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SUMMARY

Genes targeted by Polycomb repressive complex 2
(PRC2) are regulated in cis by chromatin modifica-
tions and also in trans by diffusible regulators such
as transcription factors. Here, we introduce a mathe-
matical model in which transcription directly antago-
nizes Polycomb silencing, thereby linking these cis-
and trans-regulatory inputs to gene expression. The
model is parameterized by recent experimental
data showing that PRC2-mediated repressive chro-
matin modifications accumulate extremely slowly.
The model generates self-perpetuating, bistable
active and repressed chromatin states that persist
throughDNA replication, thereby ensuring high-fidel-
ity transmission of the current chromatin state.
However, sufficiently strong, persistent activation
or repression of transcription promotes switching
between active and repressed chromatin states.
We observe that when chromatin modification dy-
namics are slow, transient pulses of transcriptional
activation or repression are effectively filtered, such
that epigenetic memory is retained. Noise filtering
thus depends on slow chromatin dynamics and
may represent an important function of PRC2-based
regulation.

INTRODUCTION

Models of chromatin-based epigenetic memory are based on

the hypothesis that chromatin states determine gene expression

(Moazed, 2011). Specific post-translational modifications of his-

tones (histone modifications) that are associated with active and

repressed chromatin states are proposed to act as heritable

marks that drive re-establishment of the parental chromatin state

on daughter chromosomes following DNA replication (Angel

et al., 2011; Dodd et al., 2007). In this way, the chromatin state

can be maintained through mitotic cell division and thereby

maintain a particular expression state of the underlying gene.

There is considerable support for this model in the case of Pol-

ycomb repressive complex 2 (PRC2)-dependent gene repres-
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sion. PRC2 is a multiprotein complex containing an enzymatic

subunit that methylates histone H3 at Lys-27 (H3K27) (Kuzmi-

chev et al., 2002), and also a non-catalytic subunit that

recognizes H3K27me3 (Margueron et al., 2009). These two activ-

ities are proposed to underlie positive feedback between

H3K27me3 and PRC2, which contributes to the maintenance

of H3K27-methylated chromatin domains (Hansen et al., 2008;

Margueron et al., 2009). It has also been shown that histone

H3 Lys-27 is required for PRC2-mediated repression (Pengelly

et al., 2013), that methylated H3K27 can be passed on to

daughter chromosomes (Gaydos et al., 2014), and that tethering

of PRC2 subunits to chromatin can initiate transcriptional repres-

sion (Hansen et al., 2008; Pasini et al., 2010a). Moreover, two

copies of a PRC2 target gene can exist in alternative, heritable

expression states in the same cell, indicating that the memory

of gene expression can be stored in cis—in the local chromatin

environment (Berry et al., 2015). Together, these findings sug-

gest that methylation of H3K27 can establish a repressed chro-

matin state, which can thenmaintain itself, i.e., a local, cis-based

epigenetic memory.

In contrast to this model of chromatin-based regulation, it

is known that expression of PRC2 target genes can also

be controlled by gene-specific regulators acting in trans (re-

viewed in Ringrose, 2007). However, since the process of tran-

scription directly influences chromatin, these cis- and trans-reg-

ulatory modes are not independent. Specifically, studies in

mammalian cells have shown that PRC2 and H3K27me3 can

accumulate in response to transcriptional repression and can

also be removed by transcriptional activation (Gillespie and Gu-

das, 2007; Hosogane et al., 2013; Riising et al., 2014; Yuan

et al., 2012).

To investigate the interplay between trans-regulation and

chromatin states, we have developed a mathematical model

of PRC2-based epigenetic repression in which transcription

acts antagonistically to Polycomb silencing. The model repre-

sents a generic PRC2 target gene in which the whole locus is

enriched in H3K27me2/me3 when repressed (Brookes et al.,

2012; Mikkelsen et al., 2007). We constrain the model by quan-

titatively fitting to time-resolved mass spectrometry data for

H3K27me3 accumulation (Alabert et al., 2015). Overall, our

analysis demonstrates how trans-regulatory signals can be

integrated with bistable chromatin states to quantitatively regu-

late gene expression, yet also provide robust cis epigenetic

memory.
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Figure 1. Model of PRC2 Target-Gene Chromatin

(A) Schematic of alternative chromatin states. Active state characterized by presence of Pol II, which can carry H3K27-demethylases (KDM), and drive nucle-

osome exchange. Repressed state characterized by H3K27me3 (orange hexagons), which can positively feedback to recruit PRC2.

(legend continued on next page)
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RESULTS

Previous mathematical models of epigenetic memory based on

local inheritance of histone modifications have not explicitly

considered the effect of transcription. These models instead

rely on mutually exclusive activating and repressive histone

modifications (Angel et al., 2011; Dodd et al., 2007): each modi-

fication positively feeds back to recruit the enzymatic complexes

necessary to place more of the same modification, and also re-

move the other. In this way, a region of chromatin can be set into

one of two states, characterized by high levels of one of the his-

tone modifications.

Here, we hypothesize that transcription itself antagonizes

PRC2 activity, without the need for activating histone modifica-

tions. Potentially, this system could also generate bistable

states: an actively transcribed state (with low H3K27me3) and

a poorly transcribed state (with high H3K27me3) (Figure 1A).

To investigate this, we formulated a mathematical model and

performed stochastic simulations in which we tracked transcrip-

tional initiation events and the H3K27methylation status for each

histone within a region of chromatin. In our model, PRC2 activity

results in methylation of H3K27, and transcription results in

H3K27 demethylation and histone exchange. H3K27me1/me2

act as intermediates between H3K27me0 and fully methylated

H3K27me3 (Figure 1B). Previous theoretical studies have shown

that bistability requires nonlinearity in histone modification

conversions (Dodd et al., 2007). Incorporating intermediate

methylation states naturally generates this nonlinearity because

typically more than one feedback transition must occur to

convert a given histone between the two extreme states (Dodd

et al., 2007; Sneppen and Dodd, 2012). Indeed, we found that

a model without these intermediate states was not bistable

(STAR Methods, Figure S1). Below we introduce and justify the

six main features of our model (Figure 1, Tables S1–S5, STAR

Methods). Unless otherwise specified, all references refer to

studies in mammalian systems.

Six Model Features
Feature 1: Positive Feedback in H3K27 Methylation

Required for Self-Sustaining Repressive States

In addition to catalyzing methylation of H3K27 (Cao et al., 2002;

Kuzmichev et al., 2002), PRC2 also binds to H3K27me3 via a

non-catalytic subunit, resulting in allosteric activation (Mar-

gueron et al., 2009). This positive feedback was included in the

model by allowing H3K27me3-modified histones to activate

PRC2 to methylate any neighboring histone. Such cis-acting
(B) Diagrammatic representation of feedbacks in mathematical model. States me0

in yellow, repressive marks me2/me3 in orange. Black arrows represent state tr

exchange and H3K27me2-mediated recruitment of PRC2 are omitted.

(C) Mathematical description of model. Sum over neighbors in Ei includes the othe

Pme2/me3 is the fraction of H3 histones carrying K27me2 or K27me3.

(D) Model parameters.

(E) Example stochastic simulation of H3K27me0 and H3K27me3 levels over time f

histone�1 s�1, pdem = 0.056 histone�1 transcription�1).

(F) Same as (E), for a demethylation-biased model (kme = 10�4 histone�1 s�1, pd

(G) Heatmap showing bistability measure B, calculated from simulations. Each pa

parameter set, 100 simulations were initialized in each of the uniformme0 or me3 s

(E)–(G), pex = 10�3 histone�1 transcription�1. See also Figures S1–S5 and Tables
positive feedback is fundamental to the model; without it, self-

sustaining repressive transcriptional states would not be

possible. In agreement with in vitro studies, H3K27me2 is also

able to activate PRC2 in the model, but with a 10-fold reduced

efficacy (Margueron et al., 2009). H3K27me1 does not activate

PRC2 in vitro or in the model (Margueron et al., 2009). The

me0/me1 modification states can therefore be grouped as

neutral marks and me2/me3 as repressive marks (Figure 1B).

The mechanism by which PRC2 is recruited to its targets is an

active area of research and likely to be context-specific (Bauer

et al., 2016). Here, we assume that the mechanisms driving

PRC2 recruitment (e.g., DNA sequence-specific elements,

CpG islands) allow PRC2 to be targeted to the modeled region.

This is captured by the parameter b, which represents the rela-

tive rates of PRC2 activity between different loci (i.e., strength

of recruitment and local enzymatic activity). We initially consider

a PRC2 target gene with b = 1 (in contrast to non-PRC2 targets

with b� 1). Putting this together, the rate for the stimulated addi-

tion of methylation in our model for the ith histone is (Figures 1C

and 1D):

rme
i;stimulated = b

�
dSi ;me0kme0�1Ei + dSi ;me1kme1�2Ei + dSi ;me2kme2�3Ei

�
;

Ei =
X

j ˛ neighbors of i

�
rme2dSj ;me2 + dSj ;me3

�
; Sj˛fme0;me1;me2;me3g

(Equation 1)

where Ei incorporates the positive feedback from neighboring

H3K27me2/me3, rme2 = 0.1 accounts for the reduced efficiency

of H3K27me2-activated PRC2, and where di,j is the Kronecker

delta, equal to 1 if i = j and 0 otherwise. The transition rates

between methylation states kme0�1, kme1�2, kme2�3 are dis-

cussed below.

Feature 2: Transcription-Mediated PRC2 Antagonism

For the process of transcription to directly antagonize PRC2

silencing, it must cause removal of H3K27me3. In the model,

this occurs in two ways: via H3K27 demethylation and histone

exchange, both of which are coupled to transcription. The first

is motivated by the observation that H3K27 demethylases

localize to promoters and coding regions of PRC2 target genes

(Chen et al., 2012; Lee et al., 2007) and can associate with

transcription elongation factors (Chen et al., 2012). The second

reflects the observation that histone exchange correlates posi-

tively with transcriptional activity, and negatively with Polycomb

silencing (Deaton et al., 2016; Kraushaar et al., 2013) (STAR

Methods). We model each passage of Pol II through the gene

as a single discrete event that causes H3K27 demethylation
to me3 refer to methylation state of H3K27. Neutral marks me0/me1 indicated

ansitions; colored arrows represent feedback interactions. For clarity, histone

r histone on same nucleosome, and four histones on neighboring nucleosomes.

or a bistable model (initial uniformme3). Parameters indicated in (D) (kme = 10�4

em = 0.1 histone�1 transcription�1).

nel shows B as function of kme and pdem, for fmax shown in panel label. For each

tates and simulated for 50 cell cycles. Results averaged over all simulations. In

S1–S5.
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(one methyl group at a time) and nucleosome exchange

(two neighboring H3 histones with mex/mex/me0/me0), with

probability pdem and pex per histone, respectively (Figures 1C

and 1D).

Feature 3: H3K27-Methylation-Based Transcriptional

Repression

Themechanistic basis of transcriptional repression by PRC2 and

H3K27me2/me3 is poorly understood. In vitro, both mammalian

(Margueron et al., 2008) andDrosophila (Francis et al., 2004) Pol-

ycomb complexes can compact chromatin and repress tran-

scription. Moreover, in vivo, genes enriched for H3K27me2/

me3 show reduced levels of productive transcription (Brookes

et al., 2012), increased chromatin compaction (Deaton et al.,

2016; Eskeland et al., 2010), and deacetylated histones (Pasini

et al., 2010b). To incorporate the repressive effect of PRC2 we

made RNA production dependent on H3K27me2/me3 levels.

We allow H3K27me2/me3 marks anywhere in the modeled re-

gion to have an equally repressive effect on transcription, with

the transcriptional initiation rate f a simple linear function of the

proportion of H3K27me2/me3 marked histones at the gene.

This is appropriate if, for example, repression is mediated

through compaction of chromatin at the scale of many nucleo-

somes (Boettiger et al., 2016; Eskeland et al., 2010). Altogether

this leads to

f =a
�
fmax � Pme2=me3ðfmax � fminÞ

�
(Equation 2)

where Pme2/me3 is the proportion of me2/me3 marks, fmax (fmin)

are the maximum (minimum) transcription initiation rates, and

where a is discussed below (Figures 1C and 1D).

