Supporting Information

Complete Elucidation of the Late Steps of Bafilomycin Biosynthesis in Streptomyces lohii

Zhong Li^{1,2}, Lei Du^{1,2} Wei Zhang¹, Xingwang Zhang¹, Yuanyuan Jiang^{1,2}, Kun Liu¹, Ping Men¹, Huifang Xu¹, Jeffrey L. Fortman³, David H. Sherman³, Bing Yu⁴, Song Gao⁴, and Shengying Li^{1*}

¹Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, ²University of Chinese Academy of Sciences, Beijing 100049, China ³Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA. ⁴State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China. Running title: Post-PKS tailoring steps in bafilomycin biosynthesis

*To whom correspondence may be addressed. E-mail: lishengying@qibebt.ac.cn

Table of Contents

Figure S1.	
Figure S2.	
Figure S3.	
Figure S4	
Figure S5	
Figure S6	
Figure S7	
Figure S8	
Figure S9.	S8
Figure S10	S8
Figure S11	S8
Figure S12	S9
Figure S13	
Figure S14.	
Figure S15	
Figure S16	S11
Figure S17.	S11
Figure S18	
Figure S19	
Figure S20	
Figure S21	
Figure S22	
Table S1	
Table S2	
Table S3	

Figure S1. Inactivation of *bafY* and *orf2&orf3*. (A) Construction of the *bafY* inactivation mutant *S. lohii* $\Delta bafY$. (B) PCR confirmation of the double-crossover mutants. WT: *S. lohii* wild type; M: DNA marker; V: pCIMt002- $\Delta bafY$; 1-6: *bafY* inactivation mutants. (C) Construction of the *orf2* and *orf3* inactivation mutant *S. lohii* $\Delta orf2 & orf3$. (D) PCR confirmation of the double-crossover mutants. WT: *S. lohii* wild type; M: DNA marker; V: pCIMt002- $\Delta orf2 & orf3$. (D) PCR confirmation of the double-crossover mutants. WT: *S. lohii* wild type; M: DNA marker; V: pCIMt002- $\Delta orf2 & orf3$; 1-6: *orf2 and orf3* inactivation mutants. *Note* : LA : left homologous arm; RA : right homologous arm.

N-truncated Orf3 BafCI P1 P2 Consensus	MVRRHFDPVSGSPYWLGQAS MTAATRADPDDRIARWLDTDLDTWTRTVVRRHFDPVSGSPYWLGQAP MTAATRADPDARIARWLETDLDEWTRTVVRRHFDPVSGSPYWLDQAS MTAATRADPDARIARWLDTDLDVWTRTVVRRHFDPVSGSPYWLGQAP vrrhfdpvsgspywl qa	20 47 47 47
N-truncated Orf3 BafCI P1 P2 Consensus	RLDFDPRDITRYDQLGAFGPFPLDRLR <mark>E</mark> EDPADLVPLSVPRPLAGRV RLDFDPRDITRYDQLGAFGPFPLDRLR <mark>H</mark> EDPADLVPLSVPRPLAGRV RLDFDPRDITRYDQLGAFGPFPLDRLR <mark>E</mark> EDPADLVPLSVPRPLAGRV RLDFDPRDITRYDQLGAFGPFPLDRLR <mark>H</mark> EDPADLVPLSVPRPLAGRV rldfdprditrydqlgafgpfpldrlr edpadlvplsvprplagrv	67 94 94 94
N-truncated Orf3 BafCI P1 P2 Consensus	WDSGGTTGTPCRAFYTPDMLLHRA <mark>I</mark> WRRWSFVREGFAPCRTWLQATP WDSGGTTGTPCRAFYTPDMLLHRA <mark>V</mark> WRRWSFVREGFAPGRTWLQATP WDSGGTTGTPCRAFYTPDMLLHRA <mark>I</mark> WRRWSFVREGFAPGRTWLQATP WDSGGTTGTPCRAFYTPDMLLHRA <mark>V</mark> WRRWSFVREGFAPGRTWLQATP wdsggttgtpcrafytpdmllhra wrrwsfvregfapgrtwlqatp	$114 \\ 141 \\ 141 \\ 141 \\ 141$

Figure S2. The protein sequence alignment of the *N*-terminal 110-140 amino acids of the previously annotated Orf3 and some homologous proteins with sequence identity >90%. *Note:* BafCI (GenBank accession number: AGK25205.1), P1 (WP_028419150.1P2), and P2 (WP_028419150.1). The amino acids highlighted in red stand for 100% homology; the residues highlighted in green stand for 75% < homology <100%.

