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Abstract

The purpose of this Supplementary Document is to support the manuscript entitled
“OMBlast: Alignment Tool for Optical Mapping Using a Seed-and-extend Approach”.
Sections, figures and tables in this document are all preceded by an S to distinguish them
from those in the main manuscript.
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S1 Introduction

Reference

Bionano Molecule

Resolu!on limit (Bionano)

Missing segment (OpGen)

Extra signal

Extra cutMissing signal

Missing cut

OpGen Molecule

Signal

Cut Segment

Figure S1: A comparision of the terminology used in optical mapping for instruments from
Bionano Genomics Inc. and OpGen Inc.

Bionano Genomics Inc. and OpGen Inc. are two major providers of instruments that pro-
duce high-throughput optical mapping data. Supplementary Figure S1 shows how the termi-
nology used between them differ slightly. We represent molecules as rectangles (i.e., red for
the reference optical map; green for the query optical map) with black vertical bars to indicate
the location of signals. Each section of an optical map bounded by two signals is a segment.

Supplementary Figure S1 also demonstrates that the terminology used by the two compa-
nies to describe the types of errors found in optical maps also differ slightly. This is further
summarized in Supplementary Table S1.

Table S1: Sources of error in optical maps generated by Bionano Genomics Inc. and OpGen
Inc.

Error Bionano Genomics Inc. OpGen Inc.
Scaling Error Constant in all segments Varies across all segments
Measuring Error Imaging hardware
Missing Cuts Incomplete enzyme digestion

Extra Cuts
Non-specific enzyme cut

Random DNA break
Smallest Segment Limit Resolution limit Missing Segment

6



S2 Algorithm Details
OMBlast consists of three main modules:

1. Alignment and extension;
2. Overlapping alignments merging; and
3. Alignment joining.

We describe each one in this section.

S2.1 Seeding and extension
Seeds are first obtained from the query optical map via a sliding window. Similar to BLAST
(Altschul et al., 1990), these seeds are sought in the reference genome and then extended. One
notable difference between OMBlast and BLAST is that OMBlast operates on the set of signals
instead of the set of nucleotides.

S2.1.1 Seeding

Indexing

Seed Search

Reference k-tuples

Query k-tuples Seeds

Seed Database

Extension Step...

Figure S2: Overview of seed generation.

As shown in Supplementary Figure S2, the seeding module of OMBlast consists of two
stages:

1. Indexing reference k-tuples into a seed database and

2. Searching matching seeds for the query k-tuple using the generated seed database.

There are two methods for identifying seeds of length k, which we have dubbed Seeding
Method A and Seeding Method B.

With Seeding Method A, the reference k-tuples are indexed by generating k sorted lists.
Each of these lists are sorted independently by a different key. So, one list is sorted by the
first position, a second list is sorted by the second position, etc. For a given query k-tuple,
binary search is applied on each of these lists, the results of which are intersected for further
consideration.

In Seeding Method B, the reference k-tuples are indexed by placing them into bins of 5 kbp
each. Each bin is enumerated so that they can be identified by a character, and then placed in
a look-up table. Seeds from the query k-tuple are transformed in a similar way so that strings
can be used to locate the bins of interest. In order to avoid missing any bins, a range of bins are
obtained. After extracting all the reference k-tuples from the look-up table, they are subjected
to further validation. A 3-tuple is shown in Supplementary Figure S3(B) as an example to
demonstrate the iteration of combination of bins.
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Figure S3: Details of seed generation.
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S2.1.2 Extension
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Figure S4: Overview of recursive refinement during extension.

As shown in Figure S4, a constant number of rounds of extensions is taken to refine the
best scaling factors. In every round, given the initial scale si and a range of scale variations
sr, the seed is extended to the left and right separately using three scaling factors si − sr, si
and si + sr. Each pair of left and right extensions is combined and the scale yielding the best
extension score is taken as the best scale sb for this round of extension. To further refine the
scale, the best scale sb is passed for another round of extension along with half of the range of
scale variation.
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Figure S5: Illustration of steps in extension.

Supplementary Figure S5 provides further details in the extension process. The distance
between two signals Si and Sj is defined as D(Si, Sj). Before extension, the starting reference
signal Rs and starting query signal Qs forms a signal matching signal pair as an anchor point.
During extension, this module checks if signal Rx matches Qy. If the distance D(Rs, Rx) and
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Extension from Seed 1

Extension from Seed 2

Alignment from Seed 1Alignment from Seed 2

Reference

Query High-error region

Seed 1

Seed 2

Figure S6: An example of the extension of the query with high-error region.

D(Qs, Qy)× scale are similar according to Equation (1), Rx matches Qy and form a matching
signal pair RxQy, followed by the increment of x and y by 1 (Cases ii and iv). If the distances
do not match, x is incremented by 1 if D(Rs, Rx) < D(Qs, Qy) × scale (Case i), or y is
incremented by 1 if D(Rs, Rx) > D(Qs, Qy) × scale (Case iii). This method guarantees to
find the best number of matches in the whole extension but not the best alignment details.
The extension ends when either Rx or Qy is the last available signal on the reference or query
respectively. To further facilitate the extension process, a heuristic approach is taken to end the
extension when consecutive extra or missing sites are encountered. Under some conditions, this
heuristic blocks further extension when a query contains a local high-error region, as illustrated
in Supplementary Figure S6.

In this example, the query could be extended from Seed 1 and Seed 2, but the high-error re-
gion prevents further left and right extension on Seed 1 and Seed 2, respectively. Nevertheless,
the two separate alignments which covers the confidently aligned regions can be joined by the
alignment-joining module, to be described in Supplementary Section S2.3.

