2953, 2930, 1754, 1715, 1262, 1150 cm⁻¹.

HRMS: calc'd for [M+NH₄]⁺935.4458, found 935.4459.

 $[\alpha]_D^{25}: -69^\circ (c = 0.840, \text{CHCl}_3).$

Table S2. Optimization of acylation of C3-alcohol 23

Preparation of pyrrole ester 26:

To an oven-dried, 25 mL round-bottomed flask was added chloride **25** (395 mg, 0.43 mmol, 1.0 equiv) and anhydrous PhH (8.6 mL). The solution was treated with (TMS)₃SiH (0.27 mL, 0.86 mmol, 2.0 equiv) and Et₃B (1.0 M in hexanes, 0.43 mL, 0.43 mmol, 1.0 equiv) before air (4.0 mL) was slowly sparged through the reaction mixture via syringe. Stirring was continued at ambient temperature for 1 h before additional portions of (TMS)₃SiH (0.27 mL, 0.86 mmol, 2.0 equiv), Et₃B (1.0 M in hexanes, 0.43 mL, 0.43 mmol, 1.0 equiv) and air (4.0 mL) were added via syringe. Stirring was then continued until TLC analysis indicated complete consumption of the starting material (*ca.* 1.5 h), during which time the reaction mixture turns dark red-orange. The reaction mixture was next concentrated *in vacuo* and the crude residue was directly purified via SiO₂ flash chromatography (15 to 20 to 25% EtOAc/hexanes) to afford pyrrole ester **26** as a yellow foam (342 mg, 0.39 mmol, 90% yield).

TLC (20% EtOAc/hexanes): R_f 0.36 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, CDCl₃): δ 7.39 – 7.27 (m, 10H, *Ph*CH₂OCH₂O), 7.08 (dd, *J* = 9.5, 3.0 Hz, 1H, C₂₆), 7.06 (dd, *J* = 6.5, 3.1 Hz, 1H, C₂₄), 6.34 (dq, *J* = 7.9, 2.2 Hz, 1H, C₃), 6.27 (dd, *J* = 3.6, 2.6 Hz, 1H, C₂₅), 5.10 (p, *J* = 1.6 Hz, 1H, C₁₈), 4.98 (s, 2H, PhCH₂OC*H*₂O), 4.98 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.89 (s, 1H, C₁₈), 4.88 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.63 (d, *J* = 11.5 Hz, 1H, PhC*H*₂OCH₂O), 4.57 (d, *J* = 11.9 Hz, 1H, PhC*H*₂OCH₂O), 3.97 (d, *J* = 10.3 Hz, 1H, C₁₀), 3.23 (dd, *J* = 3.6, 1.5 Hz, 1H, C₄), 3.21 (d, *J* = 19.5 Hz, 1H, C₁₄), 2.24 (dd, *J* = 19.5, 1.5 Hz, 1H, C₁₄), 2.10 – 2.01 (m, 1H, C₉), 1.87 (d, *J* = 2.3 Hz, 3H, C₁₇), 1.85 – 1.80 (m, 1H, C₇), 1.73 (s, 3H, C₁₉), 1.69 – 1.62 (m, 2H, C₈), 1.58 – 1.45 (m, 1H, C₇), 1.15 (d, *J* = 6.4 Hz, 3H, C₂₁), 0.96 (s, 3H, C₂₀), 0.93 (s, 9H, Si(*t*-*Bu*)Me₂), 0.52 (s, 3H, Si(*t*-Bu)Me₂), 0.17 (s, 9H, TMS).

¹³C NMR (101 MHz, CDCl₃): δ 169.0 (C_{15} =O), 160.4 (C_{22} =O), 144.2 (C₂), 139.0 (C₁), 138.2 (C_{Ph}), 138.0 (C₁₃), 137.2 (C_{Ph}), 133.1 (C₂₆), 128.5 (C_{Ph}), 128.3 (C_{Ph}), 127.9 (C₂₃), 127.9 (C_{Ph}), 127.8 (C_{Ph}), 127.5 (C_{Ph}), 121.6 (C₂₄), 116.9 (C₁₈), 110.9 (C₂₅), 98.2 (PhCH₂OCH₂O), 97.2 (C₁₂), 93.0 (C₁₁), 89.5 (C₆), 89.3 (PhCH₂OCH₂O), 82.3 (C₁₀), 74.4 (C₃), 70.3 (PhCH₂OCH₂O), 70.3 (PhCH₂OCH₂O), 57.4 (C₄), 46.9 (C₅), 39.0 (C₁₄), 33.4 (C₉), 28.0 (C₈), 27.1 (Si(*t*-*Bu*)Me₂), 20.8 (C₂₀), 20.7 (C₁₉), 20.3 (C₇), 19.2 (Si-*C*(CH₃)₃), 19.1 (C₂₁), 12.8 (C₁₇), 1.8 (TMS), -1.8 (Si(*t*-Bu)Me₂), -1.9 (Si(*t*-Bu)Me₂).

FTIR (NaCl, thin film): 2929, 1948, 1712, 1262, 1150, 1094, 1042, 1026 cm⁻¹. **HRMS:** calc'd for $[M+NH_4]^+$ 901.4849, found 901.4846. $[\alpha]_D^{25}: -53^{\circ} (c = 0.335, CHCl_3).$ **Preparation of alcohol S14:**

To an oven-dried, 25 mL round-bottomed flask was added silyl ether **26** (271 mg, 0.31 mmol, 1.0 equiv) and anhydrous THF (6.1 mL). The resulting solution was cooled to 0 °C in an ice/water bath and stirring was continued for 15 min prior to the dropwise addition of TAS-F (253 mg, 0.92 mmol, 3.0 equiv) in a minimal amount of anhydrous DMF (1 mL) via syringe, producing a golden yellow solution (Note: TAS-F was stored and handled in a nitrogen-filled glovebox to maintain the integrity of the reagent). After 30 min at 0 °C, an additional portion of TAS-F (169 mg, 0.61 mmol, 2.0 equiv) in a minimal amount of anhydrous DMF (0.5 mL) was added (Note: On smaller scales (<50 mg scale), a small excess of TAS-F was routinely used without issue; however, on scale-up, the reaction consistently stalled at about 50-60% conversion with the TMS group intact and required additional portions of TAS-F). Stirring at 0 °C was continued for another 30 min at which point TLC and LCMS analysis indicated complete consumption of the starting material. The reaction mixture was diluted with Et₂O (6 mL) and filtered through a short pad of SiO₂ washing with 65% EtOAc/hexanes until TLC analysis indicated complete elution of the desired product. The filtrate was concentrated *in vacuo* and the crude residue was purified by SiO₂ flash chromatography (30 to 40 to 50% EtOAc/hexanes) to afford alcohol **S14** as a clear oil that solidifies into a white solid upon standing (203 mg, 0.259 mmol, 95% yield).