Feature 4: Non-processivity

Methylation of H3K27 by PRC2 could be accomplished in two

ways: in a processive mechanism, PRC2 would remain bound

to its substrate until all three methyl groups are added, whereas

in a non-processive mechanism, PRC2 would dissociate after

adding each methyl group. Experimentally, it has been shown

that mammalian PRC2 can monomethylate H3K27me0,

H3K27me1, and H3K27me2 peptides in vitro (McCabe et al.,

2012), and that in vivo, PRC2 activity is required for all

H3K27me2/me3 and intragenic H3K27me1 (Ferrari et al.,

2014). Furthermore, mass spectrometry has revealed that

H3K27me3 ismostly formed in vivo frommonomethylation of ex-

isting H3K27me2 substrates, and that H3K27me2 can arise

through monomethylation of H3K27me1 (Zee et al., 2012).

Collectively, these data suggest that PRC2 acts non-proces-

sively, which we therefore assume in our model. We also simu-

lated the model with processive methylation; however, this

generated only limited bistability (STAR Methods, Figure S2B).

Our model also takes into account the relative catalytic activity

of PRC2 on H3K27me0, me1, and me2 substrates from in vitro

experiments (McCabe et al., 2012) as being 9:6:1, respectively,

which is captured by the parameters kme0�1, kme1�2, kme2�3 =

kme in Equation 1. Noisy methylation rates, which reflect back-

ground PRC2 activity gme0�1, gme1�2, gme2�3 = gme are set at

5% of the rate of allosterically activated PRC2, kme (Figures 1C

and 1D).

In humans, H3K27 demethylation is catalyzed by jumonji-C

domain-containing proteins UTX and JMJD3 (Agger et al.,

2007). To our knowledge, the processivity of H3K27 demethyla-
448 Cell Systems 4, 445–457, April 26, 2017
tion has not been investigated in vivo. However, UTX can

sequentially remove single methyl groups from H3K27me3 pep-

tides in vitro (Agger et al., 2007). The model therefore assumes

non-processive demethylation, although this is not essential for

bistability (STAR Methods, Figure S2). The model also includes

noisy H3K27 demethylation with rate gdem (STAR Methods).

Feature 5: DNA Replication

Experiments in eukaryotes indicate that H3/H4 tetramers do not

dissociate during DNA replication and are normally shared

evenly between daughter chromosomes (Annunziato, 2005),

maintaining their pre-replication H3K27 methylation status (Ala-

bert et al., 2015; Gaydos et al., 2014). DNA replication occurs

once per cell cycle, at which time each nucleosome in the model

is replaced with a new me0/me0 nucleosome with a probability

of 0.5 (Figure 1C).

The model formulated above (Figure 1) contains an important

difference from previous models that include opposing acti-

vating and repressive histone modifications (Angel et al., 2011;

Dodd et al., 2007). Here, DNA replication results in deposition

of histone modifications associated with the active expression

state, rather than an intermediate state. Hence, DNA replication

only perturbs the repressed state, and actually biases the system

toward the active state.

Feature 6: trans Regulators

trans-factor-mediated regulation of gene expression is encoded

in our model as a multiplicative factor a in the transcription initi-

ation rate function f (Equation 2). This can be interpreted as a

direct, externally driven gene-activation strength, where a = 1

is neutral, a < 1 is repressive, and a > 1 is activating. To restrict

the average transcription rate to biologically reasonable values

when a [ 1, we also introduce an upper limit on the transcrip-

tion initiation rate (f % 1/60 s�1). In our model, transcription

events occur with constant probability per unit time f, depending

on the chromatin state and trans-activation level a. However, for

many genes, transcription occurs in bursts (reviewed in Raj and

van Oudenaarden, 2008). Nevertheless, we find that a modified

bursty model generates similar results to our main model (Fig-

ures S3 and S4; STAR Methods).

Together, these six features form themathematical foundation

of our model. We now proceed to analyze the model using sto-

chastic simulations.

Chromatin States Can Store Memory of Gene
Expression
For the chromatin of a PRC2 target gene to act as a memory of

gene expression, it must be able to maintain both the high

H3K27me3 (low expression) and low H3K27me3 (high expres-

sion) states. To investigate the ability of our model to do this,

we performed stochastic simulations using the Gillespie algo-

rithm, tracking the transcription and chromatin status of a single

locus over time. At DNA replication, simulations follow only one

of the two daughter loci. Figure 1E shows a simulation with

parameters that maintain high H3K27me3 levels for several cell

cycles, while Figure 1F shows a simulation with parameters

biased toward demethylation.

When a model is capable of maintaining both active and

repressed states for the same parameter values, it is bistable.

Balanced bistability can be quantified as B = 4POFFPON (Snep-

pen and Dodd, 2012), where PON (POFF) is the probability over



time that the simulated gene is in the high/ON (or low/OFF)

expression state (STAR Methods). B is close to 1 for bistable

models. After specifying a minimum transcription initiation rate,

fmin = 10�4 s�1, a system size of 60 histones (�5–6 kb of DNA)

and 22 hr cell-cycle duration, four free parameters remain in

our model: kme, fmax, pdem, and pex. We calculated B from simu-

lations performed over a range of values for these four parame-

ters (Figures 1G and S5). We find that values of B can be close to

1 (indicating cis epigenetic memory) if two criteria are satisfied:

methylation and demethylation processes are balanced, and

the increase in transcription between the active and repressed

states (F = fmax/fmin) is sufficiently large (in Figure 1G, bistability

emerges for fmaxR16fmin = 1.6 3 10�3 s�1). For the rest of this

work we set fmax = 4 3 10�3 s�1 (F = 40). We also find that the

minimum methylation rate for which bistability is observed in-

creases as histones are exchanged more often (Figure S5).

This is because, for low methylation rates, H3K27me2/me3 is

not replaced quickly enough to counteract H3K27 demethyla-

tion, histone exchange, and dilution at DNA replication. In such

cases, the repressed state becomes unstable.

In summary, when H3K27 addition and removal processes are

balanced, the model can exhibit bistability, demonstrating that

the modeled chromatin domain can store memory of both active

and repressed gene expression states.

PRC2 Target-Gene Chromatin Can Also Respond to
Transcriptional Changes
After fitting our model to experimental data (Box 1, STAR

Methods), we next considered the effect of directly modifying

transcription on chromatin states. a represents the external

trans-activation level of the modeled gene, with a = 1 neutral,

a > 1 activated, and a < 1 repressed. After initialization in

either the uniform me0 or me3 state and equilibration of the

model for five cell cycles with a = 1, we permanently modified

a and studied the time-evolution of H3K27 methylation. This

protocol simulates recruitment of an activator or repressor

that directly modulates transcriptional activity (Figures 2A

and 2B).

When transcription is upregulated from an initially repressed

state, the increase in polymerase traffic leads to stochastic

loss of the repressed chromatin state over hours (Figure 2A).

Conversely, when transcription is downregulated from an active

initial state (Figure 2B), stochastic switching to the silenced state

and accumulation of H3K27me3 at the population level is slow,

taking several cell cycles. This is due to the slow intrinsic time-

scale of H3K27me3 addition. These results are reminiscent of

experiments showing that accumulation of H3K27me3 occurs

slowly after transcriptional shutdown (Buzas et al., 2011; Hoso-

gane et al., 2013; Riising et al., 2014; Yuan et al., 2012). Together,

these results demonstrate that chromatin states in our model

can respond to sufficiently strong externally driven changes in

transcription.

Our model could be modified to allow shorter pulses of trans

activation to drive switching of chromatin states: transcription

events could be made to have a stronger effect on H3K27

methylation, either by increasing pdem or pex, or alternatively

transcription-independent H3K27 demethylation (gdem) could

be transiently increased, perhaps through trans-factor-mediated

recruitment of H3K27-demethylases.
A Robust Window of cis Memory
So far, we have shown that both active and repressed expres-

sion states can be epigenetically maintained by the internal chro-

matin/transcription dynamics of our model (Figure 1G). This

instructive mode of PRC2 activity, also known as cis memory,

is consistent with observations of heritable silencing induced

by tethering PRC2 to reporter genes in mammalian systems

(Bintu et al., 2016; Hansen et al., 2008) and has been observed

experimentally in Arabidopsis (Berry et al., 2015). We have also

shown that strong external modulation of transcription in our

model can cause switching between chromatin states (Figures

2A and 2B). Such a responsive mode of PRC2 activity has also

been observed experimentally in mammalian cells (Gillespie

and Gudas, 2007; Hosogane et al., 2013; Riising et al., 2014;

Yuan et al., 2012). Taken together, this suggests that chromatin

states in our model can either respond to, or instruct gene

expression, depending on the strength of trans activation.

To further understand this interplay, and to probe the robust-

ness of the bistable chromatin states, we simulated the model

for different values of transcriptional activation a, starting from

either the repressed or active initial state (after equilibration for

five cell cycles at a = 1 starting from an either uniform me3 or

me0 state). After 20 cell cycles, the transcriptional output was

then measured as the average number of transcription events

in the final cell cycle. This is plotted as a function of a in Figure 2C

(upper panel). For extreme values of a, transcriptional output is

independent of the initial chromatin state, with theH3K27methyl-

ation status being dictated entirely by trans-acting regulators. For

a wide range of intermediate values of a (around 1), however, the

transcriptional output can depend strongly on the initial state. In

this regime, chromatin has a tendency to be maintained in its

initial state by the internal chromatin/transcription dynamics,

which therefore partly determine the transcriptional output of

the gene. This intermediate range of a can be thought of as a win-

dow of cis memory, within which chromatin states play an

instructive role in their own maintenance. However, even within

this cis memory window, the transcriptional output of each of

the bistable states can still be fine-tuned by trans-acting regula-

tors. To determine how the timescale of cis epigenetic memory

storage depends on the trans-activation strength, we also calcu-

lated the mean first passage time tFP as a function of a for the

repressed or active initial states (STAR Methods). Close to

a = 1 (within the cismemory window), it takes over 200 cell cycles

(on average) to change from the me0 to me3 state or vice versa

(Figure 2D, upper panel), again demonstrating the robustness

of the bistable states. Increasing or decreasing a (simulating

trans-activation/repression) favors the active or repressed state,

respectively, leading to a reduction in the first passage time.

Similar results were also obtained with a more complex model

of bursty transcriptional regulation in which trans factors regulate

the probability of a promoter switching between transcriptionally

silent and active states (STAR Methods; Figures S4Q and S4R).

The ability of a gene to recruit PRC2 will depend on both its

DNA sequence and also the cellular and developmental context.

In our model, the local enzymatic activity and the context-spe-

cific strength of PRC2 recruitment are represented by the

parameter b. To determine how changes in b affect the cismem-

ory window, we performed simulations as described above,

except with a 2-fold increase in the local PRC2 activity: b = 2.
Cell Systems 4, 445–457, April 26, 2017 449



Box 1. Fitting Quantitative Experimental Data Indicates that Sub-saturating H3K27me2/me3 Is Sufficient for Full Gene Repression

Nascent chromatin capture together with time-resolved stable isotope labeling by amino acids in cell culture (SILAC) was recently

used to experimentally measure the dynamics of histone modification accumulation after DNA replication (Alabert et al., 2015).

These data demonstrate that H3K27me3 accumulates very slowly on newly incorporated histones in dividing human somatic cells.

In fact, within one cell cycle, H3K27me3 levels on newly incorporated histones do not reach the pre-replication level on parentally

inherited histones. In contrast, previous mathematical models of histone-modification-based epigenetic memory have employed

histone modification rates significantly faster than this, with each histone tail typically undergoing many modification reactions per

cell cycle (Angel et al., 2011; Dodd et al., 2007; Sneppen and Dodd, 2012). Here we use these quantitative experimental data to

constrain our model, in particular the methylation rate kme. Throughout this box, we set the histone exchange rate as pex = 10�3

histone�1 transcription�1, a value that is justified in STAR Methods (Figure S6).

Figure B1. Fitting the Model to Experiments

(A) Schematic of SILAC experiment: old histones (yellow) diluted by incorporation of new histones (blue) at first DNA replication. Chromatin from this replication

is followed through two subsequent replications, during which both old and new histones are diluted by incorporation of unlabeled histones.

(B and C) Forty over-plotted trajectories from simulated SILAC experiment. Plots show levels of K27me3-marked old, new, unlabeled, and total H3. Simu-

lations initialized in the uniformme3 state were equilibrated for six cell cycles (five shown) before introducing new histones. (B) The slowest bistable model with

PT = 1 (kme = 3 3 10�5 histone�1 s�1, pdem = 0.02 histone�1 transcription�1); (C) the best-fit model with PT = 1/3 (kme = 8 3 10�6 histone�1 s�1, pdem = 0.004

histone�1 transcription�1). Best-fit kme obtained by minimizing the sum of squared errors (SSE) between simulated and experimental SILAC data.