Figure S3. Gel filtration analysis for oligomeric state determination of all Baf tailoring enzymes. (A) The standard curve of gel filtration chromatography. (B) The calculation of the apparent molecular mass of each tailoring enzyme. Experimentally, purified BafX, BafY, BafZ, Orf2, and Orf3 were individually applied to size-exclusion chromatography using a Superdex200 10/300 column (GE Healthcare) in a buffer containing 20 mM HEPES, 150 mM NaCl, and 1 mM DTT, pH 7.5. The apparent molecular mass of each sample was calculated based on the calibration of the column using protein standards.

Orf3 EhpF EsmB1 GriC Consensus	MTAATRADPDARIARWLDTDLDEWTRTVVRRHFDPVSGSPYW MKDYSLEIDAVMKAAQINDTNNFVQALMRWHFSKETGSPFW MSREANPVLDLPFDVRPDPDEFIQAAMDWHFSPETGSPYW MAWHFDPKTGSPFW hf gsp w	42 41 40 14
Orf3 EhpF EsmB1 GriC Consensus	LGQASRLDFDPRDITRYDQLGAFGPFPLDRLREEDPADLVPL LGMREQLNFDPIKDVKTINDLRQFSDISHCLRQEPVANLVPQ LERAKKLDFDPRADVTSHQDLQLFPNVVNELRDVPAQDLVPR QEQSRKLEFDPRKDVRTVEDLTLFPNVVDELRDARIEDLVPR 1 fdp 1r 1vp	84 83 82 56
Orf3 EhpF EsmB1 GriC Consensus	SVPRPLAGRVWDSGGTTGTPCRAFYTPDMLLHRAIWRR GLPADSHPQVYESGGTTGAPKYVVAYDAWIEALISWRM GYDAPDVVGVYESGGTTGAPKRVVCLADWMDRVVAWSV GYGGPDRLSRPPVVGESGGTTGAPKRVFVLPDVREQSWAWYY v sggttg p w	122 121 120 98
Orf3 EhpF EsmB1 GriC Consensus	WSFVREGFAPGRTWLQATPTGPHLIGNGVREVSELHAGQVYA SGYQHRPGRPSGNTLAAIPTGPHIVGAINKERALRLGGMFFS ANLDAHGFPRGANWLGVTPTGPHVVGELFSRSAAAHGSLSFP NRLVEHGIAAGDNWLGIMPAGPHMAGILAQDTAQRFGGIFFT 1 p gph g	$164 \\ 163 \\ 162 \\ 140$
Orf3 EhpF EsmB1 GriC Consensus	Substrate binding siteVDMDPRWVKRLIRAGRLAEVDDYTTHLLEQITDVLRQGRVHYIDIDPRWVKRSLSEGDTATVRKYTHHLVDQVQNTLMNQDIRFVDLDPRWVKRLIAEGKTDQADAYAEHVVDQAAFVLRTQDIGVVDFDPRWAKLVIGRGAVDEANAYITHLVNQIEWILRSQDIRVddprwkgyhq1	206 205 204 182
Orf3 EhpF EsmB1 GriC Consensus	LNTTPALLQALCRHRPELVAALDGVRLSGTQISADMYRT LVTTPPVLRELLKRPEVVLQMKQSLAQITLGGTELNLDEIKF MAITPPLLERLTRRDELVDLVNRKVRAIRWGGTQMDADSRYL MVITPPLLEAVCRRDHLVDLINEKVNTVIYGGTSMDEDTRHL tp 1 gt d	245 247 246 224
Orf3 EhpF EsmB1 GriC Consensus	FTTALRGGICGLT. YGNT. FGNAACLDIERDGELISYVPNY IASEILPDCEFSASYGSTSALGVSRSLLITSESQQVIYDSFS YRTEVFPDTTLYGHYGSTMILGIAGQRPGLGDDDPCVFDTFS FRTELFPQINFVSIFGSTMIFCAMPERPDSPADESPVFDPPS g t	284 289 288 266
Orf3 EhpF EsmB1 GriC Consensus	PQVTMAVVDRSDLSTPVAPGTVGRVRLTVLHEDLFLPNILER PFITYDVVD.SITAQTVEYGERGNVIVTHLSPWAFYPRVAER PYITFSVVN.PETRKTVPYGERGRVVMNHVSKSLFLPNNLER PFSMFSVID.PDTGKNVPYGERGQVLTHHLTRNLFLPNNLDR p v v g g v f p r	326 330 329 307
Orf3 EhpF EsmB1 GriC Consensus	327 345 DQALRHP.TDHWPTDGVANIRPLQITSSS.PEGL DTAIRLPGVSGFAGDRLADIEPLKISEGRKVIEGV DLATRIAPLPGQIGDAVADIAPVTHFEDEAVIEGV DTGIRHPHRLGLPGDAVSEFKPVREFGAAPVIEGV d r d p eg	$358 \\ 365 \\ 364 \\ 342$