TLC (45% EtOAc/hexanes): R_f 0.43 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, C₆D₆): δ 8.77 (s, 1H, N*H*), 7.42 – 7.34 (m, 2H, *Ph*CH₂OCH₂O), 7.30 – 7.19 (m, 4H, *Ph*CH₂OCH₂O), 7.14 – 7.09 (m, 2H, *Ph*CH₂OCH₂O), 7.05 – 7.00 (m, 1H, *Ph*CH₂OCH₂O), 6.98 (td, *J* = 2.5, 1.3 Hz, 1H, C₂₅), 6.87 – 6.81 (m, 1H, C₃), 6.28 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 6.05 (dt, *J* = 3.7, 2.5 Hz, 1H, C₂₄), 5.29 (dd, *J* = 2.2, 1.1 Hz, 1H, C₁₈), 5.09 (t, *J* = 1.9 Hz, 1H, C₁₈), 4.93 (d, *J* = 5.4 Hz, 1H, PhCH₂OC*H*₂O), 4.70 (d, *J* = 5.5 Hz, 1H, PhCH₂OC*H*₂O), 4.63 (d, *J* = 11.8 Hz, 1H, PhC*H*₂OC*H*₂O), 4.54 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.52 (d, *J* = 11.8 Hz, 1H, PhC*H*₂OCH₂O), 4.35 (d, *J* = 12.4 Hz, 1H, PhC*H*₂OCH₂O), 4.35 (s, 1H, O*H*), 4.30 (d, *J* = 12.4 Hz, 1H, PhC*H*₂OCH₂O), 4.08 (d, *J* = 10.3 Hz, 1H, C₁₀), 3.51 (dd, *J* = 7.9, 1.4 Hz, 1H, C₄), 3.38 (d, *J* = 19.2 Hz, 1H, C₁₄), 2.32 (d, *J* = 2.3 Hz, 3H, C₁₇), 2.21 – 2.14 (m, 1H, C₉), 2.09 (dd, *J* = 19.2, 1.6 Hz, 1H, C₁₄), 1.71 (s, 3H, C₁₈), 1.42 (qd, *J* = 13.1, 12.7, 4.5, 1H, C₈), 1.22 – 1.15 (m, 2H, C₈/C₇), 1.13 – 1.03 (m, 1H, C₇), 0.98 (d, *J* = 6.5 Hz, 3H, C₂₁), 0.82 (s, 3H, C₂₀).

¹³C NMR (101 MHz, C₆D₆): δ 167.8 (C_{15} =O), 160.8 (C_{22} =O), 144.2 (C₂), 139.5 (C₁), 139.0 (C₁₃), 138.3 (C_{Ph}), 137.8 (C_{Ph}), 128.8 (C_{Ph}), 128.7 (C_{Ph}), 128.4 (C_{Ph}), 128.1 (C_{Ph}), 123.8 (C₂₆), 122.6 (C₂₃), 117.1 (C₁₈), 116.0 (C₂₅), 110.7 (C₂₄), 97.8 (PhCH₂OCH₂O), 95.3 (C₁₂), 91.4 (C₁₁), 90.4 (C₆), 89.6 (PhCH₂OCH₂O), 81.8 (C₁₀), 76.0 (C₃), 70.9 (PhCH₂OCH₂O), 70.2 (PhCH₂OCH₂O), 59.4 (C₄), 46.5 (C₅), 39.8 (C₁₄), 33.8 (C₉), 28.3 (C₈), 21.0 (C₁₈), 20.2 (C₂₀), 20.1 (C₇), 18.9 (C₂₁), 13.2 (C₁₇).

FTIR (NaCl, thin film): 3408, 3307, 2929, 1742, 1699, 1313, 1158, 1034 cm⁻¹. **HRMS:** calc'd for [M+NH₄]⁺ 715.3589, found 715.3589.

 $[\alpha]_{D}^{25}: -37^{\circ} (c = 0.685, CHCl_3).$

An oven-dried, 50 mL round-bottomed flask was charged with diene **S14** (225 mg, 0.32 mmol, 1.0 equiv), PtO₂ (80% w/w, 36.6 mg, 0.16 mmol, 50 mol %), and EtOAc (13 mL). The vial was capped with a rubber septum and the reaction mixture was vigorously stirred while flushing the headspace with H₂ for 5 minutes via a double-walled balloon, during which time the brown suspension turns black. The suspension was vigorously stirred under H₂ until LCMS indicated complete consumption of the starting material (*ca.* 25 min), flushed with Ar to remove excess H₂, then diluted with EtOAc (13 mL), filtered through a short pad of Celite, and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (40 to 50% EtOAc/hexanes) afforded **S15** as a clear oil that solidifies into a white solid upon standing (201 mg, 0.29 mmol, 89% yield).

TLC (45% EtOAc/hexanes): R_f 0.42 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, C_6D_6): δ 8.87 (s, 1H, N*H*), 7.42 – 7.34 (m, 2H, *Ph*CH₂OCH₂O), 7.31 – 7.20 (m, 4H, *Ph*CH₂OCH₂O), 7.17 – 7.08 (m, 3H, *Ph*CH₂OCH₂O), 7.08 – 6.99 (m, 1H, *Ph*CH₂OCH₂O), 6.98 (ddd, *J* = 3.9, 2.5, 1.5 Hz, 1H, C₂₅), 6.81 (dq, *J* = 7.9, 2.2 Hz, 1H, C₃), 6.33 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 6.09 (dt, *J* = 3.8, 2.5 Hz, 1H, C₂₄), 4.97 (d, *J* = 5.6 Hz, 1H, PhCH₂OC*H*₂O), 4.74 (d, *J* = 5.6 Hz, 1H, PhCH₂OC*H*₂O), 4.61 (d, *J* = 11.8 Hz, 1H, PhC*H*₂OCH₂O), 4.53 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.50 (d, *J* = 11.8 Hz, 1H, PhC*H*₂OCH₂O), 4.43 (d, *J* = 6.7 Hz, 1H, PhCH₂OC*H*₂O), 4.41 (d, *J* = 12.4 Hz, 1H, PhC*H*₂OCH₂O), 4.36 (d, *J* = 12.4 Hz, 1H, PhC*H*₂OCH₂O), 4.12 (s, 1H, O*H*), 4.07 (d, *J* = 10.3 Hz, 1H, C₁₀), 3.45 (dd, *J* = 8.0, 1.4 Hz, 1H, C₄), 3.38 (d, *J* = 19.1, 1.6 Hz, 1H, C₁₄), 1.42 (qd, *J* = 13.1, 4.5 Hz, 1H, C₈), 1.35 (d, *J* = 7.1 Hz, 3H, C₁₈), 1.21 – 1.15 (m, 2H, C₈/C₇), 1.13 – 1.02 (m, 1H, C₇), 1.00 (d, *J* = 6.5 Hz, 3H, C₂₁), 0.96 (d, *J* = 6.9 Hz, 3H, C₁₉), 0.82 (s, 3H, C₂₀).