(D and E). K27me3 levels on old and new H3 as a proportion of total old and new H3 incorporated, respectively. Points show experimental data from (Alabert

et al., 2015), error bars: SEM (n = 3). Solid lines in (D) and (E) correspond to model simulations shown in (B) and (C), respectively. Results averaged over 1,000

simulations and normalized so that simulatedmean cell-cycle end value of H3K27me3 is equal to the experimentalmean initial level on old H3 (STARMethods).

Gene activity measured as number of transcription events per 30 min interval.

(F) Heatmap showing bistability measure, B (top panel) and SSE (bottom panel). Each panel shows B and SSE as a function of kme and pdem, for PT shown in

panel labels. B calculated from 150 simulations initialized in each of the uniform me0 or me3 states, simulated for 20 cell cycles for each parameter set. SSE

calculated from 300 SILAC simulations for each parameter set. Simulations in (A)–(F) with fmax = 40fmin and pex = 10�3 histone�1 transcription�1, with other

parameters as in Figure 1D.

The triple-SILAC experiment used to fit the model is illustrated in Figure B1A. Old histones (yellow) are distinguishable from new

histones (blue) and unlabeled histones (gray). New histones are incorporated during the first DNA replication, at which time newly

synthesized DNA is also labeled to allow specific isolation of this nascent chromatin at different times after the first DNA replication

(Continued on next page)
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Box 1. Continued

(Alabert et al., 2015). Cells underwent a further twoDNA replications in the 48 hr after incorporation of new histones, consistent with

a 22 hr cell cycle. Accordingly, levels of both new and old histones incorporated in chromatin were diluted approximately 4-fold by

incorporation of unlabeled histones. To determine whether our model could reproduce this data, we simulated this experiment

(Figures B1B and B1C). Relative levels of H3K27me3 on old and new histones were extracted from model simulations 0, 10,

24, and 48 hr after new histones were first incorporated, and were quantitatively compared with corresponding experimental

data (STAR Methods). Strikingly, we observed that even the model with the slowest dynamics that retained robust bistability

(kme = 3 3 10�5 histone�1 s�1 y 2 histone�1 cell cycle�1 and pdem = 0.02 histone�1 transcription�1) was not slow enough to fit

the experimental rate of H3K27me3 accumulation (Figures B1D and S7A). The problem lies in the assumption that saturating

H3K27me2/me3 levels are necessary to achieve maximal gene repression (Equation 2). On such slow time scales, H3K27me2/

me3 saturation is not achieved in the model within a single cell cycle. Consequently, transcription is never maximally repressed,

causing an increased rate of loss of H3K27me2/me3 through transcription-coupled processes, which destabilizes the

repressed state.

Experimentally, H3K27me3 levels were reduced by approximately one-half upon DNA replication, and then increased slowly with a

characteristic timescale longer than a cell cycle (Alabert et al., 2015). This suggests that repressed PRC2 target genes carry

K27me3 on only a fraction of their H3 histones at all stages of the cell cycle. If these H3K27me3 marks are also responsible for

gene repression, then maximal repression must be achieved at sub-saturating H3K27me3 levels. We therefore introduced into

the model a threshold proportion of me2/me3 marks, PT % 1, with maximum repression above this level,

f =

8><
>:

a

�
fmax � Pme2=me3

PT

ðfmax � fminÞ
�
; Pme2=me3 < PT

aðfminÞ; Pme2=me3RPT

(Equation 3)

where Pme2/me3 is the proportion of me2/me3 marks (Figure 1C). Using the fixed parameter values shown in Figure 1D, simulations

were performed for a range of values of PT, kme, and pdem (Figures B1C, B1E, and B1F). As anticipated, including this threshold

caused the region of bistability to extend to lower values of kme, and encompass a larger region of parameter space (Figure B1F).

For parameter values around PT = 1/3, the model was robustly bistable at the low methylation rate required to fit the data (Figures

B1F and S7B). Figures B1C and B1E show simulation results for the best-fit methylation rate for PT = 1/3, kme = 83 10�6 histone�1

s�1 (�0.6 histone�1 cell cycle�1), with pdem = 43 10�3 histone�1 transcription�1 optimized for maximum bistability. Clearly, when

the threshold PT is included, the quantitative fit to the data can be greatly improved (Figure B1E).

For all further simulations in this work, we incorporate the transcription initiation function as specified in Equation 3 with PT = 1/3.

Fitted parameters are listed in Figure S6M, and spatially resolved example simulations are provided in Figures S7C and S7D.

In summary, slow increases in H3K27me3 levels within an H3K27me3-enriched domain imply that H3K27me3 levels are not satu-

rated throughout the cell cycle. By allowing a non-saturated H3K27me2/me3 domain to fully repress transcription, the model can

maintain both active and repressed states through many cell divisions and simultaneously fit the observed slow accumulation of

H3K27me3 over several cell cycles.
In this case, transcriptional output shows dependence on the

initial chromatin state over an even greater range of a, and the

difference in transcriptional output between the two initial

states occurs at higher a values (Figure 2C). This indicates that

chromatin can instruct gene expression over a wider range of

transcriptional activation levels (i.e., a wider cis memory win-

dow). Furthermore, mean first passage times are greater within

the cis memory window for b = 2 than for b = 1, for both

initial states (Figure 2D). Therefore, the ability of chromatin to

instruct gene expression can itself be quantitatively modulated

through the local activity of PRC2. Other factors affecting

the width of the cis memory window are the same as those

that influence bistability, such as the number of histones in

the gene, and the strength of model feedbacks (Dodd et al.,

2007). In some cases, the cis memory window may be so

narrow that chromatin is effectively always responsive to trans

regulators.

Overall, over a wide range of external transcriptional inputs, bi-

stable chromatin states persist, instructing their own inheritance.
However, when transcription is increased or decreased beyond

certain limits, beyond the cismemory window, bistability is abol-

ished and the chromatin state becomes purely responsive (Fig-

ure 2E). The level of transcriptional activation or repression

required to abolish bistability depends on properties such as

the local PRC2 activity that may differ between PRC2 target

genes and cellular contexts.

Slow Dynamics Underlies Chromatin-Based Noise
Filtering
Our integrated model generates both chromatin-based epige-

netic memory and trans-factor-mediated control of gene exp-

ression. After fitting the model to experimental SILAC data

(Box 1), we found that large, persistent perturbations to

external transcriptional activation are necessary to change

the chromatin state (Figure 2). This suggests that chromatin

may resist state changes driven by transcription and thereby

buffer fluctuations in the concentration of regulatory trans

factors.
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Figure 2. Integration of cis and trans Regu-

lation

(A) Top: schematic of transcriptional activation.

Below: 30 over-plotted simulated H3K27me3 time

courses. After initialization in the uniform me3 state

and equilibration for five cell cycles at a = 1, a then

changed to the value shown in panel label at t = 0.

Simulations show a further eight cell cycles.

(B) Same as (A) for transcriptional repression from

initial uniform me0 state.

(C) Gene activity measured as average number of

transcriptionevents (gene�1hr�1) in the20thcell cycle

after activation or repression, averaged over 2,000

simulations for each value of a. Green lines indicate

initially active gene, orange lines indicate initially

repressedgene. Upper panel: b = 1 throughout, a = 1

duringfivecell-cycleequilibration, thenaas indicated

on x axis for further 20 cell cycles. Lower panel: b = 2

throughout, a = 5 during five cell-cycle equilibration,

then a as indicated on x axis for further 20 cell cycles.

(D) Mean first passage time, tFP (STARMethods) as

function of a, averaged over 1,000 simulations

each of 1,500 cell cycles, from initially active or

repressed state. Model and parameters in Figure 1

(as modified by Equation 3) and Figure S6M.

(E) Schematic of the cis memory window. Blue

shade indicates level of trans-acting gene activa-

tion; green shade indicates expression of PRC2

target gene. Within the window, alternative chro-

matin states are both stably maintained, yet gene

expression levels can also be fine-tuned by trans

regulators. Outside the window, only one chro-

matin state is stable. See also Figure S4.
To investigate this hypothesis, we used a stochastic model

of gene expression (Ozbudak et al., 2002) to simulate a fluc-

tuating gene-activation function, a(t) (STAR Methods). The

noisiness of this input signal is measured from simulations

as the coefficient of variation of a(t). In simulations, the size

of fluctuations can be modulated without affecting the mean

(i.e., haðtÞi= 1, where hi indicates a time average). Although

the methylation rate kme was constrained using experimental

data (Box 1, Figure B1E), we now allow this parameter to

vary in order to understand how its value influences the

noise-filtering capability of this system. With input functions
452 Cell Systems 4, 445–457, April 26, 2017
of various noise strengths, we per-

formed simulations over a range of kme

and pdem. From these simulations, we

calculated the combined first passage

time, FP, which quantifies the ability of

the model to maintain both active

and repressed states (STAR Methods).

FP ranges from 0 to 1, with larger

values indicating greater average state

lifetimes.

Strikingly, we observed that systems

with fast dynamics (high kme, high pdem)

that were bistable (FP z 1) when noise

was low showed a marked decrease

in FP, indicating weakened bistability

as noise was increased (Figures 3A
and S8A). Conversely, bistable models with slower dynamics

were better able to maintain long chromatin state lifetimes

(high FP) as noise in the input signal was increased. Example

simulations are shown in Figures 3B–3E and S8B–S8E. We

observed that the model with the methylation rate obtained

from fitting the SILAC data (kme = 8 3 10�6 histone�1 s�1,

�0.6 histone�1 cell cycle�1) also showed greater bistability

than systems with even slower dynamics (Figure 3A) regardless

of the noise strength. This is due to an inability of the slower

models to counteract the loss of H3K27me2/me3 that occurs

at DNA replication.



Figure 3. Slow H3K27 Methylation Dyna-

mics Generate Robustness to Noise

(A) First passage timemeasure, FP, as a function of

noise in the gene-activation input signal a(t). Noise

measured as coefficient of variation (CV) in a(t).

For each parameter set, 3,000 simulations were

initialized in each of the uniform me0 or me3 states

and simulated for 20 cell cycles. FP calculated as

described in STAR Methods. Each panel shows

results for kme value in panel label. For each kme,

pdem was chosen to maximize FP for constant

a(t) = 1. From left to right, pdem values: 0.001,

0.001, 0.004, 0.03, 0.07, and 0.1 histone�1 tran-

scription�1. Results over larger parameter space

shown in Figure S8A.

(B–E) Example simulations initialized in repressed

(uniform me3) state with variable transcriptional

activation signals a(t). a(t) has low noise (CV z 0)

in (B) and (D), and high noise (CVz 1) in (C) and (E).

(B) and (C) show slow dynamics (kme = 8 3

10�6 histone�1 s�1, pdem = 4 3 10�3 histone�1

transcription�1). (D) and (E) show fast dynamics

(kme = 4 3 10�5 histone�1 s�1, pdem = 2 3 10�1

histone�1 transcription�1). Model and other pa-

rameters in Figure 1 (as modified by Equation 3)

and Figure S6M (b = 1). Gene activity measured as

number of transcription events per 30 min interval.

Similar plots with active initial states shown in

Figures S8B–S8E.

(F) Schematic illustrating filtering of noise in gene-

activation signals. Blue shading indicates level of

trans-acting gene activation; green shading in-

dicates expression of PRC2 target gene. Fast

chromatin dynamics: chromatin rapidly responds

to transient pulses of activation or repression

causing switching between alternative chromatin

states over time, and heterogeneous expression

levels in a population. Slow chromatin dynamics:

transient pulses of activation are not sufficient to

activate the chromatin state, resulting in lower

uniform expression of the PRC2 target gene. See

also Figure S8.
Themodel therefore suggests a rationale for why experimental

H3K27me3 accumulation is slow: genes that change H3K27me3

levels slowly in response to varying trans-factor inputs offer more

stable memory storage than genes with faster chromatin dy-

namics because neither prolonged absences nor pulses of tran-

scriptional regulators are sufficient to change chromatin states.

Interestingly, a previous study of mammalian heterochromatin

also used modeling to suggest that fluctuations of chromatin

regulators on shorter timescales (minutes) would not perturb

H3K9 methylation status (Muller-Ott et al., 2014). In contrast to
C

our model, however, the heterochromatin

model was monostable.

DISCUSSION

In this work, we have introduced a math-

ematical model which mechanistically

integrates transcription and chromatin-

based epigenetic regulation. The model
exhibits bistable cis epigenetic memory over a wide range of

parameter values and is able to quantitatively reproduce the

slow H3K27me3 accumulation rates observed in vivo (Box 1).

