SUPPLEMENTAL MATERIAL

DETAILED METHODS

Cardiac Fibroblasts Isolation and Transfection

Cardiac fibroblasts were isolated from 1-day old C57BL/6 mouse neonates and isolated as described¹. Briefly, harvested hearts were minced and digested for 30 minutes at 37°C using 100 U/mL of Collagenase II in HBSS. The cell mixture was filtered using a 100 µm cell strainer and centrifuged at 400g for 5 min. To isolate the cardiac fibroblasts and eliminate any cardiomyocytes, the cell pellet was resuspended in growth media (DMEM, 15% FBS, Pen/Strep) and subjected to a Percoll gradient centrifugation. Isolated fibroblasts were plated on 0.2% gelatin-coated 25cm² flasks and cultured in growth media at 37°C with 5% CO₂. Cells were passaged twice before being used for transfection.

One day prior to transfection, 24-wells plates were seeded with cardiac fibroblasts at a density of 5500 cells per cm². Transient transfections were performed using Dharmafect I reagent (Dharmacon) in antibiotics-free media according to manufacturer's instructions. Synthetic mimic of pre-miRs (Ambion/Applied Biosystems) and siRNAs (FlexiTube siRNA, Qiagen) were used at a final concentration of 50 nmol/L. A list of the siRNAs used is provided in the table below. After 24 hours, transfection media was replaced with growth media and cells were cultured for 3 or 14 days. For the DZNep treatment, growth media containing 2 µmol/L of DZNep (EMD Millipore) was added 24 hours after transfection, changed daily until day 3, then every other day until day 14.

microRNAs Information				
miR Name	Full name and mature miR sequence	ID		
Negative Control		Ctrl_Control_1		
(Ambion)				
miR-1	hsa-miR-1			
(Ambion)	UGGAAUGUAAAGAAGUAUGUA	AM17100 / PM10617		
miR-133a	hsa-miR-133a-3p			
(Ambion)	UUUGGUCCCUUCAACCAGCUG	AM17100 / PM10413		
miR-208a	hsa-miR-208a-3p			
(Ambion)	AUAAGACGAGCAAAAAGCUUGU	AM17100/PM10677		
miR-499	hsa-miR-499a-5p			
(Ambion)	UUAAGACUUGCAGUGAUGUUU	AM17100/PM11352		
Let-7c	hsa-let-7c-3p			
(Ambion)	CUGUACAACCUUCUAGCUUUCC	AM17100/PM12580		
siRNAs Information				
Gene Name	siRNA Target Sequence	ID		
Negative Control	AATTCTCCGAACGTGTCACGT	Ctrl_Control_1		
(Qiagen)				
Eed	ATGGAGGATGATATAGATAAA	Mm_Eed_1		
(Qiagen)	AGGCATTATAAGAATAATTAA	Mm_Eed_2		
	AAGCAACAGAGTAACCTTATA	Mm_Eed_3		
	CAGGCCATTTATTTCCCAGAA	Mm_Eed_4		
Ezh1	CTCTTATCTAATAAAGTGTTA	Mm_Ezh1_4		
(Qiagen)	CTGGTCATGAGGAATGCTTTA	Mm_LOC100044129_1		
	CAGGGATACCCTCCAGCCTAA	Mm_LOC100044129_2		
	CGGAAGCGCCATGCTATCGAA	Mm_LOC100044129_3		
Ezh2	CAGGATGGCACTTTCATTGAA	Mm_Ezh2_3		
(Qiagen)	CTGCAGAAAGATACAACTGAA	Mm_Ezh2_4		
	TTGGTCGCCCTTACAACAGAA	Mm_Ezh2_5		

	AAAGATCTAGAGGATAATCGA	Mm_Ezh2_6
Kdm6A	AGTTAGCAGTGGAACGTTA	J-042844-09
(Dharmacon)	GGACTTGCAGCACGAATTA	J-042844-10
	GGTACGGCCTACTGGAATT	J-042844-11
	CCACGTTGGTCATACTATA	J-042844-12
Kdm6B	CTCACTTAATTTATTAAGAAA	Mm_Jmjd3_1
(Qiagen)	CAGCATCTATTTGGAGAGCAA	Mm_Jmjd3_2
	TTGTGTGAGAATATTATTAAA	Mm_Jmjd3_3
	CACCGTGCAGCTATACATGAA	Mm_Jmjd3_4