Figure S4. Protein sequence alignment of Orf3 with EphF, EsmB1 and GriC. The amino acids highlighted in red stand for 100% homology; the residues highlighted in green stand for 75% < homology <100%; \blacksquare denotes the key residues of Orf3 involved in ATP-binding; \bullet denotes the arginine residues of Orf3 related to substrate-binding; *p*-loop, substrate binding site; the ATP binding sites are boxed.

Figure S5. HPLC analysis (250 nm) of the ATP transformation by Orf3 or BafY. Trace (i): ATP standard. Trace (ii): ADP standard. Trace (iii): AMP standard. Trace (iv): 40 μ M Orf3 + 10 mM MgCl₂ + 1 mM disodium fumarate + 1 mM ATP. Trace (v): the negative control for trace iii, in which Orf3 was boiling inactivated. Trace (vi): 40 μ M BafY + 10 mM MgCl₂ + 200 μ M **2** + 1 mM ATP. Trace (vii): the negative control for trace vi, in which BafY was boiling inactivated. Trace (viii): 40 μ M BafY + 10 mM MgCl₂ and 1mM ATP. Trace (ix): the negative control for trace viii, in which BafY was boiling inactivated. Trace (viii): 40 μ M BafY + 10 mM MgCl₂ and 1mM ATP. Trace (ix): the negative control for trace viii, in which BafY was boiling inactivated. *Note*: all reactions were carried out at 28°C for 12 h. The HPLC analysis was performed on a Waters Atlantis[®] T3 column (2.1 × 150 mm) with isocratic 100 % 50 mM KH₂PO₄ buffer (pH= 6.0) at a flow rate of 0.25 ml/min for 10 min. The asterisk stands for the artifact (coincidently with the same retention time of ADP) in Orf3 preparation.

Figure S6. The kinetic curve of Orf3 using fumarate as substrate.

Figure S7. The kinetic curve of Orf3 using succinate as substrate.

Figure S8. The kinetic curve of Orf3 using malonate as substrate.

Figure S9. The kinetic curve of Orf3 using glutarate as substrate.

Figure S10. The kinetic curve of Orf3 using maleate as substrate.

Figure S11. HRMS of Compound 4 ([M+Na]⁺: obs. 745.4140 calc. 745.4139)

Figure S12. Protein sequence alignment of BafY with Orf33, AusD1, MoeB4 and SimL. The amino acids highlighted in red stand for 100% homology; the residues highlighted in green stand for 75% < homology <100%.

Figure S13. The proposed catalytic mechanism of BafY during the transformation from bafilomycin C_1 (2) to B_1 (3).