When dynamics are slow, we also find that chromatin of PRC2

targets can effectively ignore transient pulses of activation or

repression so that fluctuations in levels of trans regulators do

not lead to loss of cis epigenetic memory (Figure 3F). Fundamen-

tally, these results rest on two main features: transcription

antagonizing chromatin silencing, and cis-acting positive feed-

backs maintaining repressive histone modifications. Thus, the
ell Systems 4, 445–457, April 26, 2017 453



concepts we have highlighted may be widely applicable, e.g., to

heterochromatic H3K9 methylation in S. pombe (Kowalik

et al., 2015).

Many PRC2 target genes are under the control of gene-regu-

latory networks and would therefore seem to have no need for

PRC2 in maintenance of epigenetic memory. This observation

has led to questions regarding the function of PRC2 in such

cases (Ringrose, 2007). The ability to filter noise may explain

why PRC2 is repeatedly employed in gene-regulatory networks,

sometimes acting as a short-term rather than long-termmemory.

Given that many transcription factors are themselves PRC2 tar-

gets, such noise filtering at the transcriptional level may endow

regulatory networks with greatly increased robustness. The ma-

chinery required for chromatin-based noise filtering is generic

and can act simultaneously at many different genomic loci, and

may therefore be regarded as an example of passive noise

filtering (Stoeger et al., 2016).

Previous theoretical models of histone-modification-based

epigenetics found that bistability requires modified histones to

recruit enzymatic complexes that act beyond neighboring nucle-

osomes (Dodd et al., 2007). These long-range interactions are

attributed to DNA looping, which bring together nucleosomes

that aredistant in the one-dimensional chromatin fiber. Intuitively,

long-range interactions ensure that a set of histones within an in-

dividual domain coordinate their modification status, preventing

the formation of stable sub-domains of opposing activating and

repressive modifications. However, preventing such models

from exhibiting uncontrolled spreading to nearby genomic loci

is problematic (Dodd and Sneppen, 2011). In contrast to such

long-range interactions, our model requires only local interac-

tions between histones and their modifying complexes, where

PRC2 recruited to one nucleosome only acts on its immediately

neighboring nucleosomes. The reason that bistability is still

observed in this model is two-fold. First, the model contains no

locally self-reinforcing opposing mark, so the problem of an

opposingmark invading a repressed domain does not exist. Sec-

ond, although histone modifications recruit complexes that act

only on neighboring nucleosomes, the opposing state of tran-

scription can act anywhere within the gene. This effectively gen-

erates a demethylation rate that is determined by the average

chromatin state of the entire gene. In this sense, the process of

transcription and the mechanism by which it is regulated by

H3K27me2/me3 fulfill the requirement for long-range interac-

tions. Nevertheless, our model has advantages over models

with explicit long-range action of histone modifiers. First, the

chromatin state of the entire gene is naturally coordinated by

the process of transcription. Second, the DNA sequence used

to control the initiation and termination of transcription can also

be used to naturally define the boundaries of chromatin activa-

tion. It is also possible that the rare transcriptional events that

occur in the repressed state could help in specifying the bound-

aries of H3K27me3 domains. Moreover, unlikemodels with long-

range interactions between histone modifiers, spreading of

repressive chromatin in our model is strictly one-dimensional;

along the chromatin fiber. This means that H3K27me3 could

also be prevented from spreading by one-dimensional insulator

elements consisting of nucleosome-depleted regions, regions

of high histone exchange (such as actively transcribed regions),

or histones that are somehow refractory to H3K27-methylation.
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The model developed in this work fundamentally integrates

bistable cis-acting epigenetic memory with trans-acting tran-

scriptional control. One key difference between these two reg-

ulatory modes is that the chromatin states are digital (on/off),

whereas trans regulators can act in an analog manner, with

transcriptional output depending continuously on the concen-

trations of the regulators (Giorgetti et al., 2010). The concepts

of digital and analog regulation provide an alternative way of

thinking about the results of our model: within the cis memory

window, bistable (digital) chromatin states persist (instructing

their own inheritance). However, the expression levels of these

digital chromatin states can be fine-tuned in a continuous

analog way by the activity of trans regulators (Figure 2E). In

this way, our model exhibits a fusion of digital and analog tran-

scriptional control.

Experimental Outlook
Ourmodel makes two further specific predictions that are exper-

imentally testable. First, the model predicts that for each PRC2

target there is an upper threshold of trans activation above which

chromatin-based repression cannot be established; a lower

threshold below which chromatin-based repression is guaran-

teed; and an intermediate range of trans-activation strengths

over which the chromatin state instructs its own inheritance

and contributes to determining gene expression. Understanding

how these thresholds depend on various features of PRC2

target-gene sequence and chromatin features will be essential

in understanding genome-wide functions of PRC2. Second,

the model predicts that slow chromatin dynamics allow PRC2

target genes to filter noise in trans regulators.

Monitoring gene expression at the single-cell level while

dynamically tethering PRC2 and other chromatin modifiers has

recently been used in a synthetic system to reveal that chromatin

silencing is generally an all-or-none phenomenon (Bintu et al.,

2016), in agreement with results from naturally occurring Poly-

comb systems (Berry et al., 2015). Using similar synthetic ap-

proaches, one could combine dynamic recruitment of chromatin

modifiers with simultaneous quantitative modulation of tran-

scription. This would enable detailed mechanistic dissection of

the interplay between transcription and PRC2 activity. In such

an experimental system, the prediction of noise filtering could

also be explicitly tested by providing pulses of trans activation

of different strengths and durations.

Inducible tethering of transcriptional activators and chromatin

modifiers (Gilbert et al., 2014) could also be used at endogenous

PRC2 targets, and should enable quantitative comparisons of

the memory-storage capabilities of different PRC2 targets, or

the same target in different cellular contexts. Similar to our

previous experimental work (Berry et al., 2015), assays with sin-

gle-cell resolution and an ability to trace cell lineages will be

essential.
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METHOD DETAILS

Computational Methods and Simulation Details
Programming Languages and Computing Resources

All simulations were written in C and compiled using GCC (version 4.4.7). Pseudo-random numbers were generated in the GNU sci-

entific library (GSL, version 1.13) random number environment using the Mersenne Twister 19937 algorithm (Matsumoto and Nishi-

mura, 1998). The seed was either specified manually (for code development and simulating specific trajectories) or set based on the

system clock using the time function of the C standard library. Simulations were run on the Howard group cluster, which comprises 4

compute nodes, each equippedwith 16-core Xeon E5-2650 processors, running at 2.6 GHz, with 16GB of systemmemory. The clus-

ter runs the CentOS 6.6 distribution of the Linux operating system.

Mathematical Modeling of Chromatin

Stochastic simulations of H3K27 methylation, demethylation and transcription were simulated according to the ‘direct’ Gillespie

algorithm (Gillespie, 1977). The algorithm is completely defined by a set of possible state transitions (reactions), and a corresponding

propensity for each of the reactions to occur. At each iteration, the time-step Dt and the next reaction are selected probabilistically.

The selected reaction is then performed by updating the system state, and system time is incremented by Dt.

In our simulations, we explicitly track the methylation status, Si of each H3 histone i ˛ [1, N] within a simulated region of chromatin

(Si ˛ {me0, me1, me2, me3}). Since we are considering methylation of H3K27, in the following we refer to H3 histones simply as his-

tones. Each nucleosome consists of a pair of histones, (k, k+1) for odd numbers k such that 1% k% N�1, with N even. Methylation

and demethylation reactions increase or decrease by one, respectively, the number of methyl groups at histone i. Initiation of tran-

scription is also modelled as a reaction. Therefore, for a system of N histones there are a total of 2N + 1 possible reactions (N histone

methylations, N histone demethylations and transcription). However, not all reactions are possible at all times, e.g. methylation of

me3 histones, so these reactions have zero propensity. Reaction propensities, r, are re-calculated after each system update.

According to themodel shown in Figure 1, the propensity ofmethylation, rme
i for each histone idepends on themethylation status of

each of the histones on neighboring nucleosomes and also the other histone on the same nucleosome. rme
i also depends on the rates

of recruited methylation kme, noisy methylation, gme, and relative local PRC2 activity, b. For 1% i% N, the methylation reaction pro-

pensities are calculated as,

rme
i = b

�
dSi ;me0ðgme0�1 + kme0�1EiÞ+ dSi ;me1ðgme1�2 + kme1�2EiÞ+ dSi ;me2ðgme2�3 + kmeEiÞ

�
; (Equation S1)

where dx;y =

�
1; x = y
0; xsy

, is the Kronecker delta and

Ei =
X
j ˛ Mi

�
rme2dSj ;me2 + dSj ;me3

�
; (Equation S2)

is summed over ‘neighboring’ histones, where

Mi =

� fi � 3; i � 2; i � 1; i + 1; i + 2g; i even;
fi � 2; i � 1; i + 1; i + 2; i + 3g; i odd:

: (Equation S3)

This reflects the fact that each nucleosome consists of one even-numbered and one odd-numbered histone. Histones outside the

simulated region are not considered. Consequently, histones on boundary nucleosomes have only one-sided recruitment of methyl-

ation. This introduces a slight bias toward the active state, as the boundary histones only have one-sided recruitment. However, since

the region of chromatin domain simulated is relatively large (60 histones) relative to the boundaries (4 histones), we expect that this

effect will be small.

Gillespie’s stochastic simulation algorithm (Gillespie, 1977) N/A
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Each histone i undergoes noisy removal of methyl groups (one methyl group at a time) with propensity,

rdemi =gdem

�
dSi ;me1 + dSi ;me2 + dSi ;me3

�
: (Equation S4)

Demethylation is also coupled directly to transcription, which itself has propensity given by Equation 3. Each transcription event

can result in removal of methyl groups (one methyl group at a time) at each histone (with probability pdem per histone) and also

replacement of each nucleosome (mex/mex/ me0/me0, with probability pex per histone). Since pex is a probability per histone

and histone exchange actually results in replacement of a pair of H3 histones, the average rate of loss of histones through exchange

is z 2fpex.

To replicate DNA, the Gillespie algorithm simulation was interrupted if the projected time for the next reaction exceeded the time at

which DNA would have been replicated. In this case, system time was updated to the forecast time of DNA replication. After repli-

cation of DNA, reaction propensities were then re-calculated and the Gillespie algorithmwas repeated for another cell cycle. A similar

approach was previously used to incorporate reactions with delays in Gillespie algorithm simulations (Bratsun et al., 2005).

Quantities Calculated from Simulations

Time-Averaging. For an individual simulation time-course comprising K reactions, the Gillespie algorithm determines the state of

the system at K simulation time-points ti (the trajectory). The time-step Dt = ti+1 � ti is not constant. Time-averaging for a quantity xi
(e.g. POFF or PON) between t0 and tK was performed using the formula,

XK�1

i = 0

xi
ti + 1 � ti
tK � t0

: (Equation S5)

Bistability Measures. The quantity introduced in (Sneppen and Dodd, 2012) to determine the time-averaged probability of the sys-

tem being in one of the epigenetic ‘states’ is equivalent to POFF, the probability that the number of repressive me2/me3 marks ex-

ceeds the number of neutral me0/me1 marks by at least half the total number of histones,

POFF =Pr

�
nme3 + nme2 � nme1 � nme0 >

N

2

�
: (Equation S6)

With N = nme3+nme2+nme1+nme0, this reduces to,

POFF =Pr

�
nme3 + nme2 >

3N

4

�
: (Equation S7)

Similarly,

PON =Pr

�
nme3 + nme2 <

N

4

�
; (Equation S8)

and the bistability measure (Sneppen and Dodd, 2012) is given by,

B= 4POFFPON: (Equation S9)

Since the histone type that is randomly inserted during DNA replication is identified with the high transcription state, it was neces-

sary to allow the system to recover from this perturbation before assessing the stability of the state after DNA replication. For this

reason, results were calculated only for the last hour of each cell cycle. This allowed systems with slow recovery times after DNA

replication to attain high values of B, consistent with their long-term stability.