RNA isolation and Quantitative Real-Time PCR

Total RNAs were isolated using an RNeasy miniprep kit (Qiagen) and following manufacturer's instructions. RNA concentrations and purity were quantified by Nanodrop (Applied Biosystems). Reverse Transcription was carried out using a High-Capacity cDNA Synthesis Kit (Thermo Fisher) according to manufacturer's instructions. Quantitative expression of each gene was assessed using Taqman Gene Expression Assays on a StepOnePlus Real-Time PCR System (Applied Biosystems) with a minimum of 40 ng of cDNA per reaction. A list of the primers used in this study is provided in the table below.

Taqman Primers Information			
Gene Name	Gene Category/Function	Taqman Primer ID	
Gapdh	Housekeeping Gene	Mm99999915_m1	
Gata4	Cardiac Transcription Factor	Mm00484689_m1	
Hand2	Cardiac Transcription Factor	Mm00439247_m1	
Mef2C	Cardiac Transcription Factor	Mm01340482_m1	
Tbx5	Cardiac Transcription Factor	Mm00803518_m1	
Actn2	Mature Cardiomyocyte Marker	Mm00473657_m1	
Cacna1c	Mature Cardiomyocyte Marker	Mm00437917_m1	
Kcnj2	Mature Cardiomyocyte Marker	Mm00434616_m1	
Myh6	Mature Cardiomyocyte Marker	Mm00440359_m1	
Scn5a	Mature Cardiomyocyte Marker	Mm01342518_m1	
Tnni3	Mature Cardiomyocyte Marker	Mm00437164_m1	
Ezh1	H3K27 methyltransferase	Mm00468440_m1	
Ezh2	H3K27 methyltransferase	Mm00468464_m1	
Eed	PRC2 Member	Mm00469659_m1	
Kdm6A	H3K27 Demethylase	Mm01283053_m1	
Kdm6B	H3K27 Demethylase	Mm01332668_g1	

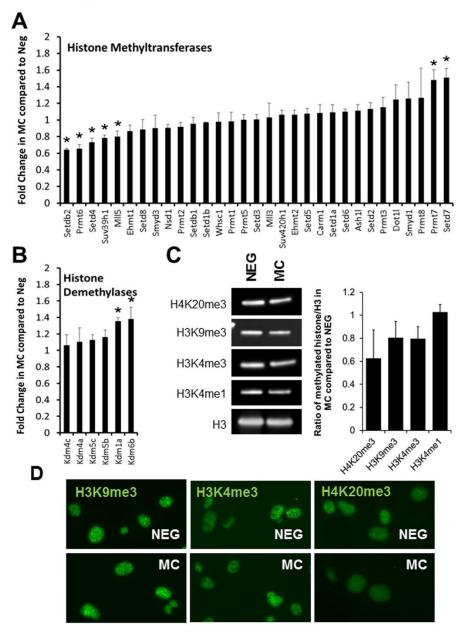
Immunoblotting

Histone extracts were isolated from harvested cells using the EpiQuick Total Histone Extraction Kit (Epigentek) according to the manufacturer's instructions. Nuclear extracts were isolated from harvested cells by standard nuclear extraction protocol (Abcam). Protein concentrations were determined by the Lowry protein assay and 2 µg of histone extract or 5 µg of nuclear extract were loaded per well. Samples were run on 4-12% Bis-Tris gels (NuPAGE, Thermo-Fisher) in MES-SDS running buffer (NuPAGE, Thermo-Fisher) for histone extracts, or in MOPS-SDS (NuPage, Thermo-Fisher) for nuclear extracts. After 90min of transfer at 30mV, nitrocellulose membranes were stained overnight at 4°C with anti-H3K27me3, anti-H3K4me3, anti-H3K9me3, anti-H4K20me3 anti-H3, anti-Mef2c, anti-Tbx5 and anti-TBPdiluted in blocking buffer (TBS, 0.1% Tween, 5% BSA). A list of the antibodies used and their working dilution is provided in the table below. Protein detection was performed

using HRP-coupled antibodies (Cell Signaling) and the ECL Prime detection reagent (GE Healthcare). Membranes were imaged and quantified using the G:BOX Chemi XT4 and associated software (Syngene).