¹³C NMR (101 MHz, C₆D₆): δ 167.5 (C_{15} =O), 160.7 (C_{22} =O), 146.0 (C₂), 138.3 (C_{Ph}), 137.9 (C_{Ph}), 137.4 (C₁), 128.8 (C_{Ph}), 128.7 (C_{Ph}), 128.4 (C_{Ph}), 123.7 (C₂₆), 122.9 (C₂₃), 115.6 (C₂₅), 110.8 (C₂₄), 97.9 (PhCH₂O*C*H₂O), 95.3 (C₁₂), 90.9 (C₆), 90.5 (C₁₁), 89.6 (PhCH₂O*C*H₂O), 82.0 (C₁₀), 77.0 (C₃), 71.0 (Ph*C*H₂OCH₂O), 70.3 (Ph*C*H₂OCH₂O), 59.3 (C₄), 46.4 (C₅), 39.7 (C₁₄), 33.8 (C₉), 28.3 (C₈), 27.6 (C₁₃), 22.0 (C₁₈), 20.2 (C₂₀), 20.1 (C₇), 19.0 (C₁₉), 18.9 (C₂₁), 11.8 (C₁₇).

FTIR (NaCl, thin film): 3417, 3306, 2962, 1934, 1743, 1699, 1158, 1026 cm⁻¹. HRMS: calc'd for $[M+Na]^+$ 722.3300, found 722.3299. $[\alpha]_D^{25}$: +7° (c = 0.675, CHCl₃).

Preparation of epoxide 27:

To an oven-dried, 25 mL round-bottomed flask was added alcohol **S15** (175 mg, 0.25 mmol, 1.0 equiv) and anhydrous PhH (5.0 mL). The solution was treated with $VO(acac)_2$ (33.2 mg, 0.13 mmol, 0.5 equiv) and then TBHP (5.5 M in decanes, 0.14 mL, 0.75 mmol, 3.0 equiv) was added via syringe along the side of the flask,

during which time the green solution turns a deep red. After 30 min, additional portions of VO(acac)₂ (16.6 mg, 62.5 μ mol, 0.25 equiv) and then TBHP (5.5 M in decanes, 0.14 mL, 0.75 mmol, 3.0 equiv) were added and stirring was continued at ambient temperature until LCMS indicated complete consumption of the starting material (*ca.* 30-45 min), at which point the reaction mixture fades to a bright orange. The reaction mixture was diluted with EtOAc (5 mL) and quenched with the addition of sat. aq. Na₂S₂O₃ (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (35 to 45% EtOAc/hexanes) afforded epoxide **27** as an off-white foam (135 mg, 0.19 mmol, 75% yield).

TLC (45% EtOAc/hexanes): R_f 0.48 (UV, *p*-anisaldehyde).

¹**H** NMR (400 MHz, C₆D₆): δ 8.89 (s, 1H, N*H*), 7.38 – 7.35 (m, 4H, *Ph*CH₂OCH₂O), 7.27 – 7.23 (m, 2H, *Ph*CH₂OCH₂O), 7.21 – 7.16 (m, 2H, *Ph*CH₂OCH₂O), 7.15 – 7.05 (m, 2H, *Ph*CH₂OCH₂O), 6.96 (ddd, *J* = 3.9, 2.5, 1.4 Hz, 1H, C₂₅), 6.34 (td, *J* = 2.7, 1.4 Hz, 1H, C₂₆), 6.29 (d, *J* = 8.9 Hz, 1H, C₃), 6.09 (dt, *J* = 3.8, 2.5 Hz, C₂₄), 5.20 (d, *J* = 6.4 Hz, 1H, PhCH₂OCH₂O), 4.98 (d, *J* = 6.4 Hz, 1H, PhCH₂OCH₂O), 4.77 (d, *J* = 12.2 Hz, 1H, PhCH₂OCH₂O), 4.61 (d, *J* = 11.7 Hz, 1H, PhCH₂OCH₂O), 4.54 (d, *J* = 12.1 Hz, 1H, PhCH₂OCH₂O), 4.51 (d, *J* = 11.7 Hz, 1H, PhCH₂OCH₂O), 4.47 (d, *J* = 6.8 Hz, 1H, PhCH₂OCH₂O), 4.38 (d, *J* = 6.8 Hz, 1H, PhCH₂OCH₂O), 4.16 (d, *J* = 10.5 Hz, 1H, C₁₀), 3.70 (d, *J* = 19.8 Hz, 1H, C₁₄), 3.20 (s, 1H, OH), 3.12 (dd, *J* = 8.9, 1.6 Hz, 1H, C₄), 2.24 – 2.13 (m, 1H, C₉), 2.16 (dd, *J* = 19.8, 1.7 Hz, 1H, C₁₄), 1.97 (s, 3H, C₁₇), 1.74 (p, *J* = 7.2 Hz, 1H, C₁₃), 1.40 (d, *J* = 7.2 Hz, 3H, C₁₈), 1.39 – 1.30 (m, 1H, C₈), 1.24 – 1.21 (m, 1H, C₈), 1.18 (d, *J* = 6.5 Hz, 3H, C₂₁), 1.15 – 1.09 (m, 2H, C₇), 1.07 (d, *J* = 7.2 Hz, 3H, C₁₉), 0.74 (s, 3H, C₂₀).