S2.2 Overlapping Alignment Merging
After extension, the alignments are merely partial alignments since they will match only some
of the signals in the reference. Supplementary Figure S7 illustrates the difference between two
types of overlapping alignments using two examples.

Case 1 (Supplementary Figure S7(A)) shows an example of two alignments with over-
lapping signals. The query’s signals from Q1 to Q3 in alignment 1 overlaps with the same
query’s signals in alignment 2. Additionally, the reference’s signal from R2 to R4 in alignment
1 overlaps with the reference’s signals R1 to R3 in alignment 2. However, in this example,
the matching signal pairs R2Q1, R3Q2, and R4Q3 in alignment 1 are clearly distinct from the
matching signal pairs R1Q1, R2Q2, and R3Q3 in alignment 2.

Case 2 (Supplementary Figure S7(B)) shows an example of two alignments with overlap-
ping matching signal pairs since the matching signal pair R5Q4 exists in both alignment 1 and
alignment 2. Overlapping matching signal pair implies at least one query and one reference sig-
nal are shared between the two alignments. Therefore, these partial alignments always contain

10



Reference

Q 1Q 2Q 3

A
Q 1Q 2Q 3

R1 R2 R3 R4

Query - Alignment 1

Query - Alignment 2

Reference

Q 1Q 2Q 3

R1 R2 R3 R4

Query - Alignment 1

Query - Alignment 2
Q 1Q 2Q 3

Q 4

Q 4

R5

B

Case 1: Overlapping signals

Case 2: Overlapping matching signal pairs

Figure S7: Difference between alignments with overlapping matching signal pairs and overlap-
ping signals.

overlapping signals, even though the converse is not necessarily true.
Partial alignments extended from various seeds could lead to overlapping alignments. Sup-

plementary Figure S8 shows an example of 3 partial alignments being overlapping. This mod-
ule merges these partial alignments with overlapping matching signal pairs (Case 2) into one
single concordant partial alignment. Matching signal pairs from all partial alignments are taken
as nodes. Each partial alignment provides the information of edges on the connection of match-
ing signal pairs. For example, nodes pointed to by the outgoing edges of R1Q1 include R2Q2,
as suggested by partial alignments 1 and 3, and R3Q2, as suggested by partial alignment 2
(Supplementary Figure S8(A)). The weight of the edge is set to a certain score dependent on
the number of extra or missing sites present between two matching pairs of signals. The weight
is calculated based on the former part of Equation (3) (tm×um− tes×ues− tms×ums), where
um = 1, ums = |ix+1 − ix| − 1 and ues = |jx+1 − jx| − 1. Edges with or without extra or
missing signals are represented in black and red arrows respectively.

A weighted directed acyclic graph is built Supplementary Figure S8(B) based on the nodes
and edges in Supplementary Figure S8(A). The graph is acyclic because for every directed
edge from Rx1Qy1 to Rx2Qy2 , it is guaranteed x2 > x1 and y2 > y1. The path with highest
total weight is obtained and the nodes (matching signal pairs) of this path are taken to form the
concordant partial alignment.

S2.3 Alignment Joining
In this module, partial alignments are joined as the complete final alignment. We first de-
scribe the relationship between partial alignments. Despite the removal of partial alignments
with overlapping matching signal pairs by the previous module (Case 2, Supplementary Fig-
ure S7(B)), some partial alignments still contain overlapping signals and require trimming
(Case 1, Supplementary Figure S7(A)). A graph-based approach is then used for the best com-
bination of partial alignments.

S2.3.1 Alignment Relationship

Any two non-overlapped partial alignments has any one of the following relationships (Supple-
mentary Figure S9). Two partial alignments are close together on the reference if their distance
is smaller than a user-defined value which is 250 kbp by default.

11
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Figure S8: Example of merging overlapping alignments.

Insertion/Deletion Two partial alignments are close together on the reference with the same
orientation

Inversion Two partial alignments are close together on the reference with different orienta-
tions. The orientation of both forward-reverse or reverse-forward pairs are valid.

S2.3.2 Overlapped Alignment Trimming

Two alignments that overlap with no shared matching signal pair can both be trimmed so that
the information that they give are no longer contradictory. Within OMBlast, we have im-
plemented an algorithm which trims partial alignments by a predetermined number of times
(default as 5) before joining them up. If they cannot be trimmed, then the partial alignments
cannot be joined together. Trimming proceeds a step at a time for each partial alignment.

For example, in Supplementary Figure S10, we have two alignments A1 and A2. Alignment
A1 needs to be trimmed from the right, towards the starting position of the seed. Alignment
A2, though, has its seed on the right; thus, it needs to be trimmed from the left. Consider A1x
and A2y being the partial alignment 1 after x trimming events and partial alignment 2 after
y trimming events respectively. We iteratively increment x and y (trim A1 and A2) until A1
and A2 are non-overlapping. We define the pair x′, y′ as a child of x, y if x′ ≥ x and y′ ≥ y.
We assume the fewer the trimming steps on an alignment the better. Therefore, if A1x and
A2y are non-overlapping, any children of the pair x, y is not attempted. Here, A15 and A21 is
non-overlapping. Any children pair like x = 6 and y = 2 is not attempted but x = 6 and y = 0
will be attempted. The end result is the joined alignment at the bottom of the figure, which is
composed of A1x, the left half of A1, and A2y, the right half of A2.

12



Insertion Inversion
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Query
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Figure S9: Example of partial alignment relation.

Reference

Alignment A1

Alignment A2

Seed Start Posi!on Trimming Direc!on

Trimming Direc!on Seed Start Posi!on

Reference

Best joined alignment

Reference

Figure S10: Example of trimming.