Fluorescence-activated cell sorting

Neonatal cardiac fibroblasts were washed with PBS and allowed to detach by incubation with 0.05% trypsin for 5 minutes at 37°C. Cells were pelleted at 800g for 5 min at 4°C and fixed with 4% paraformaldehyde for 15 minutes at 4°C. After fixation, FACS buffer (1xPBS, 5% BSA, 0.1% Tween-20) was added and cells were pelleted by centrifugation at 800g for 5 minutes at 4°C. Cells were blocked for 1 hour in FACS buffer at 4°C with constant rotation. Cells were then incubated with FACS buffer containing 1/20 dilution of anti-Myh6-APC (Miltenyi Biotech) and anti-Tnnt2-PE (BD Biosciences); or 1/100 dilution of anti-Gata4 or anti-Mef2cfor 1hour at 4 °C with constant rotation. For Gata4 and Mef2c, we incubated cells for 1hour at 4 °C with the secondary antibody Alexa 488 anti-rabbit diluted 1/100 in FACS buffer. After two washes in FACS buffer, cells were re-suspended in 250µl of FACS buffer. FACS was performed using a BD Biosciences FACSCanto. Single stained samples and IgG controls were used for compensation. FloJo version 10 was used for compensation and data analysis.

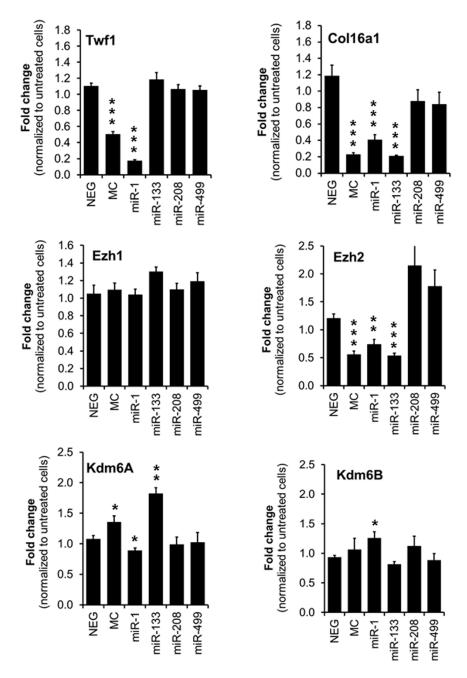

Immunocytochemistry

Cells were fixed with 4% paraformaldehyde (Electron Microscopy Sciences) in PBS for 10 minutes at room temperature and washed 3 times in PBS-Tween (PBS 1X, 0.1% Tween). After blocking in PBS-Tween containing 5% BSA (Sigma), cells were stained using primary antibodies for H3K27me3, H3K9me3, H3K4me3, H4K20me3, Tnni3 (cTnI) and Myh6 (α MHC) overnight at 4°C using the dilution indicated in the table below. Cells were then incubated for 2 hours at room temperature with secondary anti-mouse or anti-rabbit antibodies