¹³C NMR (101 MHz, C_6D_6): δ 167.8 (C_{15} =O), 160.1 (C_{22} =O), 138.8 (C_{Ph}), 138.1 (C_{Ph}), 128.7 (C_{Ph}), 128.6 (C_{Ph}), 128.5 (C_{Ph}), 127.6 (C_{Ph}), 124.6 (C_{26}), 122.1 (C_{23}), 116.0 (C_{25}), 111.0 (C_{24}), 98.0 (PhCH₂O*C*H₂O), 91.8 (C_{12}), 91.7 (C_{11}), 90.3 (C_6), 88.9 (PhCH₂O*C*H₂O), 81.8 (C_{10}), 80.2 (C_2), 76.2 (C_1), 73.4 (C_3), 70.6 (Ph*C*H₂OCH₂O), 70.5 (Ph*C*H₂OCH₂O), 64.2 (C_4), 47.7 (C_5), 38.9 (C_{14}), 33.1 (C_9), 30.7 (C_{13}), 28.4 (C_8), 20.5 (C_{20}), 19.9 (C_7), 19.2 (C_{21}), 18.0 (C_{18}), 17.4 (C_{19}), 14.6 (C_{17}).

FTIR (NaCl, thin film): 3305, 2964, 1747, 1705, 1026 cm⁻¹. HRMS: calc'd for $[M+Na]^+$ 738.3249, found 738.3250. $[\alpha]_{D}^{25}$: +37° (c = 0.900, CHCl₃).

Preparation of 20-deoxyspiganthine (3):

An oven-dried, 100 mL round-bottomed flask equipped with a borosilicate glass-coated magnetic stirbar was charged with epoxide **27** (135 mg, 0.19 mmol, 1.0 equiv) and anhydrous THF (18 mL) under Ar (Note: epoxide **27** was azeotroped with PhH three times immediately prior to use). The solution was cooled to -78 °C via a dry ice/acetone bath and stirring continued for 15 min before a freshly prepared solution of LiDBB (0.16 M, 11.8 mL, 1.89 mmol, 10 equiv) was carefully added dropwise via syringe along the side of the flask. The resulting deep green mixture was stirred for 0.5 h at -78 °C, at which point LCMS analysis indicated complete conversion to the desired product. Sat. aq. NH₄Cl (10 mL) was carefully added before the reaction mixture was warmed to ambient temperature. The organic layer was separated and the aqueous layer was extracted with CHCl₃ (3 x 20

mL). The combined organic layers were dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The crude residue was purified by SiO_2 flash chromatography (0 to 5 to 10% MeOH/CHCl₃) to afford 20-deoxyspiganthine (**3**) (51.8 mg, 0.11 mmol, 58% yield) as a white powder (Note: The purification was made easier by first flushing with CHCl₃ (100 mL) until all of the excess 4,4'-di-*tert*-butylbiphenyl was removed).

TLC (10% MeOH/CH₂Cl₂): R_f 0.29 (UV, p-anisaldehyde).

¹**H NMR (400 MHz, CD₃OD):** δ 7.01 (dd, J = 2.5, 1.5 Hz, 1H, C₂₆), 6.86 (dd, J = 3.8, 1.5 Hz, 1H, C₂₄), 6.22 (dd, J = 3.8, 2.5 Hz, 1H, C₂₅), 5.65 (d, J = 8.5, Hz, 1H, C₃), 3.75 (d, J = 10.3 Hz, 1H, C₁₀), 3.23 (dd, J = 8.5, 1.8 Hz, 1H, C₄), 2.41 (h, J = 6.6 Hz, C₁₃), 2.35 (d, J = 13.5, 1H, C₁₄), 2.04 (td, J = 12.5, 5.9 Hz, 1H, C₇), 1.77 – 1.87 (m, 1H, C₉), 1.77 (dd, J = 13.5, 2.0 Hz, 1H, C₁₄), 1.45 – 1.58 (m, 2H, C₈), 1.37 (s, 3H, C₁₇), 1.22 (ddd, J =13.0, 4.3, 2.4, 1H, C₇), 1.17 (d, J = 6.5 Hz, 3H, C₁₈), 1.02 (d, J = 6.5 Hz, 3H, C₂₁), 0.84 (d, J = 6.4 Hz, 3H, C₁₉), 0.77 (s, 3H, C₂₀).

¹³C NMR (101 MHz, CD₃OD): δ 161.9 (C₂₂), 125.3 (C₂₆), 123.6 (C₂₃), 116.8 (C₂₄), 110.9 (C₂₅), 103.6 (C₁₅), 97.7 (C₁₂), 86.8 (C₁₁), 86.8 (C₂), 85.2 (C₃), 84.3 (C₆), 72.8 (C₁₀), 64.7 (C₁), 57.7 (C₄), 48.2 (C₅), 41.4 (C₁₄), 35.4 (C₉), 31.1 (C₁₃), 29.9 (C₈), 26.4 (C₇), 19.5 (C₁₈), 19.1 (C₁₉), 19.0 (C₂₁), 16.7 (C₂₀), 9.7 (C₁₇).

FTIR (NaCl, thin film): 3436, 2929, 1682, 1411, 1319 cm⁻¹.

HRMS: calc'd for [M–H]⁻476.2290, found 476.2290.

 $[\alpha]_{D}^{25}$: +6° (*c* = 0.160, MeOH).

5. ¹H and ¹³C NMR Comparison Tables for (+)-Ryanodine and (+)-20-Deoxyspiganthine

	Inoue et al. Report,	This Work,
Proton	Synthetic (+)-Ryanodine ⁸	Synthetic (+)-Ryanodine
No.	¹ H NMR, 400 MHz, CD ₃ OD	1 H NMR, 600 MHz, CD ₃ OD
	1 H [δ , multi., J (Hz)]	1 H [δ , multi., J (Hz)]
1		
2		
3	5.64 (s)	5.64 (s)
4		
5		
6		
7a	1.26 (ddd, J = 12.7, 4.5, 2.3)	1.26 (ddd, J = 12.7, 4.6, 2.0)
7b	2.10 (ddd, <i>J</i> =12.7, 12.7, 5.4)	2.10 (td, <i>J</i> = 12.9, 5.2)
8a	1.46 (dddd, J = 13.1, 5.4, 5.4, 2.3)	1.48 (td, $J = 13.0, 4.7$)
8b	1.53 (dddd, J = 13.1, 5.2, 1.6)	1.54 (dtd, J = 12.4, 5.2, 1.8)
9	1.85 (ddqd, J = 13.1, 10.4, 6.8, 5.4)	1.85 (tdd, J = 10.2, 8.5, 5.6)
10	3.80 (d, J = 10.4)	3.80 (d, J = 10.2)
11		
12		
13	2.27 (qq, J = 6.8, 6.3)	2.27 (h, J = 6.8)
14a	1.93 (d, J = 13.6)	1.94 (d, J = 13.6)
14b	2.57 (d, J = 13.6)	2.57 (d, J = 13.6)
15		
17	1.39 (s)	1.40 (s)
18	0.76 (d, J = 6.3)	0.76 (d, J = 6.5)
19	1.12 (d, J = 6.8)	1.12 (d, J = 6.7)
20	0.90 (s)	0.90 (s)
21	1.02 (d, J = 6.8)	1.02 (d, J = 6.5)
22		
23		
24	$6.88 (\mathrm{dd}, J = 3.6, 1.4)$	$\overline{6.88}$ (dd, $J = 3.7, 1.5$)
25	$\overline{6.24}$ (dd, $J = 3.6, 2.7$)	$\overline{6.24}$ (dd, $J = 3.8, 2.5$)
26	7.04 (dd, J=2.7, 1.4)	7.04 (dd, J = 2.5, 1.5)