S2.3.3 Alignment Joining

In this example, only insertion, deletion and inversion relationship between alignments are con-
sidered. From Supplementary Figure S11(A), 5 parital alignments of a query are overlapping.
To find the best combination of partial alignments, we need to build a table of relationships be-
tween any two partial alignments (Supplementary Figure S11(B)), such that each relationship
is taken as a node in a graph. Next we need to determine the edge between all nodes. We loop
through every node in the order of starting alignment followed by stopping alignment.

(i) Edges are formed between the alignment pair 1,2 and any node with starting element 2,
i.e. 2,3 and 2,4.

(ii) Similarly, the alignment pair 1,3 has edges to 3,4 and 3,5.

(iii) In some cases, if a partial alignment contains too few matching signals and could not
pass the user-defined threshold (which is default to 3) after trimming in both directions,
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Figure S11: Example of alignment joining.

such a relationship is discarded. For example, the alignment pair 2,3 can only be linked
to 3,5 but not 3,4. This is because partial alignment 3 is too short after being trimmed
twice if an edge is built between 2,3 and 3,4. A visual relationship in Supplementary
Figure S11(A) shows clear overlap between partial alignment 2, 3 and 4.

(iv) the alignment pair 2,4 have only one edge to 4,5.

(v) the alignment pair 3,4, similarly, have only one edge to 4,5.

After building the edges among the alignment pairs, a weighted directed graph is formed and
the path with the best score is taken as the final alignment by using dynamic programming.

S2.3.4 Uniqueness of Alignment

As an alternative to the scoring system described in Section 3.4, the user can use uniqueness.
Intuitively, uniqueness is an indicator for a particular alignment, normalized across all other
alignments. Uniqueness indicates how an alignment stands out from the other alignments based
on the score. Low uniqueness reflects either one or both of these factors: (1) the query can be
aligned to more than one region confidently; and (2) the score of this alignment is similar to
the alignment on other non-specific regions. Only the top 10 alignments with the highest score
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are considered in the calculations. The uniqueness u of the final alignment i is defined as:

ui =

{
1
j

: all possible alignments share the same score
oi−omin+b∑
j(oj−omin+1)

: otherwise
(1)

where oi denotes the score of the ith alignment, as described in Equation (4), and b denotes a
base constant which defaults to 1.
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S3 Experiment Framework
All analysis was run on an Intel Xeon CPU E5-4640 (2.40 GHz) with 512 GB of main memory
running the Ubuntu 14.04.2 operating system with version 3.13 of the Linux kernel. The fol-
lowing software was used: Python 2.7.6, Java 1.7.0 55 and the GNU compiler collection 4.5.2.
The five tools used in our study are presented in Supplementary Table S2.

Table S2: Software used in our study.

Software Methodology Version Citation
OMBlast 1 Seed-and-extend 1.0 This manuscript

RefAligner 2 Dynamic programming, Hashing r3520 Shelton et al. (2015)
Valouev 3 Dynamic programming N/A Valouev et al. (2006)
SOMA 4 Dynamic programming 2 Nagarajan et al. (2008)
TWIN 5 FM-index 1.03rc Muggli et al. (2014)

S3.1 Program Installation
Executable files for RefAligner and TWIN were downloaded directly. The Java archive file
for OMBlast was run directly in a Java Virtual Machine. The following minor changes to the
downloaded source codes were made prior to installation.

Valouev Line 43 was removed in fit mols and store als.cc to disable the erasure of
short segments.

SOMA Lines 295–297 were removed in match.cc to allow multiple placements of molecules
on the same region of a reference.

S3.2 Commands Executed
Supplementary Table S3 gives the commands executed for the experiments performed in our
investigation. Since different alignment methods require various formats, we assume the prefix
of reference, query and result file be ref, data and result, respectively.

S3.3 Method of Analysis
A molecule is defined to have aligned correctly if:

1. the alignment position and the simulated position is overlapping; and

2. the alignment strand matches the simulated strand (This criterion is skipped when check-
ing the correctness of alignments on data with inversions).

Throughout our paper, we measured the relative performance of alignment methods in terms
of the following three criteria:

1https://github.com/aldenleung/OMBlast
2http://www.bnxinstall.com/RefalignerAssembler/Linux/SSE/
3http://www-hsc.usc.edu/ valouev/papers/om alignment/optmap alignment.tar.gz
4http://www.cbcb.umd.edu/finishing/soma-v2.tar.gz
5http://www.cs.colostate.edu/twin/

16

https://github.com/aldenleung/OMBlast
http://www.bnxinstall.com/RefalignerAssembler/Linux/SSE/
http://www-hsc.usc.edu/~valouev/papers/om_alignment/optmap_alignment.tar.gz
http://www.cbcb.umd.edu/finishing/soma-v2.tar.gz
http://www.cs.colostate.edu/twin/


OMBlast

java --Xmx120G --jar OMBlast.jar --refmapin
ref.ref --optmapin data.sdata --optresout
result.omd --writeunmap false --filtermode 1
--postjoinmode 2 --clustermode 1 --thread 1

OMBlast (Inversion)

java --Xmx120G --jar OMBlast.jar --refmapin
ref.ref --optmapin data.sdata --optresout
result.omd --writeunmap false --filtermode 1
--postjoinmode 2 --clustermode 2 --thread 1

RefAligner
RefAligner -ref ref.cmap -i data.cmap -o
result -maxthreads 1

Valouev fit ref.valdata data.valdata > result.txt
SOMA soma-v2 -m ref.opt -s data.silico -o result

TWIN

python om2bytes.py ref.opt ref.bin 1 *
twin --opt map ref.bin --silico map
data.silico --smallest frag length 0 >
result.txt
python twin2psl.py result.txt ref.bin
result.psl *

Table S3: Command-line options used for experiments.