Figure S14. HRMS of bafilomycin A₁ (1) ([M+Na]⁺: *obs.* 645.3969 *calc.* 645.3973)

Figure S15. HRMS of bafilomycin C₁ (2) ([M+Na]⁺: *obs.* 743.3977 *calc.* 743.3978)

Figure S16. HRMS of bafilomycin B₁ (3) ([M+Na]⁺: *obs.* 838.4352 *calc.* 838.4352)

Figure S17. ¹H NMR spectrum of bafilomycin A₁ (1) in CD₃CN.

Figure S18. ¹³C NMR spectrum of bafilomycin A₁ (1) in CD₃CN.

Figure S19. ¹H NMR spectrum of bafilomycin C₁ (2) in CD₃CN.

Figure S20. ¹³C-DEPTQ spectrum of bafilomycin C₁ (2) in CD₃CN.

Figure S21. ¹H NMR spectrum of bafilomycin B₁ (3) in CD₃CN.

Figure S22. ¹³C NMR spectrum of bafilomycin B₁ (3) in CD₃CN.

Table S1. The conversion percentages of 1 to 2 (fumarate as substrate) or 4 (succinate as substrate) by Orf2 (10 μ M) and Orf3 (10 μ M) at 28 °C for 4 h.

Compound	Conversion Percentage
2	$83.1\pm3.2\%$
4	$2.2\pm0.1\%$

Note: The conversion percentages were calculated based on substrate consumption.

Table S2. The primers for construction of knock-out vectors and PCR confirmation of S.*lohii* mutants.

Primers	Sequence (5'-3')
<i>∆bafY</i> -left arm-FP	AAAAGCTTCCATGGGCACGCCCTAGGTCCCGCCAGATTCCGTCCA
<i>∆bafY</i> -left arm- R P	CCAAAATCCCTTAACGTGAGCCTAGGCGGCGGAGATGAAGCCGT
<i>∆bafY</i> -right arm-FP	CTCGCCAGTCGATTGGCTGACAATTGGGATCACCGACCCGGAGGA
<i>∆bafY</i> -right arm- R P	CCAAGCTTGCTAGCAGATGTCAATTGTCATGCCGTCTCCTGTGCT
∆ <i>orf2&3-</i> left arm-FP	AAGAGCTTTTATAAAAGCTTCCATGGCGTAAGGGATGCTCCCGCA
∆ <i>orf2&3-</i> left arm-RP	AACGTGAGCCTAGGGCGTGCCCATGGGCCGAACAGGTACCCCAGAC
∆ <i>orf2&3-</i> right arm-FP	TTGGCTGACAATTGACATCTGCTAGCGTCGACAGGAGCGACCTCTC
∆ <i>orf2&3-</i> right arm-RP	GTGGATCCGCACCCAAGCTTGCTAGCGCGTACGCCTTCCAGCTC
∆ <i>bafY</i> -KO-FP	CGTGCCTCGTCCCACAGTT
∆ <i>bafY</i> -KO-RP	ATCACTTCGATGGCGCGGC
∆orf2&3-KO-FP	GGAGGAAGAGGTCCTCGTG
∆orf2&3-KO-RP	ACTGCCCCTCCATTCACA

 Table S3. The primers for construction of protein expression vectors.

Primers	Sequence (5'-3')
BafX-NdeI-FP	GCCG <u>GAATTC</u> CGTGACCCTCTCCGTGGCGT
BafX-HindIII-RP	ATGCAAGCTTGGCAGACCTACGGGAGGAAATCG
BafY-EcoRI-FP	GCCG <u>GAATTC</u> TATGCCGTCGAACGAAACGT
BafY-HindIII-RP	ATGCAAGCTTCCACAGTTCGCGGTAGGTG
Orf2-NdeI-FP	GGAATTC <u>CATATG</u> AGTCTGGGGTACCTG
Orf2-EcoRI-RP	G <u>GAATTC</u> TCACGGCAGGGCCGGGGC
Orf3-NdeI-FP	CCTGGT GCCGCGCGGCAGC <u>CATATG</u> ACCGCCGCCACCCGCGC
Orf3-NdeI-RP	GTCCACCAGTCATGCTAGC <u>CATATG</u> TCAGTAGAGGCCCTCGGGCG

Note: The underline litters indicate the restriction sites.