Table S3. Comparison of ¹H NMR data for (+)-Ryanodine

	Inoue et al. Report,	This Work,	
Carbon	Synthetic (+)-Ryanodine ⁸	Synthetic (+)-Ryanodine	Chemical Shift
No.	¹³ C NMR, 100 MHz, CD ₃ OD	¹³ C NMR, 101 MHz, CD ₃ OD	Difference, $\Delta\delta$
	$^{13}C(\delta)$ ppm	13 C (δ) ppm	
1	65.9	65.9	0
2	84.4	84.3	0.1
3	90.9	90.8	0.1
4	92.4	92.3	0.1
5	49.7	49.6	0.1
6	86.6	86.5	0.1
7	26.8	26.8	0
8	29.3	29.3	0
9	35.4	35.4	0
10	72.8	72.8	0
11	87.4	87.4	0
12	96.7	96.7	0
13	30.9	30.9	0
14	41.8	41.8	0
15	102.9	102.9	0
17	10.2	10.2	0
18	18.9	18.9	0
19	19.5	19.5	0
20	12.5	12.6	0.1
21	19.0	19.0	0
22	161.8	161.8	0
23	123.4	123.3	0.1
24	117.0	117.0	0
25	110.9	110.9	0
26	125.6	125.6	0

Table S4. Comparison of ¹³C NMR data for (+)-Ryanodine

Note: The carbon assignment of C5 by Inoue and coworkers was deduced from HMBC correlation.

	Hübner et al. Report,	This Work,
Proton	Natural (+)-20-Deoxyspiganthine ¹¹	Synthetic (+)-20-Deoxyspiganthine
No.	¹ H NMR, 360 MHz, CD ₃ OD	¹ H NMR, 400 MHz, CD ₃ OD
	1 H [δ , multi., J (Hz)]	1 H [δ , multi., J (Hz)]
1		
2		
3	5.65 (d, J = 8.5)	5.65 (d, J = 8.5)
4	3.23 (dd, J = 8.5, 2)	3.23 (dd, J = 8.5, 1.8)
5		
6		
7a	2.04 (ddd, J = 13.5, 12, 6)	2.04 (td, J = 12.5, 5.9)
7b	1.22 (ddd, J = 13.5, 4.5, 4)	1.22 (ddd, J = 13.0, 4.3, 2.4)
8a	1.45–1.58 (m)	1.45–1.58 (m)
8b	1.45–1.58 (m)	1.45–1.58 (m)
9	1.77–1.87 (m)	1.77–1.87 (m)
10	3.75 (d, J = 10)	3.75 (d, J = 10.3)
11		
12		
13	2.41 (qq, J = 6.5, 6.5)	2.41 (h, $J = 6.6$)
14a	2.35 (d, <i>J</i> = 13.5)	2.35 (d, <i>J</i> = 13.5)
14b	1.77 (dd, 13.5, 2)	1.77 (dd, J = 13.5, 2.0)
15		
17	1.36 (s)	1.37 (s)
18	1.16 (d, J = 6.5)	1.17 (d, J = 6.4)
19	0.84 (d, J = 6.5)	0.84 (d, J = 6.5)
20	0.77 (s)	0.77 (s)
21	1.01 (d, J = 6.5)	1.02 (d, J = 6.5)
22		
23		
24	$6.85 (\mathrm{dd}, J = 4, 1.5)$	$6.86 (\mathrm{dd}, J = 3.8, 1.5)$
25	4.22 (dd, J = 4, 2.5)	6.22 (dd, J = 3.8, 2.5)
26	7.01 (dd, $J = 2.5, 1.5$)	7.01 (dd, $J = 2.5, 1.5$)

Table S5. Comparison of ¹H NMR data for (+)-20-Deoxyspiganthine

Note: In the isolation report, Hübner and coworkers report that $C_{25}H$ has a ¹H NMR chemical shift of 4.22 ppm; however, all related ryanodines and spiganthines reported in the same paper share a $C_{25}H$ ¹H NMR chemical shift between 6.22 and 6.25 ppm, as observed in our synthetic sample. This is assumed to be a typographical error made by the isolation team.

	Hübner et al. Report,	This Work,	
Carbon	Natural (+)-20-Deoxyspiganthine ¹¹	Synthetic (+)-20-Deoxyspiganthine	Chemical Shift
No.	¹³ C NMR, 90 MHz, CD ₃ OD	¹³ C NMR, 101 MHz, CD ₃ OD	Difference, $\Delta\delta$
	¹³ C (δ) ppm	¹³ C (δ) ppm	
1	64.7	64.7	0
2	86.6	86.8	0.2
3	85.2	85.2	0
4	57.7	57.7	0
5	48.3	48.2	0.1
6	84.3	84.3	0
7	26.4	26.4	0
8	29.9	29.9	0
9	35.4	35.4	0
10	72.9	72.8	0.1
11	86.8	86.8	0
12	97.8	97.7	0.1
13	31.1	31.1	0
14	41.5	41.4	0.1
15	103.6	103.6	0
17	9.6	9.7	0.1
18	19.5	19.5	0
19	19.1	19.1	0
20	16.7	16.7	0
21	18.9	19.0	0.1
22	162.0	161.9	0.1
23	123.6	123.6	0
24	116.8	116.8	0
25	110.9	110.9	0
26	125.3	125.3	0

Table S6. Comparison of ¹³C NMR data for (+)-20-Deoxyspiganthine

6. Single Crystal X-ray Diffraction Data

Low-temperature diffraction data (φ - and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu-K_a radiation ($\lambda = 1.54178$ Å) from a I_µS HB micro-focus sealed X-ray tube. All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEXII software.¹² Absorption corrections were applied using SADABS.¹³ The structure was solved by intrinsic phasing using SHELXT¹⁴ and refined against F² on all data by full-matrix least squares with SHELXL-2014¹⁴ using established refinement techniques.¹⁵ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups and hydroxyl groups). Absolute configuration was determined by anomalous dispersion.¹⁶ Crystallographic data for **16**, **18**, **1**, and **3** can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif under CCDC deposition numbers 1508482–1508485. Graphical representation of the structures with 50% probability thermal ellipsoids was generated using Mercury visualization software.