Precision The percentage of molecules that were aligned correctly.
Recall The percentage of correctly aligned molecule out of total input molecules.
Time The amount of time spent by each program (also called “user time”).

Precision and recall are depicted together as precision-recall graphs, as explained in Sec-
tion 4.2.

Under default settings, RefAligner, Valouev and SOMA each output a single alignment.
The split-mapped partial alignments output by OMBlast lie very close to the region in both
insertion/deletion and inversion mode. If any of the partial alignments aligns correctly, the
alignment itself is defined to align correctly. TWIN outputs multiple possible alignments lying
on both nearby and distant regions. We define the possible alignments as being “nearby” if all
of them overlap with others. A custom program in Java was written to retain alignments of
TWIN if they are located at nearby regions. The first possible alignment is then taken as the
representative alignment for verifying the precision and recall.
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S4 Default Parameters
Most parameters in OMBlast can be user-defined. Through empirical analysis on various or-
ganisms, we have defined a list of default parameters for the best performance. The analysis of
these important parameters is described in this section.

S4.1 Seeding Algorithm
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Figure S12: Analysis on the running time of two seeding methods.

As indicated earlier, both Method A (intersection of sorted lists) and Method B (binning
and searching) for identifying seeds produce identical results (See Supplementary Figure S3
for an explanation of the underlying methods.). Thus, we only compare the running times of
the two methods but not the downstream extension process.

Supplementary Figure S12 and Supplementary Figure S13 present the running time and
memory usage of the two methods against various values for the seed length, respectively.
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Figure S13: Analysis on the memory usage of two seeding methods.

Each panel represents synthetic optical mapping data derived from the genomes of one of the
four different species. Experiments with the 3 replicate data sets for each species was repeated
10 times each to yield the standard deviations shown.

In terms of running time, excluding H. sapiens for the moment, Method B is faster than
Method A, except when the seed length becomes large. Of course, the difference in time is
only 8 or 12 seconds since these data sets come from smaller genomes. For the H. sapiens data
set, the running time of Method B is several times faster than Method A, for all values of seed
lengths considered.

The memory usage in Method A remains constant across various seed lengths. Excluding
H. sapiens, Method B uses less memory for shorter seed lengths but more memory for longer
seed lengths than Method A. For the H. sapiens data set, Method B uses less memory than
Method A for all values of seed lengths considered. Since the default seed length of OMBlast
is only 3, as deduced in Supplementary Section S4.2, we employ only Method B as the default
algorithm for the remainder of our experiments.
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S4.2 Seed Length

H. sapiens

C. elegans

S. cerevisiae

E. coli

100 100.5 101 101.5 102 102.5

Time (seconds)

10 9 8 7 6 5 4 3

Figure S14: Running time (seconds) for various species with varying seed lengths.

Seed length determines the number of potential seeds for extension. Briefly, with a longer
seed length, the target hit becomes more specific and faster seed search ensues (Supplementary
Figure S14). However, the error tolerance decreases which can lead to inferior precision and
recall even at low error, as shown with the human data set (Supplementary Figure S15). To
have the best alignments, a default value of 3 is set for the default seed length.

S4.3 Match Scores
The value of a score for a match (tm), extra signal (tes) and missing signal (tms) are intercon-
nected and relative. In our analysis that follows, tm is fixed at 5, while penalty scores for extra
and missing signals are iterated across a range of values from 0 to 5. No single pair of penalty
scores work best among various species and error rates. We choose 2 and 2 as the default values
for tes and tms, respectively. Supplementary Figure S16 indicates the precision-recall relation-
ship for the selected pair of default value in bold line, while other combinations are represented
as grey lines.
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Figure S15: Precision-recall graphs for H. sapiens with varying seed lengths.
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Figure S16: Precision-recall graphs for H. sapiens with varying match scores.
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S4.4 Error Tolerance
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Figure S17: Precision-recall graphs for H. sapiens with varying error tolerances.

Having both too high or too low error tolerance is detrimental to the alignment results. With
low error tolerance, data sets with higher error rate have a higher chance to be unaligned, and
even worse, aligned to the wrong genomic region. With high error tolerance, running time
increases as more seeds are extracted and more possible regions are extended (Supplementary
Figure S18).

We considered various combinations of scaling and measurement error. We varied scaling
error from 0 to 0.2, in increments of 0.05. We varied measurement error from 0 to 1250, in
increments of 250. The bold line in the precision-recall graphs of Supplementary Figure S17
indicate the default value (0.05 in scaling error and 500 in measurement error) which works
well at various error rates.

Meanwhile, Supplementary Figure S18 shows the running time for each of the combination
of parameters. Along the horizontal axes is the running time in seconds on a logarithmic scale.
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Figure S18: Running time for H. sapiens data set with medium error rate at varying error
tolerances. The vertical axes represents measurement error while the horizontal axes represents
running time in seconds. Each panel represents a different value for scaling error.

Along the vertical axes is the scaling error. Each panel represents different values for the
measurement error.
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S4.5 Alignment Joining Mode
Since the insertion/deletion mode can help OMBlast tolerate consecutive errors, leading to in-
terrupted extension, enabling this module offers better accuracy than disabling this module.
This is true for the data sets without SVs (Supplementary Figure S19) and with SVs (Supple-
mentary Figure S20). The precision-recall graphs shown represent the H. sapiens data set with
medium error rate.