Antibody Information		
Name	Application/Dilution	Company/Catalog Number
Н3	Immunoblot / 1:5000	Active Motif / 61475
H3K27me3	Immunocytochemistry / 1:500	Active Motif / 39155
	Immunoblot / 1:250	Cell Signaling / 9733
H3K4me3	Immunocytochemistry / 1:500	Active Motif / 39155
	Immunoblot / 1:500	Active Motif / 39155
H3K9me3	Immunocytochemistry / 1:500	Abcam / ab8898
	Immunoblot / 1:1000	Cell Signaling / 5327
H4K20me3	Immunocytochemistry / 1:500	Active Motif / 39671
	Immunoblot / 1:1000	Abcam / ab9053
Mef2c	Immunoblot/ 1:400	Cell Signaling / 5030
Tbx5	Immunoblot / 1:400	R&D / AF5918
Anti-mouse-HRP	Immunoblot / 1:10000	Cell Signaling / 7076
Anti-rabbit-HRP	Immunoblot / 1:2000	Cell Signaling / 7074
Anti-sheep-HRP	Immunoblot / 1:1000	R&D / HAF016
Tnni3	Immunocytochemistry / 1:200	Abcam / ab47003
Myh6	Immunocytochemistry / 1:200	Abcam / ab207926
Tnnt2-PE	FACS / 1:20	BD Biosciences / 564767
Myh6-APC	FACS / 1:20	Miltenyi Biotech / 130-106-215
Gata4	FACS / 1:100	Cell Signaling / 36966
Mef2c	FACS / 1:100	Cell Signaling / 5030
Anti-rabbit-Alexa 488	FACS / 1:100	Invitrogen / A21026

SUPPLEMENTAL FIGURES AND FIGURE LEGENDS

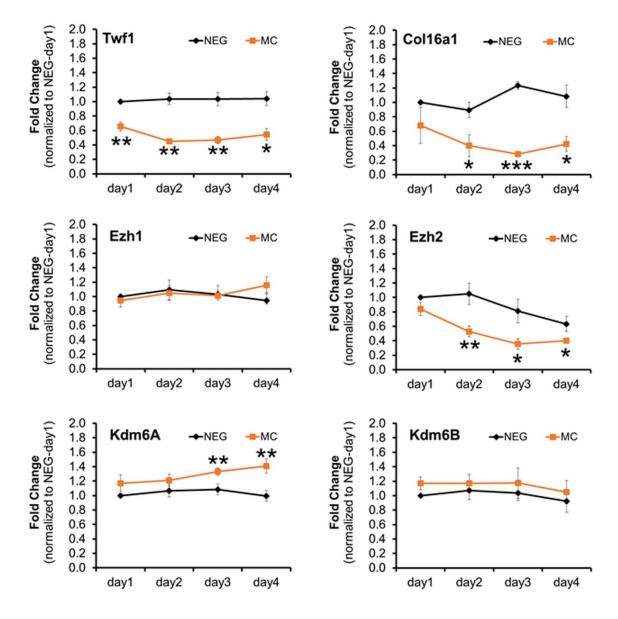
Online Figure I


Online Figure I: Role of Histone Methylation in direct cardiac reprogramming by miR combo.

(A and B) Selected results of the qPCR array (RT² Profiler[™] PCR Array Mouse Epigenetic Chromatin Modification Enzymes) performed on mRNAs isolated from neonatal cardiac fibroblasts transfected with negmiR (NEG) or miR combo (MC) and cultured for 3 days. Expression levels of various histone methyltransferases (A) and demethylases (B) in MC-treated neonatal cardiac fibroblasts is presented as a fold change compared to NEG control cells. (C) Immunoblot analysis of various histone methylations in histone extracts isolated from NEG and MC-treated neonatal cardiac fibroblasts 3 days after transfection (H3K4me1: N=6; H3K4me3: N=6; H3K9me3: N=5; H4K20me3: N=4). (D) Immunocytochemistry for H3K9me3, H3K4me3 and H4K20me3 in corresponding transfected neonatal cardiac fibroblasts. Cells were co-labeled with the nuclear stain DAPI (N=2).

Statistical difference was determined by standardized T-test between NEG- and MC-transfected cells (*P≤0.05).

5


Online Figure II

Online Figure II: Regulation of the expression of H3K27 modifiers by individual microRNA

Analysis of Twf1 (miR-1 target), Col16a1 (miR-1/133 target), Ezh1, Ezh2, Kdm6A and Kdm6B mRNA levels in neonatal cardiac fibroblasts transfected with NEG, MC or each individual microRNA (miR-1, miR-133, miR-208, miR-499). Expression values were determined by qPCR, 3 days after transfection, and normalized to NEG controls (N=3-6).