	CX-10-028	CX-10-036	CX-10-076	6-AH-235
CCDC Number	1508483	1508482	1508484	1508485
Empirical formula	C42H48BNO10	C ₂₅ H ₃₃ NO ₈	C ₃₃ H ₅₇ NO ₁₂	$C_{58}H_{90.76}N_2O_{18.38}$
Formula weight	737.62	475.52	659.79	1110.22
T (K)	100	100	200	100
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Trigonal
Space group	$P2_1$	P21212	P212121	P32
a, Å	8.7826(4)	18.9642(8)	10.9374(3)	20.8804(7)
b, Å	22.1496(10)	11.2161(4)	11.9604(3)	20.8804(7)
c, Å	10.3099(5)	13.5628(5)	27.4814(7)	11.5639(5)
α, °	90	90	90	90
β, °	109.928(2)	90	90	90
γ, °	90	90	90	120
Volume, Å ³	1885.50(15)	2884.87(19)	3595.00(16)	4366.3(3)
Ζ	2	4	4	3
$d_{\text{calc}}, \text{g/cm}^3$	1.299	1.095	1.219	1.267
Abs. coeff. (mm^{-1})	0.749	0.676	0.759	0.770
θ range, °	3.991 to 79.080	3.258 to 66.577	3.216 to 79.361	4.234 to 79.349
Abs. correction	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
GOF	1.047	1.055	1.045	1.023
$R_{I}^{a}, wR_{2}^{b}, [I \ge 2\sigma(I)]$	0.0311, 0.0732	0.0563, 0.1375	0.0389, 0.1064	0.0448, 0.1071
Flack parameter	0.12(5)	0.23(12)	0.05(3)	0.07(6)
Extinction coefficient	0.00071(18)	n/a	n/a	n/a

Table S7. Crystal and refinement data for compounds 16, 18, 1, and
--

 ${}^{a}\mathbf{R}_{1} = \Sigma ||\mathbf{F}_{o}| - |\mathbf{F}_{c}|| / \Sigma |\mathbf{F}_{o}|. {}^{b}\mathbf{w}\mathbf{R}_{2} = [\Sigma [\mathbf{w}(\mathbf{F}_{o}^{2} - \mathbf{F}_{c}^{2})^{2}] / \Sigma [\mathbf{w}(\mathbf{F}_{o}^{2})^{2}]^{1/2}.$

Special Refinement Details for 16

Compound **16** crystallizes in the monoclinic space group P2₁ with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion (Flack = 0.12(5)).¹⁶

Figure S2. Structure of 18 with 50% probability anisotropic displacement ellipsoids.

Special Refinement Details for 18

Compound **6** crystallizes in the orthorhombic space group P2₁2₁2 with one molecule in the asymmetric unit. The coordinates for the hydrogen atoms bound to N1, O5, O6, O7, and O8 were located in the difference Fourier synthesis, however, refinement was unstable and they were included into the model at geometrically calculated positions and refined using a riding model. A void analysis with the program PLATON¹⁷ revealed the presence of two large voids and the program SQUEEZE¹⁸ was used to remove the contribution of the disordered electron density inside this void from the structure factors. Absolute configuration was determined by anomalous dispersion (Flack = 0.23(12)).¹⁶ Bayesian statistics further confirm the absolute stereochemistry: P2(true) = 1.000, P3(true) = 0.977, P3(rac-twin) = 0.023, and P3(false) = 0.2×10^{-13} .¹⁷

Figure S3. Structure of 1 with 50% probability anisotropic displacement ellipsoids. Co-crystallized diethyl ether and water molecules are omitted for clarity.

Special Refinement Details for 1

Compound 1 crystallizes in the orthorhombic space group $P2_12_12_1$ with one molecule in the asymmetric unit, along with two molecules of diethyl ether and one molecule of water. One ether molecule was disordered over multiple positions, however refinement was unstable and the disorder was not included in the model. The bond distances of all hydrogen atoms bound to O and N atoms were refined with bond restraints. Absolute configuration was determined by anomalous dispersion (Flack = 0.05(3)).¹⁶

Figure S4. Structure of 3 with 50% probability anisotropic displacement ellipsoids. Co-crystallized diethyl ether, water, and the second molecule of 3 are omitted for clarity.

Special Refinement Details for 3

Compound **3** crystallizes in the trigonal space group $P3_2$ with two molecules in the asymmetric unit, along with two molecules of diethyl ether and 0.38 molecules of water. One ether molecule was disordered over multiple positions, however refinement was unstable and the disorder was not included in the model. The highest electron density maxima was modeled as a partially occupied water (0.38). The hydrogen atoms for this water molecule were not located in the difference Fourier synthesis, and were included into the model at geometrically calculated positions that fulfilled H-bonding interactions and refined using a riding model. The bond distances of all hydrogen atoms bound to O and N atoms were refined with bond restraints. No hydrogen bond acceptor was found for H7A. Absolute configuration was determined by anomalous dispersion (Flack = 0.07(6)).¹⁶