Hence, enabling insertion/deletion mode suits most cases except inversion. Enabling inver-
sion mode provides more freedom in alignment. It leads to a slightly diminished precision if
the data set does not contain any inversions (Supplementary Figure S19). Therefore it is rec-
ommended that inversion mode is enabled when the data set contains inversions, or inversion
is the focus of downstream analysis (Supplementary Figure S20).

In terms of running time, enabling insertion/deletion mode or inversion mode runs slightly
slower comparing to disabling all alignment joining modules (Supplementary Figure S21).
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Figure S19: Precision-recall graphs for various alignment joining modes for the H. sapiens data
set at medium error rate without SVs.
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Figure S20: Precision-recall graphs for various alignment joining modes for the H. sapiens data
set at medium error rate in the presence of SVs.
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S5 Simulation Data

S5.1 Reference Sequences

Table S4: Accession IDs of genomes downloaded from NCBI.

E. coli S. cerevisiae C. elegans H. sapiens
NC 000913.3 NC 001133.9 NC 003279.8 NC 000001.11 NC 000017.11

NC 001134.8 NC 003280.10 NC 000002.12 NC 000018.10
NC 001135.5 NC 003281.10 NC 000003.12 NC 000019.10

NC 001136.10 NC 003282.8 NC 000004.12 NC 000020.11
NC 001137.3 NC 003283.11 NC 000005.10 NC 000021.9
NC 001138.5 NC 003284.9 NC 000006.12 NC 000022.11
NC 001139.9 NC 000007.14 NC 000023.11
NC 001140.6 NC 000008.11 NC 000024.10
NC 001141.2 NC 000009.12
NC 001142.9 NC 000010.11
NC 001143.9 NC 000011.10
NC 001144.5 NC 000012.12
NC 001145.3 NC 000013.11
NC 001146.8 NC 000014.9
NC 001147.6 NC 000015.10
NC 001148.4 NC 000016.10

GCTCTTCN’

CGAGAAGN 

CAATACACCAATAAGAAGCTCTTCCAGCGCCAATGAGTGTGACATCGTTGCAGGTCC

CCACTCAGCTCTTCGCGGCTGGATACCGCAAGTAGCTCTTCGATGAATAGCGGAGCT

TACCCGTCCTGAAGAGCCTGAAGAGCCGAGTGCCAACTTCGCTCTACACCTCTCTAT

TTGAAGAGCTTCATTTAGGCAGCGCATGGCTCTTCAACCCCTCGTGTCAATTCTAGC

AAAGCTCTTCTTGTAAAATCCCTCGTGCACGAAGAGCTCGCTTTTGAGCTCAACATG

000000000000000000000000010000000000000000000000000000000

000000000000000100000000000000000000000000100000000000000

000000001000000001000000000000000000000000000000000000000

100000000000000000000000000000000001000000000000000000000

000000000001000000000000000010000000000000000000000000000

Nicking Enzyme

Recogni!on Site

Figure S22: Explanation of in silico data generation.

Reference sequences were downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/) on Febru-
ary 13, 2015. The accession IDs of the downloaded data are given in Supplementary Table S4.

These reference genomes were pre-processed for our simulation experiments as follows.
Since not all of the programs supported multiple chromosomes as input, we concatenated all
of the chromosomes of each genome into a single file, following the order in Supplementary
Table S4. Then, all locations of the nicking enzyme sites were identified. Next, the reference
sequences were converted to a sequence of “0” and “1” to represent the absence and presence
of a signal, respectively. This procedure is depicted in Supplementary Figure S22.
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S5.2 Reference Optical Maps
Table S5 shows some statistics about the reference optical maps that were generated, including
the size of each genome, the total number of signals and the average number of bases between
signals.

Table S5: Information about the optical maps from the in-silico digested reference genomes.

Organism
Genome Total Average Bases

Size (Mbp) Signals Between Signals (kbp)
E. coli 4.6 683 6.8 ± 7.3

S. cerevisiae 12.1 1953 6.2 ± 6.7
C. elegans 100.3 14837 6.8 ± 8.0
H. sapiens 3088.3 377143 8.2 ± 83.2

S5.3 Generation of Simulated Data

Table S6: Error parameters of the simulated data.

Error Rate None Low Medium High
Extra Signal Rate 0 0.000005 0.00001 0.00002

Missing Signal Rate 0 0.05 0.1 0.2
Scaling 0 0.02 0.04 0.08

Measurement (bp) 0 500 500 500
Resolution (bp) 0 1200 1200 1200

From each of these reference genomes, 1000 molecules were extracted at random. In this
simulation, we assumed all reference genomes are non-circular. Data generation for a certain
setting was repeated 3 times each in order to obtain 3 replicate data sets. Various levels of
errors were then introduced, which we have categorized as none, low, medium and high error
rate. The meaning for each of these categories are defined in Supplementary Table S6. The
justification for the error parameters and the respective distributions for data generation are
reported elsewhere (manuscript in preparation). Data generation was done in 4 steps, which
were ordered according to the experimental flow.

S5.3.1 Initial Molecule Position

A random molecule size was derived from an exponential distribution with the average size as
200 kbp. A random position on the reference was selected. If the end of the random molecule
size exceeded the end of the reference genome, then the end of the molecule was truncated
accordingly.

S5.3.2 SV Incorporation

Artificial data with structural variations (SV) were devised to evaluate the alignment methods.
The SVs that were considered included insertions, deletions and inversions.