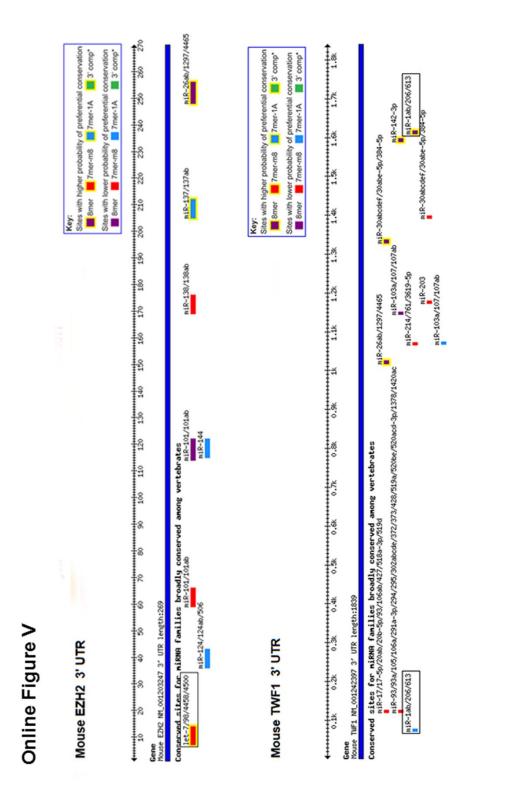
Asterisks indicate statistical significance between NEG and MC-treated cells determined by standardized T-test (* $P \le 0.05$, ** $P \le 0.005$ or *** $P \le 0.0005$).

Online Figure III

Online Figure III: Time-course analysis of the expression of H3K27 modifiers.

Analysis of the expression of Twf1 (miR-1 target), Col16a1 (miR-1/133 target), Ezh1, Ezh2, Kdm6A and Kdm6B in neonatal cardiac fibroblasts transfected with NEG, MC over the course of 4 days. RNA were isolated at 1, 2, 3 and 4 days after transfection and analyzed by qPCR. Expression values were normalized to NEG controls at day1 (N=3-6).

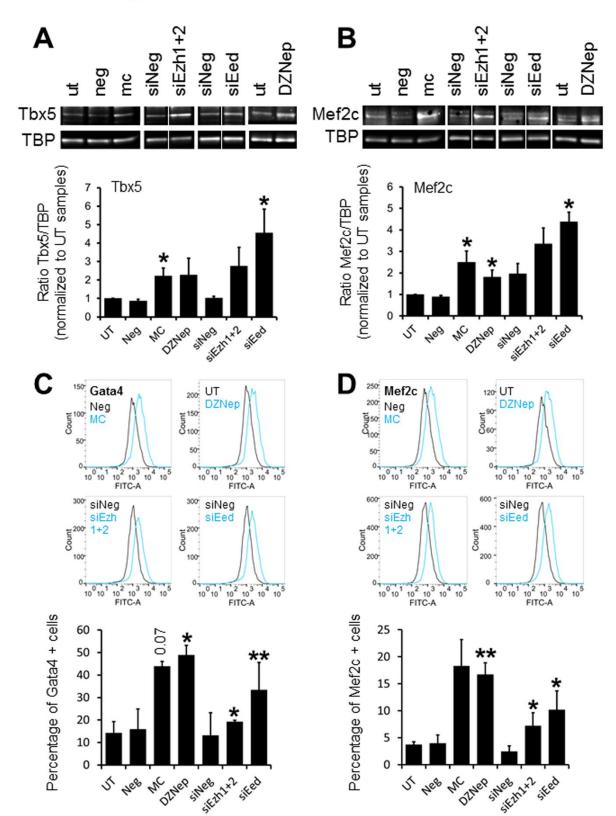
Asterisks indicate statistical significance between NEG and MC-treated cells determined by standardized T-test (* $P \le 0.05$, ** $P \le 0.01$ or *** $P \le 0.005$).