After introduction of the threshold, PT (Equation 3), these definitions of PON and POFF no longer accurately reflect the chromatin

state in terms of its control on expression. In this case, the gene is defined as being in the OFF-state if the chromatin-based regulation

of transcription is in its lower quartile. For fmax s fmin,

POFF =Pr

�
fmax � nme2 + nme3

NPT

ðfmax � fminÞ < fmin +
fmax � fmin

4

�
; (Equation S10)

which can be simplified to,

POFF =Pr

�
nme3 + nme2 >

3NPT

4

�
; (Equation S11)

and likewise for PON,

PON =Pr

�
nme3 + nme2 <

NPT

4

�
: (Equation S12)

With PT = 1, Equations S11 and S12 reduce to Equations S7 and S8, respectively. These latter definitions are therefore consistent

with earlier usage of the bistability measure B (Sneppen and Dodd, 2012). For all figures (except for the two-state model – Figure S1)

Equations S11 and S12 were used to calculate the bistability measure B, according to Equation S9.
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First Passage Times. Mean first passage times, tFP(me0) and tFP(me3), are defined as the average time taken for the system to change

to the opposite chromatin state, when initialized in the uniform me0 or me3 state, respectively. For example, for an initially

active state,

tFPðme0Þ =min

�
t

���� nme3 + nme2 >
3NPT

4

�
: (Equation S13)

In the simulations, mean first passage times were bounded above by the total simulation time. This allowed the introduction of a

quantity to measure the mutual stability of the two states, the ‘combined first passage’,

FP=
tFPðme0ÞtFPðme3Þ

T2
; (Equation S14)

where T is the total simulation time. Since tFP(me0), tFP(me3) % T, then 0 < FP % 1.

Two-State Model
To investigate if a simple two-statemodel (H3K27me0, H3K27me3) including transcription was capable of generating bistability, we

constructed the model shown in Figure S1. In this model, PRC2 places me3 marks and transcription removes me3 marks. In addi-

tion, H3K27me3 represses transcription (Figure S1B, equation for f ) and participates in positive feedback to recruit more PRC2

(Margueron et al., 2009). Previous studies have shown that bistability is most robust when interactions are ‘long-ranged’ (Dodd

and Sneppen, 2011; Dodd et al., 2007). That is, PRC2 recruited anywhere in the gene can act on any other histone. Since we

are interested in the ability of this model to generate bistability, we included such long-range interactions in this model. This

was achieved by making the overall methylation rate dependent on the proportion of H3K27me3 marks at the gene (Figure S1B,

equation for Pme3). The model also includes explicit noisy methylation and implicit noisy demethylation through stochastic tran-

scription in the repressed state.

Simulations were performed in a similar manner to that described for the main model. Explicitly, for a system of N histones, the

following reaction propensities r were calculated at every step of the Gillespie algorithm simulation:

rme
i = dSi ;me0

 
gme +

kme

N

XN
j = 1

dSj ;me3

!
; (Equation S15)
rtranscription = fmax � 1

N
ðfmax � fminÞ

XN
j = 1

dSj ;me3; (Equation S16)

where 1% i% N and Sj˛{me0,me3}. Methylation reactions selected for histone i resulted in me0 to me3 conversion, whereas tran-

scription events resulted in demethylation of each histone with probability, pdem per histone.

We simulated this model over a large region of parameter space at high resolution, either in the presence or absence of DNA repli-

cation. Bistability was calculated using Equation S9, with

POFF =Pr

�
nme3 >

3N

4

�
; (Equation S17)

and

PON =Pr

�
nme3 <

N

4

�
: (Equation S18)

When included, DNA replication was modeled as a discrete event that occurred every 22 hr.

We were unable to find parameter sets that gave stability for both the active and repressed expression states (Figure S1D). Figures

S1E and S1F show example trajectories of biased and balanced models without DNA replication. Note that even when methylation

and demethylation processes are relatively balanced, neither state is stable over long periods of time (Figures S1E and S1F central

panels).

Our results are in agreement with previous work showing that bistability is not obtained without nonlinearity in the histone modi-

fication conversion reactions (Dodd et al., 2007). Rather than adding such nonlinearity arbitrarily to generate the main model consid-

ered in this work, we find that nonlinearity arises parsimoniously from the non-processivity of H3K27-methylation by PRC2.

Processivity in Methylation or Demethylation
SET-domain histone methyltransferases, such as the catalytic subunit of PRC2, can be either processive or non-processive (Chin

et al., 2006; Patnaik et al., 2004). However, as discussed in the main text there is in vitro and in vivo evidence that PRC2 acts

non-processively when methylating H3K27. Moreover, the two-state model considered above, which did not generate bistability,

corresponds approximately to a model with processive methylation and demethylation. We argued that the failure of the two-state
e3 Cell Systems 4, 445–457.e1–e8, April 26, 2017



model was due to a lack of nonlinearity in the reactions converting between H3K27me0 and H3K27me3. It is therefore interesting to

consider the ability of the full model to maintain both the active and repressed expression states when either methylation or deme-

thylation (but not both) occur processively (Figure S2).

Processive Methylation

To investigate if bistability in our full model is dependent on non-processivity of themethyltransferase, wemodified themodel structure

so that PRC2 catalyses the conversionsme0/me3, me1/me3 andme2/me3 instead of addingmethyl groups one at a time (Fig-

ure S2B). All reaction propensity calculations remain unchanged. The model retains the relative catalytic activity of PRC2 on

H3K27me0, me1 andme2 substrates of 9:6:1, respectively, because these quantities were calculated from experiments without refer-

ence to the reaction product produced (McCabe et al., 2012). Both noisy and recruited methylations are considered as processive.

In agreement with the results of our two-state model, we observed very limited bistability (Figure S2B), suggesting that non-proc-

essivity in methylation is an important feature for our model to provide cis epigenetic memory.

Processive Demethylation

In the model, processive demethylation plays a similar role to histone exchange – with the exception that processive demethylation

results in conversion of one histone (mex/me0) while histone exchange results in removal of both histones on a nucleosome (mex/

mex/ me0/me0). Since the full model can generate bistability at reasonably high levels of histone exchange (Figure S5), we ex-

pected that including processive demethylation would not have a dramatic effect on bistability. We modified the model structure

so that K27-demethylases (including noisy demethylation) performed the conversions me3/ me0, me2/ me0 and me1/ me0,

rather than removing one methyl group at a time (Figure S2C). Again, all reaction propensity calculations remain unchanged. As ex-

pected, we found that the model was still able to generate bistability – albeit over a smaller region in parameter space (Figure S2C).

Transcriptional Bursting
In the main model developed in this work, transcription events occur stochastically with constant probability per unit time f at all

times – where f depends on the current chromatin state and trans-activation level. That is, transcription is modeled as a Poisson pro-

cess. However, it is known from studies in both prokaryotes and eukaryotes, that transcription often occurs in episodic ‘bursts’, inter-

spersed with intervals of transcriptional inactivity (reviewed in (Raj and van Oudenaarden, 2008)). Models that explain this ‘transcrip-

tional bursting’ typically consist of two or more promoter states, each with different characteristic transcriptional activities (Paulsson,

2005; Peccoud and Ycart, 1995; Raj et al., 2006). To verify that the conclusions presented in this work are valid even when transcrip-

tion occurs in bursts, we now consider incorporating a more complex ‘promoter-switching’ description of transcription into our in-

tegrated chromatin/transcription model.

The model is shown in Figure S3, with additional parameters defined in Figures 1D and S6M. Following (Peccoud and Ycart, 1995),

we assume that the promoter can exist in either an ‘open’ or ‘closed’ state. Transitions between these states occur with probabilities

per unit time, kon and koff. When in the open-promoter state, transcription occurs with constant rate f0, independent of the chromatin

state and trans-activation level. For a given gene that displays transcriptional bursting, experiments suggest that transcriptional

output can be regulated either by modulating burst size (transcripts per burst) or by modulating burst frequency, or a combination

of both (Dar et al., 2012; Raj et al., 2006; Senecal et al., 2014). In our model, we consider the case in which regulation by chromatin

and trans-factors alters the probability of transition from a closed to an open promoter state, kon, while koff is kept constant. That is,

transcriptional regulation occurs through changes to burst frequency, with both the transcription rate of the open promoter state and

the burst duration remaining, on average, fixed. However, since we consider large ranges of values for f0, and koff, a range of burst

sizes and durations are also considered (in different simulations). Other than the changes to the regulation of transcription, the model

remains unmodified from that considered in the main text.

The probability of being in the open promoter state when the gene is fully repressed is Popen(min) = kon(min)/(kon(min) + koff), while when

the gene is maximally active the corresponding probability is Popen(max) = kon(max)/(kon(max) + koff). The maximal fold-change in tran-

scription rate between the active and repressed chromatin states is therefore given by

F =
f0PopenðmaxÞ
f0PopenðminÞ

=
konðmaxÞ

�
konðminÞ + koff

�
konðminÞ

�
konðmaxÞ + koff

�: (Equation S19)

To ensure that this transcriptional fold-change is the same in the promoter-switching model as the main model (F = fmax/fmin = 40), we

must therefore set

konðminÞ =
konðmaxÞkoff

39konðmaxÞ + 40koff
(Equation S20)

Furthermore, to ensure that average transcription rates in the active and repressed states are the same as those of the main model,

we also set

fmin = f0PopenðminÞ: (Equation S21)
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With fmin = 10�4 s�1 (Figure 1D), we therefore obtain,

f0 =
10�4

�
konðminÞ + koff

�
konðminÞ

: (Equation S22)

With this formulation, the promoter is 40 times more likely to be open in the active than the repressed chromatin state; average burst

duration is constant (determined by koff); and the average rate of transcription from an open promoter is scaled to maintain the

same mean transcription rate in the fully repressed state as in the main model. It is important to note, however, that for

kon(min) [ koff, Popen(min) z 1, and f0 z 10�4 s�1. That is, the promoter is always ‘open’, even in the repressed chromatin state. In

this regime, the model breaks down because transcription cannot be up-regulated by increasing kon, and neither the chromatin state

nor trans-factors can exert an activating effect on transcription. To ensure that the required transcriptional regulation can be achieved

through modulation of kon alone, we restrict our analysis to the region of parameter space where kon(max) % koff. This ensures that the

average time between bursts is always longer than the average burst duration, which is consistent with experimental observations in

mammalian cells (Dar et al., 2012; Molina et al., 2013; Skinner et al., 2016; Suter et al., 2011).

With this model formulation there are two free parameters that control the extent to which transcription occurs constitutively or in

episodic bursts: kon(max) and koff. Parameter values for chromatin dynamics obtained from fitting themainmodel remain unchanged in

this model (PT = 1/3, kme = 8 3 10�6 histone�1s�1, pdem = 4 3 10�3 histone�1transcription�1, pex = 10�3 histone�1transcription�1).

We simulated the promoter switching model over a range of values of kon(max) and koff (Figure S4) and calculated PON, POFF, B, and

FP from simulations. B was determined using Equation S9, with PON, POFF as in Equations S11 and S12. FP was calculated using

Equation S14. Parameter ranges chosen include (but are not limited to) promoter on- and off-rates estimated from experiments

(Dar et al., 2012; Molina et al., 2013; Skinner et al., 2016; Suter et al., 2011). Figures S4G–S4N show example simulations for selected

parameters indicated in Figure S4A. Over this parameter range, average promoter-closed durations in the active expression state

vary from much shorter than a cell cycle (e.g Figures S4G and S4H), to much longer than a cell cycle (e.g. Figures S4M and S4N).

When kon(max) and koff are both fast (short open and closed durations), burst size is % 1, and transcription becomes approximately

Poissonian. As expected, themodel generates bistability in such cases (Figure S4E). However, as kon(max) is reduced, burst frequency

is reduced (Figure S4B) and the transcription rate in the ‘open’ state increases (Figure S4A). For small enough values of kon(max), this

causes instability of the active state because transcription does not occur frequently enough to prevent the accumulation of

H3K27me2/me3 (as shown by the increase in POFF and reduction in B and FP as kon(max) is reduced in Figures S4D–S4F). However,

this loss of bistability only occurs for very low values of kon(max) z 53 10�5 s�1, which corresponds to average promoter-closed du-

rations of approximately 5 hr in the active state. Typical literature estimates for kon in mammalian cells range from 10�4 to 10�3 s�1

(Dar et al., 2012; Molina et al., 2013; Skinner et al., 2016; Suter et al., 2011). Over this range, both the active and repressed states

remain quite stable over a wide range of burst sizes and durations (Figures S4E and S4F), demonstrating that our model is capable

of maintaining cis epigenetic memory even when transcription occurs in bursts.

Next, we determined the consequences of bursty transcription on robustness by examining its effect on the cis memory window.