6. References

- Deslongchamps, P.; Bélanger, A.; Berney, D. J. F.; Borschberg, H. J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M.; Liao, C. C.; MacLachlan, F. N.; Maffrand, J. P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L.; Saint-Laurent, L.; Saintonge, R.; Soucy, P. "Total Synthesis of Ryanodol." *Can. J. Chem.* **1979**, *57*, 3348-3354.
- Deslongchamps, P.; Bélanger, A.; Berney, D. J. F.; Borschberg, H. J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M.; Liao, C. C.; Maclachlan, F. N.; Maffrand, J. P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L.; Saint-Laurent, L.; Saintonge, R.; Soucy, P. "The Total Synthesis of (+)-Ryanodol. 1. General Strategy and Search for a Convenient Diene for the Construction of a Key Tricyclic Intermediate." *Can. J. Chem.* 1990, *68*, 115-126.
- Deslongchamps, P.; Bélanger, A.; Berney, D. J. F.; Borschberg, H. J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M.; Liao, C. C.; Maclachlan, F. N.; Maffrand, J. P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L.; Saint-Laurent, L.; Saintonge, R.; Soucy, P. "The Total Synthesis of (+)-Ryanodol. 2. Model Studies for Ring B and Ring C of (+)-Anhydroryanodol. Preparation of a Key Pentacyclic Intermediate." *Can. J. Chem.* 1990, *68*, 127-152.
- Deslongchamps, P.; Bélanger, A.; Berney, D. J. F.; Borschberg, H. J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M.; Liao, C. C.; Maclachlan, F. N.; Maffrand, J. P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L.; Saint-Laurent, L.; Saintonge, R.; Soucy, P. "The Total Synthesis of (+)-Ryanodol. 3. Preparation of (+)-Anhydroryanodol from a Key Pentacyclic Intermediate." *Can. J. Chem.* 1990, *68*, 153-185.
- Deslongchamps, P.; Bélanger, A.; Berney, D. J. F.; Borschberg, H. J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M.; Liao, C. C.; Maclachlan, F. N.; Maffrand, J. P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L.; Saint-Laurent, L.; Saintonge, R.; Soucy, P. "The Total Synthesis of (+)-Ryanodol. 4. Preparation of (+)-Ryanodol from (+)-Anhydroryanodol." *Can. J. Chem.* **1990**, *68*, 186-192.
- 6. Nagatomo, M.; Koshimizu, M.; Masuda, K.; Tabuchi, T.; Urabe, D.; Inoue, M. "Total Synthesis of Ryanodol." J. Am. Chem. Soc. 2014, 136, 5916-5919.
- 7. Nagatomo, M.; Hagiwara, K.; Masuda, K.; Koshimizu, M.; Kawamata, T.; Matsui, Y.; Urabe, D.; Inoue, M. "Symmetry-Driven Strategy for the Assembly of the Core Tetracycle of (+)-Ryanodine: Synthetic Utility of a Cobalt-Catalyzed Olefin Oxidation and alpha-Alkoxy Bridgehead Radical Reaction." *Chem. Eur. J.* **2016**, *22*, 222-229.
- 8. Masuda, K.; Koshimizu, M.; Nagatomo, M.; Inoue, M. "Asymmetric Total Synthesis of (+)-Ryanodol and (+)-Ryanodine." *Chem. Eur. J.* **2016**, *22*, 230-236.
- 9. Masuda, K.; Nagatomo, M.; Inoue, M. "Chemical Conversion of Ryanodol to Ryanodine." *Chem. Pharm. Bull.* **2016**, *64*, 874-879.
- 10. Donohoe, T. J.; House, D. "Ammonia free partial reduction of aromatic compounds using lithium di-tertbutylbiphenyl (LiDBB)." *J. Org. Chem.* **2002**, *67*, 5015-5018.
- 11. Hübner, H.; Vierling, W.; Brandt, W.; Reiter, M.; Achenbach, H. "Minor constituents of *Spigelia anthelmia* and their cardiac activities." *Phytochemistry* **2001**, *57*, 285-296.
- 12. APEX2, Version 2 User Manual, M86-E01078. Bruker Analytical X-ray Systems: Madison, WI.

- 13. Sheldrick, G. M. SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector Frames. University of Göttingen, 2008.
- 14. Sheldrick, G. M. "A short history of SHELX." Acta Cryst. 2008, 64, 112-122.
- 15. Müller, P. "Practical suggestions for better crystal structures." *Crystallogr. Rev.* 2009, 15, 57-83.
- 16. Parsons, S.; Flack, H. D.; Wagner, T. "Use of intensity quotients and differences in absolute structure refinement." *Acta Cryst.* **2013**, *69*, 249-259.
- 17. Spek, A. L. "Structure validation in chemical crystallography." Acta Cryst. 2009, 65, 148-155.
- 18. Vandersluis, P.; Spek, A. L. "Bypass: An Effective Method for the Refinement of Crystal-Structures Containing Disordered Solvent Regions." *Acta Cryst.* **1990**, *46*, 194-201.

7. ¹H and ¹³C NMR Spectral Data

Parameter		Value									S38	
Data File Name	/ Volumes/ nmrdata/ c	henxu91/ nmr/ xuch	en-160611-10-28-	-3/ 1/ fid								
Title	xuchen-160611-10-28	-3.1.fid										
Origin	Bruker BioSpin GmbH	ł										
Solvent	CDCI3											
Temperature	295.0											
Pulse Sequence	zg30			0								
Number of Scans	16											
Receiver Gain	87.8		BC		11 -	-						
Relaxation Delay	1.0000				المعالي							
Pulse Width	11.7000		Me-	/ X								
Acquisition Time	4.0894			T.	$\langle \uparrow \uparrow$	ĥ						
Acquisition Date	2016-07-11113:53:53		BOI	Mo Me C	н ö						i i	
Spectrometer Frequency	400.13		501	B ⁻⁰	Ũ							
Spectral width	8012.8			, I								
Lowest Frequency	-1545.0			Me								
Acquired Size	20769			16								
Spectral Size	65536			10								
Λ												
	······		//\			N				WUmm		
۲ł		ŀ┰┥ ŀ┰ŧ┰┥	ילי,		<u>ਖ਼</u> ੑੑੑੑੑੑੑੑੑੑੑੑੑੑੑ	н т 1		μ	᠂ᠵ᠋ᡃ᠉ᡃ᠇᠋ᡃᡃ᠋ᡃᡃ	ᡃᠵᡟᡕᡃ	ተ	
0.93		9.99 1.01 1.02	1.02	400100 70010 700000000	20102	1.00		0.99	1.01 2.13 3.96 2.07	3.16	3.01	
.5 10.0 9.5 9.	0 8.5 8.0	7.5 7.0	6.5 6.0	5.5 5.0 ppm	4.5 4.0	3.5	3.0	2.5	2.0 1.5	5 1.0	0.5	0.0 -0

Parameter	Value			S55
Data File Name	/ Volumes/ nmrdata/ ahan/ nmr/ 6-AH-217-2-CH	/ 1/ fid		
Title	6-AH-217-2-CH.1.fid			
Origin	Bruker BioSpin GmbH			
Solvent	CDCI3			
Temperature	295.0			
Pulse Sequence	zg30			
Number of Scans	16	<0		
Receiver Gain	30.3	Me II		
Relaxation Delay	1.0000	вомоч / її Ц		
Pulse Width	11.7000			
Acquisition Time	4.0894	Me / / / Me	2	
Acquisition Date	2016-08-31T13:44:13			
Spectrometer Frequen	cy 400.13	HO! O		
Spectral Width	8012.8	ROWO H		
Lowest Frequency	-1545.6			
Nucleus	1H	22		
Acquired Size	32768	22		
Spectral Size	65536			
				M
	년 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	1.02111.0333111.033111.03	1.12.11.11.11.11.11.12.11.12.12.12.12.12	
.5 10.0 9.5	9.0 8.5 8.0 7.5 7.0 6.5	6.0 5.5 5.0 4.5 4.0 ppm	3.5 3.0 2.5 2.0 1.5 1	.0 0.5 0.0 -0