Online Figure IV

Online Figure IV: The regulation of the expression of H3K27 modifiers by miR combo is unaffected by CHX treatment.

Analysis of the expression of Twf1 (miR-1 target), Ezh2, Kdm6A and Kdm6B by qPCR in neonatal cardiac fibroblasts transfected with negmiR (NEG), miR combo (MC) and treated for 12 hours with vehicle or 50μ g/ml of cycloheximide (CHX). For each treatment (vehicle or CHX) the expression values for MC were normalized to their respective NEG control (N=4-6).

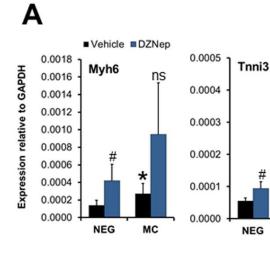

T-test comparing the MC effect relative to NEG between vehicle and CHX treated groups (#: $p \le 0.05$; ns: not significant)

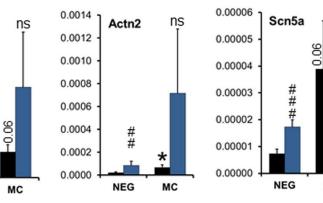
Online Figure V: Putative microRNA binding sites in mouse Ezh2 3'UTR and Twf1 3'UTR

Schematic representation of the 3'UTR sequences for Ezh2 (top) and Twf1 (bottom) indicating the location of conserved binding sites for microRNA families broadly conserved among vertebrates as determined by TargetScan version 6.2.

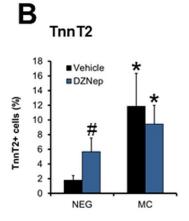
Online Figure VI

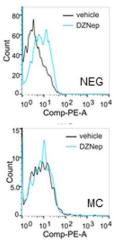
Online Figure VI: Inhibition of H3K27 methyltransferase activity increases cardiogenic factors at the protein level.

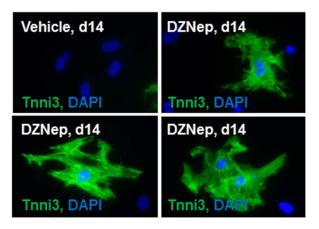

(A-B) Analysis of Tbx5 (A) and Mef2c (B) protein level by immunoblot in nuclear extracts isolated from neonatal cardiac fibroblasts transfected with negmiR (NEG) or miR combo (MC), negative siRNA (siNeg), Ezh1+Ezh2 siRNAs (siEzh1+2), Eed siRNA (siEed) or treated with 2 μ M of DZNep for 3 days (N=4-5 for MC, N=3-6 for DZNep, N=3-6 for si-Ezh1+2 and N=3-5 for si-Eed). (C-D) FACS analysis of Gata4+ (C) and Mef2c+ (D) cells present in neonatal cardiac fibroblasts transfected with negmiR (NEG) or miR combo (MC), negative siRNA (siNeg), Ezh1+Ezh2 siRNAs (siEzh1+2), Eed siRNA (siEed) or treated with 2 μ M of DZNep for 7 days (N=2 for MC, N=4 for DZNep and N=3 for si-Ezh1+2 and si-Eed). Bar graphs present the average percentage of Gata4+ and Mef2c+ for each condition. Representative FACS traces are presented on top of each panel.

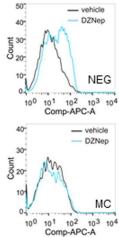

Statistical differences between MC/NEG, DZNep/UT, siEzh1+2/siNeg and siEed/siNeg were determined by standardized T-test (* $P \le 0.05$, ** $P \le 0.01$).