We first selected parameter values that gave bursty transcription within the range observed experimentally: kon(max) = 5 3 10�4 s�1

and koff = 5 3 10�3 s�1 (corresponding to open-promoter durations of 3 minutes and closed durations of 30 minutes for the active

state). Example simulations are shown in Figures S4O and S4P. Like the chromatin state, a influences kon rather than f0 in this model

(see equation for kon in Figure S3B). The mainmodel considered in this work included a limit on themaximum probability per unit time

of transcription initiation, f% 1/60 s�1. In the promoter state-switching model, the rate of transcription initiation in the open promoter

state, f0 is determined by Equation S22. Tomaintain correspondencewith the average transcription rates of themainmodel when f0 >

1/60 s�1, we introduce a restriction on kon by requiring that

f0Popen%1=60 s�1: (Equation S23)

Substituting Popen = kon/(kon + koff) gives the condition,

kon %
koff

ð60 sÞf0 � 1
: (Equation S24)

With these selected values of kon(max) and koff, and the limitation on kon imposed by Equation S24, we then performed simulations of

the promoter-switching model at different fixed values of the trans-activation strength, a (similar to Figures 2C and 2D). Similar to the

main model, we observed a robust window of trans-activation strengths within which the initial chromatin state tends to be main-

tained and therefore contributes to transcriptional output. Outside this window the H3K27 methylation state is determined entirely

by the trans-activation strength (Figure S4Q). The transcriptional output increases more slowly as a function of a for the pro-

moter-switching model than the non-bursty transcription model in the main text. This is because in the promoter-switching model,

transcription is no longer a linear function of a, but rather it is a linear function of Popen = kon(a)/(kon(a)+koff). We also calculated the

mean first passage times for the active and repressed initial states as a function of a (Figure S4R). For both states, lifetimes are

very slightly reduced for bursty versus non-bursty transcription, however average lifetimes greater than 200 cell cycles were still

achieved when a = 1, again underlining the robustness of these states.

Overall, we have shown that our integrated model of transcription and chromatin is able to provide robust cis epigenetic memory

over a wide range of transcriptional burst sizes and durations.
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Additional Details of the Main Model
In the main text, we presented an overview and brief justification for features included in the model. For the sake of brevity, some

details and additional considerations were omitted from the main text. We now discuss these points in more detail.

Noisy Demethylation

Transcription-coupled demethylation occurs on average with rate fpdem. In the model, noisy demethylation occurs through both

transcription-dependent and transcription-independent mechanisms. For simplicity, the rate of transcription-independent noisy

demethylation, gdem is set equal to the rate of transcription-dependent noisy demethylation fminpdem. This ensures that in the maxi-

mally repressed state, demethylation occurs through both transcription-dependent and transcription-independent mechanisms with

equal probability. With fmax = 40fmin, transcription-coupled demethylation in the repressed state (fminpdem) is equal to 2.5% of the rate

of transcription-coupled demethylation in the active state (fmaxpdem). Together with transcription-independent noisy demethylation,

gdem = fminpdem, the total rate of (noisy) demethylation in the repressed state is 5% of the maximum rate of transcription-coupled

demethylation in the active state. This ‘signal-to-noise’ level in demethylation is therefore equivalent to that of noisy methylation

(5%), which is captured by the parameters gme0�1 = kme0�1/20, gme1�2 = kme1�2/20, gme2�3 = kme/20, as described in the main text.

Mitosis

Throughout this work, the effect of chromosome condensation during mitosis on chromatin states has been ignored. During mitosis,

histones are retained at similar locations and their H3K27-methylation status is maintained (Alabert et al., 2015; Annunziato, 2005;

Gaydos et al., 2012). It is also known experimentally that transcription is actively repressed (Spencer et al., 2000) and that themajority

of Polycomb group proteins dissociate from chromatin (Fonseca et al., 2012). This suggests that both transcription and H3K27-

methylation occur with lower probability on condensed chromatin during mitosis. Based on these data, it is assumed that chromatin

states are not substantially biased toward activation or repression duringmitosis. With this assumption, mitosis effectively represents

a ‘pause’ in the state of the system and is therefore not included in the model.

Active Chromatin Marks

In our main model, we showed that transcription-coupled histone demethylation and histone exchange constitute sufficient antag-

onism of PRC2 silencing to ensure robust stability of the active state. However, considerable molecular and genetic evidence indi-

cates that Polycomb repression is also antagonized by the Trithorax group of proteins (Klymenko and M€uller, 2004; Petruk et al.,

2001). This is thought to be mediated in part by H3K4 and H3K36 methylation, which are commonly associated with highly tran-

scribed genes and are refractory to PRC2-mediated H3K27 methylation (Tie et al., 2014; Yuan et al., 2011). However, it is currently

unclear if any of these ‘active marks’ are capable of positive feedback independent from transcription. Without such direct positive

feedback, these ‘active marks’ are not sufficient to instruct their own maintenance and were therefore omitted from our model. One

possibility to explain the requirement for Trithorax group proteins in antagonism of PRC2 (Klymenko andM€uller, 2004; Tie et al., 2014)

is that these active histone marks are laid down by transcription-coupled processes in order to antagonize PRC2-silencing. In addi-

tion, these marks could increase the probability of transcription initiation by promoting histone acetylation, including that of H3K27

(Tie et al., 2014). Together, these two effects would generate an indirect positive feedback for activemarksmediated by transcription.

This could easily be included as an extension to our model and would constitute another mechanism by which transcription antag-

onizes PRC2. By stabilizing the active state, this would increase the width of the cis-memory window. However, there may still be

cases where transcription is less involved in the antagonism of Polycomb silencing, a potential example being the bxd Polycomb

Response Element (PRE) in Drosophila (Erokhin et al., 2015).

Histone Exchange

Many experimental studies have attempted to quantify rates of histone exchange.Metabolic labelling experiments inSaccharomyces

cerevisiae indicated that H2B is exchanged more often than H3, and that H3 exchange is correlated with gene expression level (Dion

et al., 2007; Jamai et al., 2007). These studies found that up to 50% of H3 over the coding region could be replaced within one hour,

but failed to detect H3 exchange at inactive genes. Similarly, pulse-chase experiments in Drosophila cell culture estimatedmean his-

tone residence times of a few hours at actively transcribed genes (Deal et al., 2010). Thesemeasurements were, however, limited to a

short labelling duration, preventing accurate determination of slow rates of exchange.

Histone exchange rates have also been measured by microscopy, using Fluorescence Recovery After Photobleaching (FRAP) of

fluorescently-labelled histones (Kimura and Cook, 2001). In HeLa cells, this suggested a wide range of histone exchange rates across

the genome, with a substantial portion of H3 and H4 histones remaining in place over the entire experiment, lasting 8.5 hr.

Relative rates of histone exchange across the genome have also been inferred from the patterns of accumulation of H3 var-

iants H3.1 and H3.3 (Jin et al., 2009). Histone H3.3 is incorporated in chromatin independently of DNA replication, while H3.1

incorporation is coupled to replication (Tagami et al., 2004). In human and mouse cells, H3.3 levels are positively correlated

with transcriptional activity (Ray-Gallet et al., 2011), and both H3.3 and histone exchange are reduced at repressed Polycomb

targets (Deaton et al., 2016; Kraushaar et al., 2013). These data are consistent with histone exchange being slow at repressed

PRC2 target genes, but occurring on time-scales similar to (or faster than) the cell cycle when these same genes are highly

transcribed.

The mechanistic basis of the transcription-dependence of histone exchange is unknown (reviewed in (Venkatesh and Workman,

2015)). This effect may be due to a more compact chromatin structure and lower levels of histone acetylation at repressed genes,

which tends to promote retention of histones (reviewed in (Zentner and Henikoff, 2013)). Alternatively, transcription may be physically

coupled to the exchange machinery (Ray-Gallet et al., 2011), or histones may sometimes be lost as Pol II traverses the nucleosome

(Kulaeva et al., 2013). All of these possibilities result in removal of modified histones with low probability at each transcription event. In
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the model, we therefore chose to couple histone exchange to transcription. That is, each passage of Pol II in the model has the

capacity to remove an H3/H4 tetramer. Actual histone exchange rates in the model depend on both the probability of histone ex-

change per transcription event, and the transcription initiation rate, f. Because histone exchange is directly coupled to transcription,

the maximum fold-change in the transcription initiation rate, F = fmax/fmin provides an upper bound on the fold-change in histone resi-

dence times between the active and repressed states. To break this linear coupling would require a more complicated function

relating transcription and histone exchange. Without additional information about how histone exchange changes as a function of

transcriptional activation, there is little rationale for such a change. Therefore, we chose the simplest function that yields the

conserved correlation between histone lifetime and transcription level.

Transcription-Dependent H3.3 Accumulation Constrains the Histone Exchange Probability

Having adopted this functional relationship between transcription and histone exchange in our model, it is necessary to set a param-

eter value for the histone exchange probability, pex. The value adopted in Box 1, and used throughout the remainder of themanuscript

was pex = 10�3 histone�1 transcription�1. We now show that with this parameter value, our model can reproduce the experimental

observations of transcription-dependent H3.3 accumulation, and low histone exchange in the repressed state (Deaton et al., 2016;

Kraushaar et al., 2013; Ray-Gallet et al., 2011).

To quantify H3.3 accumulation in our model, we performed simulations in which histones incorporated during transcription-depen-

dent histone exchange were labelled as ‘H3.3’, while those incorporated at DNA replication were labelled as ‘H3.1’ (Figures S6A and

S6B). We then calculated the difference in H3.3 levels between simulations initialized in the active state and those initialized in the

repressed state (H=
��hH3:3iON � hH3:3iOFF

��, where hi indicates a time-average). In the bistable regime, highH values indicate strong

transcription-dependence of H3.3 abundance, as experimentally observed. Although histone exchange is directly coupled to tran-

scription in our model, transcription-dependent H3.3 accumulation is not automatically obtained for all bistable parameter sets (Fig-

ures S6C andS6D). For example, if pex is too low, H3.3 does not accumulate even in the active state (Figure S6F), and if pex is too high,

H3.3 accumulates even in the repressed state (Figure S6K). However, with pex = 10�3 histone�1 transcription�1, and the fitted param-

eter values in Figure S6M, our model reproduces two semi-quantitative experimental results: low histone exchange in the repressed

state and transcription-dependent H3.3 accumulation.

Fitting Triple-SILAC Mass Spectrometry Data
Published SILAC data (Alabert et al., 2015) were generated in the laboratories of Anja Groth (Biotech Research and Innovation Center,

Copenhagen) and Axel Imhof (Ludwig-Maximilians Universit€at, Munich), and were obtained as processed data from Carsten Marr

(Institute of Computational Biology, Helmholtz Zentrum, Munich), with permission.

As described in (Alabert et al., 2015), data were normalised to yield H3K27me3 levels on ‘old’ and ‘new’ histones as a proportion of

the total old and new labeled peptides measured at each time point. Simulation results for H3K27me3 levels on old and new histones

were initially also expressed as a proportion of the levels of old and new histones, respectively. However, because mass spectrom-

etry data represent a genome-wide average, and simulations represent a single PRC2-target gene, simulation data must be scaled in

order to make a quantitative comparison with experiments. To do so, simulation data were further normalised so that the average

simulated cell-cycle-end value of H3K27me3 on total histones, Pme3 end was equal to the proportion of H3K27me3 on old histones

at t = 0 (0.301), obtained experimentally. That is, each simulation time point was multiplied by the factor 0.301/Pme3 end. This is valid

because all histones are labeled as old at t = 0, so the value 0.301 also represents the relative amount of H3K27me3 on total histones

at the end of each cell cycle.

After this normalisation, the t = 0, 10, 24, 48 hr experimental time points for old and new histones were compared with equivalent

model time-points using the sum of squared errors. Three biological replicates were available for each time point (Alabert

et al., 2015).

The normalisation procedure requires that the model is epigenetically stable over many cell cycles in the repressed state in

order that the extracted Pme3 end correctly normalises the simulated data at the start of the cell cycle in which ‘new’ histones

are added. In Figures S7A and S7B, it can be seen that the normalisation fails for some of the unstable models for low values

of kme. This is because the repressed (high-me3) state is generally not maintained through the equilibration cycles before new

histones are added.

We did not attempt to fit our model to time-dependent data for H3K27me1 because not all H3K27me1 in the genome is dependent

on PRC2 (Ferrari et al., 2014). Nor did we fit H3K27me2, because this modification forms large intergenic and intragenic domains

beyond the scope of our current model (Ferrari et al., 2014). Nevertheless, since our model incorporates non-processive H3K27

methylation with rates kme0�1 > kme1�2 > kme2�3 = kme, it is qualitatively consistent with slower accumulation of H3K27me3 than

H3K27me1 and H3K27me2, as observed experimentally (Alabert et al., 2015).