Parameter	Value						S57
Data File Name	/ Volumes/ nmrdata/ ahan/ nmr/ 6-AH-265	CH/ 1/ fid					
Title	6-AH-265-CH.1.fid						
Origin	Bruker BioSpin GmbH						
Solvent	CDCI3						
Temperature	294.9						
Pulse Sequence	zg30						
Number of Scans	8		10				
Receiver Gain	30.3		O Me				
Relaxation Delay	1.0000	BOMO	$\gamma I = 1$				
Pulse Width	11.7000	Mer	ナレイショ	Me			
Acquisition Time	4.0894						
Acquisition Date	2016-09-02T09:14:07	- 7		ò			
Spectrometer Frequer	ncy 400.13	вомо	Me'?L	0			
Spectral Width	8012.8	201110	TMS ''				
Lowest Frequency	-1545.6						
Nucleus	1H		612				
Acquired Size	32768		513				
Spectral Size	65536						
	Ju			N	L		,
· · · · · · · · ·			2.03 2.03 1.05 2.07 2.07 2.07 2.07 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	1.00-	1.01	2.15 3.05 3.05 3.05 3.05 3.05 3.05 3.11 3.25 3.11 2.28	9.02-
.5 10.0 9.5	9.0 8.5 8.0 7.5 7.0	6.5 6.0 5.5	5.0 4.5 ppm	4.0 3	3.5 3.0	2.5 2.0 1.5 1.0	0.5 0.0 -0

Parameter	Value
Data File Name	/ Volumes/ nmrdata/ ahan/ nmr/ 6-AH-225-CH/ 1/ fid
Title	6-AH-225-CH.1.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCl3
Temperature	294.9
Pulse Sequence	zg30
Number of Scans	6
Receiver Gain	30.3
Relaxation Delay	1.0000
Pulse Width	11.7000
Acquisition Time	4.0894
Acquisition Date	2016-09-06T11:57:21
Spectrometer Frequency	400.13
Spectral Width	8012.8
Lowest Frequency	-1545.5
Nucleus	1H
Acquired Size	32768
Spectral Size	65536

23

Parameter	Value								S61
Data File Name	/ volumes/ nmrdata/ anan/ nmr/ 6-Al	H-211-CH/ 1/ 110							
Origin	0-ATI-211-CTI.1.110 Bruker BioSpin CmbH								
Solvent									
Temperature	294.9							1	
Pulse Sequence	za30								
Number of Scans	8								
Receiver Gain	197.4								
Relaxation Delay	1.0000		CL ₂ C.	// //					
Pulse Width	11.7000		0.30	ペッ					
Acquisition Time	4.0894		П	Ν.					
Acquisition Date	2016-07-20T20:19:29		ő	1					
Spectrometer Freque	ncv 400.13		0	TBS					
Spectral Width	8012.8								
Lowest Frequency	-1545.7		24						
Nucleus	1H		24						
Acquired Size	32768								
Spectral Size	65536								
		Λ							
	//							/\	
	0.97 - 1.03 -	1.00 ⊢						9.05 -	6.03 ≢
.5 10.0 9.5	9.0 8.5 8.0 7.5 7.	0 6.5 6.0	5.5 5.0 ppm	4.5 4.0	3.5 3.0	2.5 2.0	1.5	1.0	0.5 0.0 -0

Parameter		Value								S63	
Data File Name	/ Volumes/ nmrdata/ al	han/ nmr/ 6-AH-27	3-CH/ 1/ fid								
Title	6-AH-273-CH.1.fid										
Origin	Bruker BioSpin GmbH										
Solvent	CDCI3										
Temperature	295.0										
Pulse Sequence	zg30										
Number of Scans	8			0							
Receiver Gain	127.1			Ma II							
Relaxation Delay	1.0000		PON		_	3					
Pulse Width	11.7000		N. 00		Mall	1)					
Acquisition Time	4.0894		Me	-/IT LO		<u>/</u>					
Acquisition Date	2016-09-07T19:17:41			Tit	Ϋ́	1					
Spectrometer Frequency	400.13		BOM	ио́ме́́рі н	ö	TBS					
Spectral Width	8012.8		DON	ΤMS ''	•						
Lowest Frequency	-1545.6										
Nucleus	1H			25							
Acquired Size	32768										
Spectral Size	65536										
					1						
			NL		M	ال			_NU hand han		h
		96.0 1.97⊥⊥ 0.96.0	1.03 1.00 실	0.096 11110 11110 11117 1117 1111	1.07 ⊣⊥				3.14∄ 3.29 ∕∄ 9.03 ∡	3.00 3.00 2.00	1 2 2
.5 10.0 9.5 9.	0 8.5 8.0	7.5 7.0	6.5 6.0	5.5 5.0 4.5 ppm	4.0	3.5	3.0 2.5	2.0 1.5	1.0	0.5	0.0 -0

Parameter		Value							S66		
Data File Name	/ Volumes/ nmrdata/ ah	nan/ nmr/ 6-AH-25	0-CH/ 1/ fid								
Title	6-AH-250-CH.1.fid										
Origin	Bruker BioSpin GmbH										
Solvent	CDCI3							1			
Temperature	295.0										
Pulse Sequence	zg30										
Number of Scans	8			0							
Receiver Gain	127.1										
Relaxation Delay	1.0000		BO	MOIZINE	1 -	7					
Pulse Width	11.7000				~l	//					
Acquisition Time	4.0894		Me-	TAL	ייייייי						
Acquisition Date	2016-08-21T11:46:16			TH	Ϋ́	N					
Spectrometer Frequency	400.13		BOM	_{ис} ме́рЪ н	ö	TBS					
Spectral Width	8012.8		DON	‴тмś ''	0						
Lowest Frequency	-1545.4										
Nucleus	1H			26							
Acquired Size	32768										
Spectral Size	65536										
			M								
		9.96 ⊥ 1.02 ↓ 0.99 ↓	1.00	数为为法式。 1.03114 1.1111200	1.00 1.07 壬	0.93 1.08 1	년 88 1.13 1.28 1.14 1.28 1.14 1.28 1.14 1.28 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.1	3.25 3.26 9.35 人	2.92	₩ 0.0 0.0	
.5 10.0 9.5 9.	0 8.5 8.0	7.5 7.0	6.5 6.0	5.5 5.0 4. ppm	5 4.0	3.5 3.0	2.5 2.0 1.5	1.0	0.5	0.0	-0