We used the following procedure for simulating insertions and deletions. Sequences of
lengths 50 kbp or 100 kbp were either inserted or deleted. When generating the optical maps, a
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sufficient length was sampled from the genome so that the lengths after the SV was introduced
would be close to 200 kbp. Simulated data with insertion or deletion was generated using an
average size of (Original Average Size − Insertion/Deletion Size). Deletions were performed
in the middle of the optical map. As for insertions, we ensured that the probability of a signal
in the inserted region was equal to the overall probability from the original reference genome.
As with deletions, the inserted region was added to the middle of the optical map.

The procedure for generating synthetic data with inversions was relatively easier. The sec-
ond half of each molecule was inverted so as to simulate an inversion breakpoint.

S5.3.3 Intrinsic Error in Molecules

Three sources of errors were included in simulated data generation. First, missing signals were
removed from the molecules, such that each signal was assumed to have an independent chance
of missing, as indicated in the row missing signal rate of Supplementary Table S6. Next, extra
signals were introduced into the molecules. The number of extra signals was determined by a
Poisson distribution with an average number taken as (the derived molecule size × extra signal
rate), as indicated in the row extra signal rate of Supplementary Table S6. Finally, scaling
error was introduced using a Cauchy distribution with the median defined as 1, and standard
deviation indicated in the row scaling of Supplementary Table S6.

S5.3.4 Error in Molecule Imaging and Measurement

Other than the data set without any error, all error induced in this section remains constant
because such errors are directly linked to the equipment quality. To simulate the resolution
error set with res base pairs, we iterate from the beginning of the molecule the signal (sigf ).
For every signal iterated from the end of the molecule sigr to the signal sigf , there was a chance
cm to merge all signals in between sigf and sigr according to the equation below:

cm =
1

1 + e−0.01×(sigr−sigf−res)
(2)

where res is indicated in the row resolution of Supplementary Table S6.
Upon the merging of signals, a new signal was set as the mean position of all merged signals.

To induce measurement error, a uniform distribution was employed to modify the position of
all signals within a restricted range, as indicated in the row measurement of Supplementary
Table S6.
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S6 Without Structural Variations

S6.1 Simulated Data Preprocessing
In the current simulated data generation model, the size of the first and last segments of an
optical map was usually smaller than the signal-to-signal length. In OMBlast, RefAligner and
TWIN, the first and last segments were neglected during the alignment process. In Valouev and
SOMA, these segments were all considered and led to poorer performance. Therefore, the first
and last segments were removed for these two alignment methods.

TWIN ran fast in general but for more than 10 hours and terminated with an error in a
few cases. We believe the presence of repetitive signal patterns was the cause of this. Thus,
molecules with repetitive patterns were removed, as summarized in Supplementary Table S7,
so that TWIN terminated normally. Examples of the molecules with repetitive patterns are
shown in Supplementary Table S8. In the analysis, we assumed the removed molecules were
“not aligned”. By removing these molecules (which accounted for less than 2% of the entire
data set) before alignment, TWIN ran much faster and achieved a slightly lower recall level.
The results for TWIN in the manuscript and this supplementary document have had such pre-
processing of the data performed.

Since Valouev, SOMA and TWIN do not support multiple chromosomes, in this simulation,
we joined all of the chromosomes into a single reference for each species. The statistics of the
genomes are shown in Table S5.

Table S7: IDs of removed molecules for TWIN.

Data set
IDs of removed optical maps

Species Error rate Replicate
S. cerevisiae none 1 56, 92, 134, 237, 395, 543, 566, 599, 753, 878, 925,

990, 999
S. cerevisiae none 2 40, 94, 316, 343, 424, 470, 515, 563, 598, 920, 935,

995
S. cerevisiae none 3 106, 116, 124, 179, 180, 227, 276, 422, 434, 642,

656, 743, 836, 907, 993
C. elegans none 1 169, 360, 604, 889, 968
C. elegans none 3 541, 622
H. sapiens none 1 211
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Table S8: Example repetitive signals that were removed to accommodate TWIN.

Data set
Segment details of the example optical maps

Species
Error

Replicate
Optical

rate Map ID
S. cerevisiae none 1 134 3953;976;129;5483;11562;5481;

7166;35;44;35;35;44;35;35;35;35;
44;35;44;35;44;44;35;44;35;44;
44;44;35;44;44;44;35;35;44;44;
44;35;44;44;134;44;1537;1060;
1963;9656;2002;1277;170;5759;
3302;2729;13120;2716;1686;2325;
7472;2110;4653;6089;13684;6486; 2287;881

C. elegans none 1 360 15646;5806;25786;2456;183;367;
367;183;367;175;551;183;551;367;
175;735;367;183;183;367;183;183;
367;367;183;183;183;183;183;367;
183;183;183;183;887;5426;8457;
20829;15200;11713;15422;12569

H. sapiens none 1 211 37501;2790;5449;9995;5529;5624;
5574;5141;770;3780;3270;720;28773;
5316;3394;23704;9447;13839;1470;
16011;4532;2875;109;22;70;6208;
45;45;45;45;45;45;45;45;45;45;45;
45;45;45;45;45;45;45;45;45;45;707;
4197;20;1580;64;64;64;64;64;64;
64;64;64;64;64;64;64;64;64;64;64;
64;64;64;64;64;64;64;64;64;64;64;
64;64;64;64;41495
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S6.2 Additional Results
For the remainder of this section, we present results for species other than H. sapiens and
without any SVs. These results have been omitted from the manuscript due to space limitations.