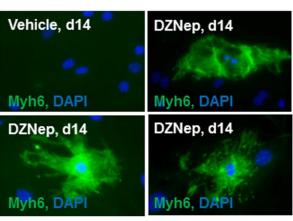
ns

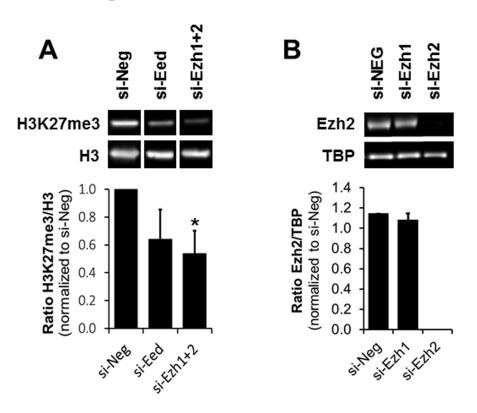

MC


Online Figure VII




С

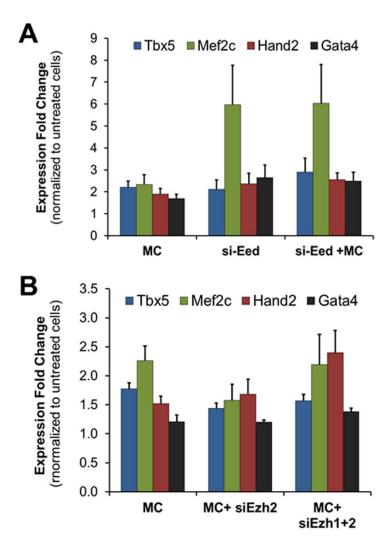




Online Figure VII: DZNep treatment increases the number of cardiomyocyte-like cells.

(A) mRNA levels of various cardiomyocyte markers was determined by qPCR in neonatal cardiac fibroblasts transfected with negmiR (NEG) or miR combo (MC) and cultured for 14 days with 2 μ M of DZNep or vehicle (N=6-7). (B) FACS analysis showing the percentage of Tnnt2+ (top) and Myh6+ (bottom) cells present in NEG and MC-transfected fibroblasts treated with vehicle or 2 μ M of DZNep and cultured for 14 days (N=4 for Tnnt2; N=3 for Myh6). Representative FACS traces are presented on the right. (C) Immunocytochemistry for Tnni3 and Myh6 in neonatal cardiac fibroblasts after 2 weeks of treatment with 2 μ M of DZNep or vehicle (N=2).

Statistical difference was determined by standardized T-test between DZNep and vehicle treated cells (# $P \le 0.05$, ## $P \le 0.01$, ### $P \le 0.005$) or between NEG- and MC-transfected cells (* $P \le 0.05$).


Online Figure VIII

Online Figure VIII: Analysis of H3K27me3 and Ezh2 levels in siRNA transfected fibroblasts.

(A) Immunoblot analysis of H3K27me3 levels in histone extracts isolated from si-Neg, si-Eed and siEzh1+2 – transfected neonatal cardiac fibroblasts (N=2-3). H3 was used as loading control. (B) Immunoblot analysis of Ezh2 protein levels in nuclear extract isolated from neonatal cardiac fibroblasts transfected with negative siRNA (si-Neg) or siRNA targeting Ezh1 (si-Ezh1) or Ezh2 (si-Ezh2). TBP was used as loading control.

Statistical difference was determined by standardized T-test between targeting siRNA and si-Neg (*P≤0.05).

Online Figure IX: Knock-down of PRC2 members does not increase the effect of miR combo.

(A) Expression levels of Tbx5, Mef2c, Hand2 and Gata4 in neonatal cardiac fibroblasts transfected with miR combo (MC), siRNA against Eed (si-Eed) or the combination of MC and si-Eed. mRNAs were isolated and analyzed by qPCR 3 days after transfection (N=3-5). (B) Similar experiment using neonatal cardiac fibroblasts transfected with MC, the combination of MC and siRNA against Ezh2 (MC+si-Ezh2) (N=3) or the combination of MC and siRNAs against Ezh1 and Ezh2 (MC+si-Ezh1+2) (N=5).

Standardized T-test showed no significant difference between MC+si-Eed versus si-Eed, MC+si-Ezh2 versus MC, or MC+Ezh1+2 versus MC.

SUPPLEMENTAL REFERENCE

1. Jayawardena T, Mirotsou M and Dzau VJ. Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs. *Methods Mol Biol.* 2014;1150:263-72.