It is also important to remember that the SILAC data represent genome-wide averages. It is therefore not guaranteed that the time-

scale extracted through the analysis reflects that of a gene whose repression actually depends on H3K27me2/me3. For this reason,

faster H3K27 methylation dynamics (similar to Figures B1B and B1D) cannot be excluded in all cases.
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Stochastic Model of a Noisy Transcriptional Regulator
The following model was used in (Ozbudak et al., 2002) to investigate how rates of transcription and translation affect variability in

protein abundance over time. In the present work it is used as an arbitrary ‘noisy’ input function representing the expression of a

trans-regulator:

DNA/
sR
mRNA/

dR
f (Equation S25)
mRNA/
sP
Protein/

dP
f: (Equation S26)

In steady state, hmRNAi= sR=dR and hProteini= sRb=dP, where hi indicates an average over time and b = sP/dR is the average num-

ber of proteins synthesised per mRNA transcript (Ozbudak et al., 2002). The ‘noise’ in protein abundance is controlled by the value

of b, with larger b giving a more variable output.

To simulate a transcriptional regulatory protein with variable concentration r(t), the following parameter values were used, dR =

1/2 hr�1, dP = 1/12 hr�1, SR = dphrðtÞi=b hour�1, sP = dRb hour�1. Specifying the mean number of regulatory proteins as

hrðtÞi= 1000, the noise can then be varied using the single parameter (B) Higher values of b indicate greater noise. The variable

gene activation function a(t) is then given by aðtÞ= rðtÞ=hrðtÞi.
The number of protein and RNAmolecules were explicitly simulated using the Gillespie algorithm according to the model specified

in Equations S25 and S26. These simulations to generate a(t) were performed concurrently with simulations of the chromatin state.

To generate Figure 3A, stochastic simulations of a(t) used b˛ {1, 2, 9, 23, 43, 71, 106, 149, 200, 259, 327, 404, 489, 583, 687, 799,

922, 1053, 1195}. This generated stochastic inputs a(t) with noise ranging fromCVz 0–1. Figures 3B–3E and S8B–S8E used b = 1 for

‘low noise’ (CV z 0) and b = 1,000 for ‘high noise’ (CV z 1).
Cell Systems 4, 445–457.e1–e8, April 26, 2017 e8



Cell Systems, Volume 4
Supplemental Information
Slow Chromatin Dynamics Allow Polycomb

Target Genes to Filter Fluctuations

in Transcription Factor Activity

Scott Berry, Caroline Dean, and Martin Howard



 

 

Figure S1, related to Figure 1: Two-state model. (A) Diagrammatic representation of feedbacks in the 

two-state mathematical model. States me0 and me3 refer to the methylation state of H3K27. Black arrows 

represent state transitions, while coloured arrows represent feedback interactions. (B) Mathematical 



 

description of the model. (C) Two-state model parameters. (D) Heat-map indicating the bistability measure, 

!, for simulations performed with "#$ (histone-1s-1), %&$#'(histone-1 transcription-1), and (#)* (s-1) values 

indicated on axes and panel labels. For each parameter set, 100 simulations were initialized in each of the 

uniform me0 or me3 states and simulated for 50 cell cycles. Bistability measure B calculated as described 

in STAR Methods. DNA replication is not included in the top panels but is included in the bottom panels, 

with a timescale of 22 hours (Posakony et al., 1977). (E) Example simulations of a single genomic locus 

initialized in the active (me0) state, for methylation-biased (%&$# = 6.3×1023'histone-1 transcription-1), 

balanced (%&$# = 1024 histone-1 transcription-1), or demethylation-biased (%&$# = 1.5×1024 histone-1 

transcription-1) parameter sets. (F) As in E, except with initially repressed (me3) state. In all examples, 

"67 = 1.25×1029 histone-1s-1 and'(#)* = 0.0128 s-1. 



 

 

Figure S2, related to Figure 1: Effect of processivity in enzyme activity on bistability. Left panels show 

model schematics with black lines indicating possible state transitions. Right panels show heat maps of the 

bistability measure, !, calculated from simulations performed over a range of values for the parameters 

"#$ (histone-1s-1), %&$#'(histone-1 transcription-1) and (#)* (s-1). Each panel shows ! as a function of "#$ 

and %&$#, for the value of (#)* shown in the panel label. For each parameter set, 100 simulations were 

initialized in each of the uniform me0 or me3 states and simulated for 50 cell cycles. Results averaged over 

all simulations. All simulations have %$* = 10'23 (histone-1 transcription-1). Except for changes to 

processivity, model and other parameters as in Figure 1C and D. (A) Non-processive methylation and 

demethylation, reproduced from Figure 1G for comparison. (B) Model with only processive methylation, 

and non-processive demethylation. (C) Model with only processive demethylation, and non-processive 

methylation. 



 

 

Figure S3 related to Figure 1: Promoter-switching model. (A) Diagrammatic representation of 

feedbacks in mathematical model. States me0 to me3 refer to methylation state of H3K27. Neutral marks 

me0/me1 indicated in yellow, repressive marks me2/me3 in orange. Black arrows represent state 

transitions; coloured arrows represent feedback interactions. For clarity, histone exchange and H3K27me2-

mediated recruitment of PRC2 are omitted. Promoter states represented as ‘open’ or ‘closed’. Transcription 

is possible only in the open state. (B) Mathematical description of model. Sum over ‘neighbours’ in ;< 



 

includes the other histone on same nucleosome, and four histones on neighbouring nucleosomes. =<,?: 
Kronecker delta, equal to 1 if @ = A and 0 otherwise. Bme2/me3 is the fraction of H3 histones carrying 

K27me2 or K27me3. (C) Extra parameters added to the minimal model to incorporate promoter switching. 

Other parameters defined in Figures 1D and S6M. 



 

 

Figure S4 related to Figures 1 and 2: Promoter-switching model results. Heat maps showing (A) 

transcription initiation rate, (C, (B) average duration of a ‘closed’ state, (C) average duration of an ‘open’ 



 

state, (D) probability of being in the repressed transcriptional state, (E) bistability measure, ! and (F) 

combined first passage time measure, DB. In A, (C specified as an input parameter while B-F show average 

results over 500 simulations from each of the uniform me0 and uniform me3 states. Each panel shows 

results plotted as a function of "EF(#)*) and "EII (10-2 s-1 to 10-6 s-1) with simulations restricted to 

"EF(#)*) ≤ "EII. Model defined in Figure S3 with additional parameters in Figures 1D and S6M, (K = L =
1). (G-N) Example simulations of promoter switching model with variable transcriptional bursting kinetics. 

Upper row simulations initialised in the repressed (uniform me3) chromatin state, while lower row 

simulations initialised in the active (uniform me0) chromatin state. Simulations equilibrated for 5 cell 

cycles before plotting a further 5 cell cycles. Prom (promoter) state represented as 1 for ‘open’ and 0 for 

‘closed’. Gene activity represented as the number of transcription events per 30-minute interval. As 

indicated in A, parameter values are (G, H) "EF(#)*) = 1023s-1 , "EII = 3'×'1023 s-1. (I, J) "EF(#)*) =
1029s-1 , "EII = 1023 s-1. (K, L) "EF(#)*) = 102Ms-1 , "EII = 3'×'1023 s-1. (M, N) "EF(#)*) = 102Ms-1 , 

"EII = 1029 s-1. Other parameters in Figures 1D and S6M. (O) Example time-course simulation over a short 

time-scale showing H3K27me3 levels, promoter state and transcription initiation events for the promoter-

switching model with "EF(#)*) = 5'×'1029s-1 , "EII = 5'×'1023 s-1. Other parameters in Figures 1D and 

S6M. Simulation first equilibrated for 5.5 cell cycles from active (uniform me0) initial chromatin state (K =
L = 1). (P) As in O, except initialised in repressed (uniform me3) state. (Q) Gene activity in the promoter-

switching model (‘Bursty’, solid lines) measured as average number of transcription events (gene-1hour-1) 

in 20th cell cycle after activation or repression, averaged over 2000 simulations for each value of K. Green 

lines indicate initially active gene; orange lines indicate initially repressed gene. K = 1 during 5 cell-cycle 

equilibration starting from uniform me0 or me3 state, then K as indicated on x-axis for further 20 cell 

cycles. (R) Mean first passage time in the promoter-switching model (‘Bursty’, solid lines), NOP (STAR 

methods) as function of K, averaged over 1000 simulations each of 1500 cell cycles, from initially active or 

repressed state. "EF(#)*) = 5'×'1029s-1 , "EII = 5'×'1023 s-1 and L = 1 throughout Q and R, with other 

parameters in Figures 1D and S6M. Results from the main model with non-bursty transcription are shown 

with dashed lines for comparison (replotted from Figure 2C,D –upper panels). 



 

 

Figure S5, related to Figure 1: Model bistability for various histone exchange probabilities. Heat map 

showing bistability measure !, calculated from simulations as described in Figure 1 legend. Each panel 

shows ! as function of "#$ and %&$#, for (#)* and %$* values shown in panel labels (top and right, 

respectively). 



 

 

Figure S6, related to Figure B1: Fitting the histone exchange rate to reproduce transcription-

dependent H3.3 accumulation. (A) Schematic of transcription-coupled histone exchange, resulting in 

H3.3 incorporation (purple nucleosome). (B) Schematic of replication-coupled deposition of H3.1 (cyan 

nucleosomes). (C) Bistability measure, !, and (D) difference in average H3.3 levels between simulations 

initialized in the active state and those initialized in the repressed state (Q = ' H3.3 ON − H3.3 OFF , 

where ' 'indicates an average over time). In C,D, 100 simulations were initialized in each of the uniform 

me0/H3.1 or me3/H3.1 states and simulated for 50 cell cycles for each parameter set. Each panel shows ! 

or Q as function of "#$ and %&$#, for %$* shown in panel label. Model as in Figure 1 (as modified by 

Equation 3). BW = 1 3, (#)* = 40(#YF, with other parameters in Figure 1D. (E-L) Example simulations for 

parameters indicated in D. Top row initialized in the uniform me3/H3.1 state. Bottom row initialized in the 

uniform me0/H3.1 state. (E,F) "#$ = 102M histone-1s-1,'%$* = 1029 histone-1 transcription-1. (G,H) "#$ =
102M histone-1s-1,'%$* = 1023 histone-1 transcription-1. (I,J) "#$ = 2'×'102M histone-1s-1, %$* = 1024 

histone-1 transcription-1. (K,L) "#$ = 1029 histone-1s-1, %$* = 102Z histone-1 transcription-1. Red boxes in F 



 

and K indicate lack of H3.3 in the active state, and H3.3 accumulation in the repressed state, respectively. 

For E-L, %&$# = 1024 histone-1 transcription-1. (M) Values of parameters after fitting the model to SILAC 

data and H3.3 accumulation, and optimizing for bistability. 

 

 



 

 

Figure S7, related to Figure B1: Fitting quantitative SILAC data. (A) Detailed fit to data over 

parameter space with BW = 1. Each panel shows the experimentally determined H3K27me3 level on old 



 

and new histones 0, 10, 24 and 48 hours after the first DNA replication in the SILAC experiment. Data are 

represented as the fraction of H3K27me3 on old and new histones, respectively. Solid lines indicate the 

model prediction, linearly interpolated between 0, 10, 24, and 48 hour time-points, which are each averages 

over 1000 SILAC simulations, normalised as described in Figure B1 legend (STAR methods). Each panel 

shows the results of simulations for a single pair of "#$ and %&$# values. %&$# increases from left to right, 

while "#$ increases from bottom to top. Model as in Figure 1 (as modified by Equation 3). BW = 1, (#)* =
40(#YF, and %$* = 1023 histone-1 transcription-1, with other parameters in Figure 1D. The background 

shading of each panel (green) represents the bistability parameter, !, calculated using the same parameters. 

(B) Same as A, except with BW = 1 3. Red box indicates methylation rate that gave the best fit from values 

shown (quantitative fit over parameter space shown in Figure B1F). (C,D) Spatially resolved simulations 

with fitted methylation rate. Example stochastic simulations of the fitted model (BW = 1 3 , "#$ =
8'×'102['histone-1s-1, %&$# = 4'×'1023 histone-1 transcription-1, (#)* = 40(#YF, %$* = 1023 histone-1 

transcription-1), from repressed and active initial states, respectively. Other parameters in Figure 1D. All 

panels show 10 cell cycles of simulation data, obtained after 5-cell cycles of equilibration. Upper panels 

show the levels of me0 and me3 over time, averaged over all histones in the locus. Middle panels show 

kymographs of H3K27 methylation status over time for each histone in the simulated region. Lower panels 

show gene activity measured as number of transcription events per 30 min interval. 