In the manuscript, the running time and memory usage for various species at medium error
rate was shown in Figure 2 and Supplementary Figure S23. Here, we show the running time
and memory usage results for all error rates, a species at a time. The running time results shown
are for E. coli (Supplementary Figure S24(a)), S. cerevisiae (Supplementary Figure S24(b)), C.
elegans (Supplementary Figure S24(c)) and H. sapiens (Supplementary Figure S24(d)). The
memory usage results shown are for E. coli (Supplementary Figure S25(a)), S. cerevisiae (Sup-
plementary Figure S25(b)), C. elegans (Supplementary Figure S25(c)) and H. sapiens (Supple-
mentary Figure S25(d))

H. sapiens

C. elegans

S. cerevisiae

E. coli

0 5 10
Memory (GB)

SOMA TWIN Valouev RefAligner OMBlast

Figure S23: Memory usage of different alignment methods at medium error across four species,
without any SVs. Along the horizontal axes is the memory usage in GB. (*) Results of SOMA
on the C. elegans and H. sapiens data sets are missing in this graph.
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Figure S24: Alignment speed (user time) of different alignment methods without SVs in the
data (all species).
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Figure S25: Memory usage of different alignment methods without SVs in the data (all
species).
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To check the minimum memory requirements for OMBlast on the H. sapiens data set, we
assigned the maximum memory available to the Java virtual machine by using the “-Xmx”
parameter. Supplementary Figure S26 reports on the relationship between running time and
maximum memory available to OMBlast on this data set with medium error rate. When less
than 100 MB was available, an “OutOfMemoryError” exception was thrown by the program,
indicating that OMBlast did not have enough memory for the alignment. As the memory avail-
able to the Java virtual machine increased, running time decreased. However, as the graph
shows, once the available memory reaches 2 GB, no substantial improvements in running time
were observed.
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Figure S26: Running time in seconds with respect to the maximum memory assigned to
OMBlast for aligning the H. sapiens data set at medium error rate. The errors bars represent
standard deviations across 5 replicates.
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The manuscript presented the precision-recall graphs for H. sapiens as Figure 3. Here,
we present the precision-recall graphs for E. coli (Supplementary Figure S27), S. cerevisiae
(Supplementary Figure S28) and C. elegans (Supplementary Figure S29).
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Figure S27: Precision-recall graphs for E. coli without any SVs.
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Figure S28: Precision-recall graphs for S. cerevisiae without any SVs.
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Figure S29: Precision-recall graphs for C. elegans without any SVs.
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Here, we investigated the effects of extra and missing signals on alignment performance.
As a baseline, only measurement and resolution error was applied to the data set. Extra or
missing signals were then introduced independently in two data sets. For the last data set, both
extra and missing signals were added, which was equivalent to the data set with medium error
rate. The performance of OMBlast, RefAligner and Valouev was slightly affected by extra
or missing signals, and the effects were additive, as shown by poorer performance when both
extra and missing signals were present. Both precision and recall level of SOMA declined
significantly upon introduction of extra and missing signals. Even at baseline, the recall level
of SOMA remained low. We believe that this could be attributed to the stringent selection of
unique matches from the alignment results by SOMA. Interestingly, we found that TWIN still
yields a very low recall level even when no extra or missing signals were introduced. One
potential explanation for the inferior performance of TWIN was that it required the whole
optical map to be aligned, making it very susceptible to resolution error where close signals
could be combined. The precision-recall graphs for E. coli (Supplementary Figure S30), S.
cerevisiae (Supplementary Figure S31), C. elegans (Supplementary Figure S32) and H. sapiens
(Supplementary Figure S33) are presented below.
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Figure S30: Precision-recall graphs for E. coli without any SVs.
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Figure S31: Precision-recall graphs for S. cerevisiae without any SVs.
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Figure S32: Precision-recall graphs for C. elegans without any SVs.
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Figure S33: Precision-recall graphs for H. sapiens without any SVs.
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S7 With Structural Variations

S7.1 Additional Results
The existence of SVs do not have a large impact on the running time and memory usage of
these alignment methods. Here, we show the running time (Supplementary Figure S34) and
memory usage results (Supplementary Figure S35) for all error rates, a species at a time.
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Figure S34: Alignment speed (user time) of different alignment methods at medium error with
various SVs in the data (all species).

In the manuscript, Figure 4 presented the precision-recall graphs for H. sapiens with in-
sertions, deletions and inversions at medium error rate. Here, we present the precision-recall
graphs at same experiment conditions but for E. coli (Supplementary Figure S36), S. cerevisiae
(Supplementary Figure S37) and C. elegans (Supplementary Figure S38).
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Figure S35: Memory usage of different alignment methods at medium error with various SVs
in the data (all species). Along the horizontal axes is the memory in GB.
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Figure S36: Precision-recall graphs for E. coli with SVs.
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Figure S37: Precision-recall graphs for S. cerevisiae with SVs.
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Figure S38: Precision-recall graphs for C. elegans with SVs.
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S8 Real Data Experiments

S8.1 Data Generation
The DNA extraction and imaging method followed previously described protocols (Lam et al.,
2012). Briefly, DNA of high molecular weight extracted from the A. baumannii cells were
digested with the Nt.BspQI nicking endonuclease and repaired with a fluorescent nucleotide.
The backbone of DNA is labeled by YOYO-1. The digested DNA was passed through the
nanochannel in IrysChip and photographed.

S8.2 Duplicated Optical Maps
Duplicated optical maps were observed in the YH data set (Cao et al., 2014), where the dupli-
cated optical maps have similar IDs. The first slot of duplication involves IDs from 8000000000
to 8099999999 and from 8100000000 to 8199999999. The second slot of duplication involves
IDs from 8200000000 to 8299999999 and from 8300000000 to 8399999999. Because of
this, the optical maps with IDs in the range of 8100000000-8199999999 and 8300000000-
8399999999 were removed from analysis.