 

 

Figure S8, related to Figure 3: Effect of noisy input signal on memory-storage capability. (A) Each 

postage-stamp panel shows the combined first passage time measure, DB as a function of the noise in the 



 

gene activation input signal K(N), plotted as a black line. Noise is measured as the coefficient of variation 

(CV) in input signal'K(N). In all cases, the time-average K(N) = 1. For each parameter set, 100 

simulations were initialized in each of the uniform me0 or me3 states and simulated for 25 cell cycles. The 

schematic postage-stamp panel shown in grey to the left indicates the values of DB and noise that are 

represented by the axis ticks in each panel. Each panel represents a model with different values of "#$ and 

%&$#. "#$ increases from bottom to top (log scale) while %&$# increases from left to right (log scale) – as 

indicated right and above, respectively. The background colour of each panel represents DB for a noisy 

input signal (\ = 1195,'CV ≈ 1) for the "#$, %&$# values of that panel, where \ is defined in STAR 

methods. Blue (red) represents stable (unstable) chromatin states at high noise levels. Model and other 

parameters defined in Figure 1 (as modified by Equation 3) and Figures 1D and S6M (L = 1). (B-E) 

Example simulations with active initial state. Same as Figure 3B-E, except with active (uniform me0) 

initial states.  



 

Table S1, related to Figure 1: Additional references for model formulation. Evidence is preferentially provided for mammalian 

Polycomb systems. Further supporting evidence from other biological systems is provided where the mammalian evidence is missing 

or incomplete. SUZ12, EZH2, EED, and JARID2 are core subunits of mammalian PRC2. 

Model diagram with features labelled 

 

Model 
feature 

Model 
assumption 

Comments Biological 
system 

Evidence 

a PRC2 methylates 
H3K27 

Firmly established Mammalian Biochemical: 

•! Purified human PRC2 methylates H3K27 in vitro (Cao et al., 2002; Kuzmichev et 
al., 2002). 

•! Catalytic efficiency of non-processive methylation of H3K27, H3K27me1, 
H3K27me2 substrates by human PRC2 determined in vitro (McCabe et al., 2012). 

Genetic:  

•! PRC2 is required for all H3K27me2 and H3K27me3 in vivo (Ferrari et al., 2014; 
Jung et al., 2010; Pasini et al., 2007; Schoeftner et al., 2006), and intragenic 
H3K27me1 (Ferrari et al., 2014) in mouse embryonic stem (ES) cells. 



 

Correlation:  

•! SUZ12 and EED binding are correlated with H3K27me3 in human ES cells (Lee et 
al., 2006) and mouse embryonic fibroblasts (Boyer et al., 2006). 

Specific cases: 

•! Tethering EZH2 (Hansen et al., 2008), EED (Hansen et al., 2008; van der Vlag and 
Otte, 1999) or JARID2 (Pasini et al., 2010a) to a reporter gene can initiate 
H3K27me3 accumulation and gene repression. 
 

a PRC2 is activated 
by binding 
H3K27me2 and 
H3K27me3 

Well 
characterized in 
vitro, also with 
genetic evidence. 

Mammalian Biochemical: 

•! Binding of EED to H3K27me2 and H3K27me3 increases catalytic activity of human 
PRC2 in vitro (Margueron et al., 2009). 

Genetic: 

•! Disruption of H3K27me3-binding by EED decreases H3K27me3 levels in human 
and mouse cells, and leads to embryonic lethality in mice (Ueda et al., 2016). 
 

Drosophila Genetic: 

•! H3K27me2/me3 recognition by ESC (EED homologue) is required for PRC2 
function in vivo (Margueron et al., 2009). 
 

 



 

Table S2, related to Figure 1: Additional references for model formulation. Labeled model diagram provided in Table S1. 

Model 
feature 

Model 
assumption 

Comments Biological 
system 

Evidence 

b H3K27me2/me3 
and PRC2 repress 
transcription 

Functionally well 
established yet 
poorly understood 
mechanistically.  

 

Mammalian Biochemical: 

•! Mouse PRC1 components (Grau et al., 2011) and human PRC2 (Margueron et al., 
2008) can compact chromatin in vitro. 

•! Human PRC2 can repress transcription of chromatinized templates in vitro 
(Margueron et al., 2008). 

Genetic:  

•! Mutation of SUZ12 or EED results in increased acetylation (Pasini et al., 2010b) and 
expression (Boyer et al., 2006; Pasini et al., 2007; Shen et al., 2008) of PRC2 target 
genes in mouse ES cells. However, it should also be noted that a more recent study 
has reported that PRC2 is dispensable for repression of PRC2 targets in certain 
culture conditions (but is still required during differentiation) (Riising et al., 2014). 

•! Treatment of human cells with a small molecule inhibitor of Ezh2 leads to a loss of 
H3K27me2/me3 and activation of PRC2 targets (Qi et al., 2012). 

•! Mutation of PRC1 or PRC2 subunits results in loss of chromatin compaction and 
changes in chromatin topology at Hox loci in mouse ES cells (Eskeland et al., 2010; 
Williamson et al., 2014). 

Correlation:  

•! H3K27me3 and PRC2 occupancy are inversely correlated with markers of 
productive transcription, such as accumulation of mRNA (Brookes et al., 2012; Lee 
et al., 2006), histone acetylation (Pasini et al., 2010b), and RNA polymerase II 
phosphorylated on Ser-2 of the C-terminal domain (CTD) (Brookes et al., 2012) in 
ES cells. 



 

•! H3K27me3 is correlated with reduced chromatin accessibility, as measured by 
DNAse I mapping in diverse human cells (Roadmap Epigenomics Consortium et al., 
2015), or MNase accessibility (MACC) in mouse ES cells (Deaton et al., 2016). 

Specific case: 

•! Tethering EZH2 (Hansen et al., 2008), EED (Hansen et al., 2008; van der Vlag and 
Otte, 1999) or JARID2 (Pasini et al., 2010a) to a reporter gene can initiate 
H3K27me3 accumulation and gene repression. 
 

Drosophila Biochemical:  

•! PRC1 components compact chromatin (Francis et al., 2004), and inhibit chromatin 
remodeling in vitro (Francis et al., 2001). 

•! PRC1 can repress transcription in vitro (King et al., 2002). 

Genetic:  

•! Lys-27 of H3 is required for PRC2-mediated gene repression (Pengelly et al., 2013). 
•! Mutation of ESC (EED homologue) leads to increased occupancy of RNA 

polymerase II and decreases in H3K27me3 at PRC2 target-gene promoters (Chopra 
et al., 2011). 

Correlation: 

•! Polycomb silencing is associated with chromatin compaction and the formation of 
“long-range” intra-chromosomal contacts (Boettiger et al., 2016; Sexton et al., 
2012). 
 

 



 

Table S3, related to Figure 1: Additional references for model formulation. Labeled model diagram provided in Table S1. 

Model 
feature 

Model 
assumption 

Comments Biological 
system 

Evidence 

c Transcription 
antagonizes 
H3K27me3 
accumulation 

Core assumption 
of our model. We 
cite experimental 
results in support 
of our proposal 
that the 
mechanistic basis 
of this antagonism 
is through 
transcription-
coupled H3K27-
demethylation and 
histone exchange. 

Mammalian Specific cases: 

•! Global transcriptional inhibition using small molecules results in PRC2 recruitment 
to new targets genome-wide in mouse ES cells (Riising et al., 2014). 

•! Transgenic reporter gene studies indicate that the transcription start site of the c-Jun 
locus is required for displacement of PRC2 during differentiation (Riising et al., 
2014). 

•! Transcriptional induction by retinoic acid (RA) of CYP26a1 (mouse ES cells) or 
CYP26a1, Hoxa1, RARβ2 (mouse P9 embryonic carcinoma cells) results in 
H3K27me3 reduction (Gillespie and Gudas, 2007; Yuan et al., 2012). Conversely, 
H3K27me3 accumulates slowly at these genes after removal of RA. 

•! In human NIH 3T3 cells, changes in expression of PRC2 targets induced by Ras 
signalling precede changes in gene-body H3K27me3 levels (Hosogane et al., 2013). 

Histone demethylation 

Biochemical:  

•! Human JMJD3 and UTX demethylate H3K27me3 non-processively in vitro (Agger 
et al., 2007; Hong et al., 2007; Lee et al., 2007). JMJD3 associates with transcription 
elongation factors in human cells (Chen et al., 2012). 

Genetic: 

•! Over-expression of human UTX reduces H3K27me2/me3 in vivo (Hong et al., 
2007).  



 

Specific cases: 

•! UTX is bound to several HOX promoters (Agger et al., 2007; Lan et al., 2007) and 
levels increase at the Hoxb1 locus during gene induction, resulting in H3K27me3-
demethyation and loss of PRC2 (Agger et al., 2007). 

•! UTX required to maintain expression and low H3K27me2/me3 levels at Hoxa13 and 
Hoxc4 (Lee et al., 2007). 

Histone exchange 

Correlations: 

•! H3.3 histones are incorporated independently of replication in human cells and 
relative H3.3 levels have been regarded as a marker of histone exchange (Ray-Gallet 
et al., 2011; Tagami et al., 2004). H3.3 accumulation is positively correlated with 
transcriptional activity in human cells (Pchelintsev et al., 2013; Ray-Gallet et al., 
2011). 

•! Histone exchange and H3.3 accumulation is positively correlated with 
transcriptional activity in mouse ES cells and neural stem cells (Deaton et al., 2016), 
and mouse embryonic fibroblasts (MEFs) (Kraushaar et al., 2013).  

•! Both H3.3 levels and histone exchange are negatively correlated with H3K27me3 
(Kraushaar et al., 2013) in MEFs and with Polycomb complex binding in mouse ES 
cells (Deaton et al., 2016). 
 

Arabidopsis Specific case:  

•! Exogenously driven transcriptional induction can remove H3K27me3 at FLC. 
Conversely, transcriptional shutdown from a high-expression state results in 
accumulation of H3K27me3 (Buzas et al., 2011). 
 

S cerevisiae Histone exchange 



 

Correlation:  

•! Histone exchange rates correlate with gene expression (Dion et al., 2007; Jamai et 
al., 2007). 
 

Drosophila Histone demethylation 

Biochemical:  

•! Drosophila UTX colocalises with elongating RNA polymerase II (Smith et al., 
2008). 

Histone exchange 

Correlation: 

•! Histone exchange rates correlate with gene expression (Deal et al., 2010) 
 

 



 

Table S4, related to Figure 1: Additional references for model formulation. Labeled model diagram provided in Table S1. 

Model 
feature 

Model 
assumption 

Comments Biological 
system 

Evidence 

d Trans-regulators 
directly modulate 
transcription 

Firmly established Various 
•! In prokaryotes and eukaryotes, transcription factors can directly drive recruitment of 

pre-initiation complexes (reviewed in (Ptashne and Gann, 1997)) or, in eukaryotes, 
they can act through distal regulatory elements (reviewed in (Heintzman and Ren, 
2009)). 

•! Trans-regulation can be graded in an ‘analog’ fashion according to dosage of a 
single regulator in both mammals (Giorgetti et al., 2010) and yeast (Stewart-
Ornstein et al., 2013). 
 

 



 

Table S5, related to Figure 1: Additional references for model formulation. Labeled model diagram provided in Table S1. 

Model 
feature 

Model 
assumption 

Comments Biological 
system 

Evidence 

e H3/H4 tetramers 
are inherited at 
DNA replication, 
and are 
distributed with 
equal probability 
to the two 
daughter strands. 
New H3/H4 
tetramers without 
pre-existing 
H3K27-
methylation are 
inserted to fill the 
gaps. 

Firmly established 
at the level of 
bulk chromatin. 
Local inheritance 
of H3/H4 
tetramers (at 
individual 
genomic 
locations) is 
understudied. 

Mammalian 
•! H3/H4 tetramers do not dissociate during DNA replication and segregate between 

DNA strands (Jackson, 1987; 1990; Jackson and Chalkley, 1985; Yamasu and 
Senshu, 1990) (reviewed in (Annunziato, 2005)) 

•! H3K27me3 levels on parental histones are diluted by one-half immediately after 
DNA replication in HeLa cells, and accumulate slowly over the cell cycle (Alabert 
et al., 2015). 

•! H3K27-methylation is not detected before histones are incorporated into chromatin 
(Jasencakova et al., 2010; Loyola et al., 2006). 

C elegans 
•! H3K27-methylated histones are passed on and shared equally between daughter 

chromosomes during embryogenesis in the absence of PRC2 (Gaydos et al., 2014). 

S cerevisiae 
•! Parental histones are inherited relatively close to their original location (within 

around 400 base-pairs) (Radman-Livaja et al., 2011). 
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