S8.3 Optical Maps Filtering
Short optical maps with few signals are usually aligned with low confidence, which impairs
precision. Therefore, empirically, data filtering is performed to remove these optical maps.
Optical maps with sizes smaller than 100 kbp or with less than 10 signals were removed from
the analysis. We noted that RefAligner and Valouev could align a larger number of short optical
maps than OMBlast, but from our experience, these alignments are usually of lower confidence.

S8.4 Consistency
We used consistency to measure the similarity in results between pairs of alignment methods.
Let the two sets of results be the sets X and Y , respectively. Consistency gives the percentage
of alignments that are overlapping – that is, if the corresponding regions on the reference and
query coincide with one another.

Alternatively, we can express consistency as follows:

consistency =
X ∩ Y , (overlapping)

X ∩ Y
× 100

Thus, query alignments in X that are not in Y are removed from the calculation of consis-
tency (and vice-versa).

S8.5 Additional Results
The main manuscript provided results from using Bionano’s Irys System, whose optical maps
were aligned with A. baumannii 718532 (Yim et al., 2015). Here, we demonstrate that the
results are similar when the same set of molecules are aligned with the representative A. bau-
mannii genome ATCC 17978 from GenBank (accession ID: NC 009085.1). As with A. bau-
mannii 718532, we present the pair-wise consistency in Supplementary Table S9. The running
times of each alignment method on the concatenated scaffold of A. baumannii 718532 from
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Section 4.3.5 and A. baumannii genome ATCC 17978 are shown in Supplementary Table S10.
The fraction of the genome covered by the aligned queries ranged from 75% to 100% for each
alignment method (Supplementary Table S11). Note that TWIN did not output any alignments
on both references.

Table S9: Consistency of pairs of alignment methods on the representative genome
ATCC 17978. Percentages represent the ratio of consistent alignments to the total number
of alignments, as reported by both alignment methods.

OMBlast RefAligner Valouev SOMA
OMBlast 99.6% 73.0% 52.1%

RefAligner 82.1% 49.6%
Valouev 32.7%

Table S10: Average running time (seconds per 1000 molecules) for the concatenated scaffold
on A. baumannii 718532 and the representative genome ATCC 17978.

718532 ATCC 17978
OMBlast 2.9 2.3

RefAligner 4.7 4.4
Valouev 67.0 68.1
SOMA 6488.0 7233.0
TWIN 0.3 0.3

Table S11: Fraction of the genome covered by the aligned queries as reported by each alignment
method on the A. baumannii data set for the concatenated scaffold on A. baumannii 718532 and
the representative genome ATCC 17978.

718532 ATCC 17978
OMBlast 85.2% 82.6%

RefAligner 98.9% 97.0%
Valouev 100.0% 100.0%
SOMA 83.1% 75.7%
TWIN 0.0% 0.0%

In addition to A. baumannii, we also compare all alignment methods on a data set from a
more well-established genome, E. coli. Our results showed similar consistency (Supplemen-
tary Table S12) and running time (Supplementary Table S13) as in the A. baumannii data set.
However, we noticed that RefAligner had extremely low recall level even when the same pa-
rameters as A. baumannii were used (Supplementary Table S14). Almost all genome regions
were covered by aligned queries, as reported by each alignment method, with the exception of
TWIN (Supplementary Table S15).
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Table S12: Consistency of pairs of alignment methods on the genome of E. coli. Percent-
ages represent the ratio of consistent alignments to the total number of alignments reported by
various alignment methods.

OMBlast RefAligner Valouev SOMA
OMBlast 93.9% 88.7% 56.7%

RefAligner 88.2% 52.4%
Valouev 43.1%

Table S13: Average running time (seconds per 1000 molecules) on the E. coli data set

E. coli
OMBlast 0.8

RefAligner 5.9
Valouev 97.4
SOMA 23928.2
TWIN 0.5

Table S14: Number of alignments reported by each alignment method on the E. coli data set
with 127961 filtered optical maps

E. coli
OMBlast 68217

RefAligner 9783
Valouev 124976
SOMA 28845
TWIN 0

Table S15: Fraction of the genome aligned reported by each alignment method on the E. coli
data set

E. coli
OMBlast 99.8%

RefAligner 99.8%
Valouev 100.0%
SOMA 95.4%
TWIN 0.0%
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S8.6 Demonstration of using OMBlast on OpGen data
To demonstrate that OMBlast could also be used to align OpGen data, an ostrich data set gen-
erated using OpGen technology was downloaded for alignment (Zhang et al., 2014). Optical
maps smaller than 350 bp were removed. The remaining optical maps were aligned against the
in silico digested sequence assembly.

The alignment results on the ostrich data set are summarized in Supplementary Table S16.
Briefly, OMBlast ran faster than RefAligner. In this data set, both alignment methods gave low
recall levels (less than 20%), which could be attributed to the use of an incomplete scaffolds
rather than a complete genome as the reference. Parameters needed to be further optimized for
improvement on this aspect. An example alignment from OMBlast is shown in Supplementary
Figure S39, where an optical map was aligned on “scaffold53” in the sequence assembly.

Table S16: Alignment statistics of OMBlast and RefAligner on the ostrich data set.

OMBlast RefAligner
Total optical maps 1989698 1989698

Total alignments
370667 352521
(18.6%) (17.7%)

Consistency 98.2%
Depth of Coverage 76.1 78.5

Fraction of genome aligned 96.5% 99.8%
Total running time (seconds) 395565 3572622

Average running time
199 1796

(seconds per 1000 molecules)

5000000 5100000 5200000 5300000

Figure S39: Example of an alignment by OMBlast of the ostrich’s optical map against “scaf-
fold53” in the sequence assembly
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