Supplementary information

The Model

The fundamental model used to describe the mean worm burden of individuals of a given age and the quantity of infectious eggs in the environment was developed from the founding work of Anderson and May [1]. The current version of the model is described in detail in [2-5]. The key parameters in Supporting Table 1 and Supporting Table 2.

The model was further adapted to allow for systematic non-compliance (individuals never taking treatment) [6, 7]. A more detailed description of the model is provided in Truscott *et al.* [8].

Supporting Table S1: Model parameters for Schistosoma mansoni

Parameter	Value	Source
Adult worm life expectancy	5.71 years	[9, 10]
Aggregation parameter, k	0.24	[11]
Density dependence fecundity, γ	0.0007/female worm	[3]
Drug efficacy (proportion of worms killed by praziquantel)	0.86	[12]
Egg output per female worm in absence of density dependence (in terms of faecal egg counts)	0.14	[13]
Human demography	Based on Uganda's demographical profile	[14, 15]
Life expectancy of the infected snails	4 weeks	[16]

Baseline scenarios

Based on the available data [3], we developed three age-intensity profiles representing a range of possible scenarios regarding the relative burden in adults.

When changing the assumed the life span of the adult worms, the age-specific parameters for the exposure and contribution to the infectious reservoir were refitted – so that the shape of the age profile does not change.

Supporting Table S2: Model for the three age-intensity profiles

Parameter	Setting 1: Low	Setting 2: Medium	Setting 3: High
	burden in adults	burden in adults	burden in adults
5.71 year average lifespan			
Basic Reproductive number (Lower setting)	1.30485	1.31547	1.30577
Basic Reproductive number (Higher setting)	1.6687	1.68	1.62886
Age specific degree of exposure	0-5 year olds: 0.01	0-5 year olds: 0.032	0-5 year olds: 0.01
and contribution to the infectious reservoir	5-10 year olds: 1.2	5-10 year olds: 0.61	5-12 year olds: 0.61
	10-16 year olds: 1	10-16 year olds: 1	12-20 year olds: 1
	16+ year olds: 0.02	16+ year olds: 0.06	20+ year olds: 0.12
4 year average lifespan			
Basic Reproductive number (Lower setting)	1.33155	1.3638	1.325568
Basic Reproductive number (Higher setting)	1.7752	1.83495	1.6778
Age specific degree of exposure	0-5 year olds: 0.32	0-5 year olds: 0.032	0-5 year olds: 0.01
and contribution to the infectious reservoir	5-10 year olds: 4.95	5-10 year olds: 0.14	5-12 year olds: 0.5
	10-16 year olds:1	10-16 year olds: 1	12-20 year olds: 1
	16+ year olds: 0.065	16+ year olds: 0.09	20+ year olds: 0.14
and contribution to the infectious reservoir	10-16 year olds:1	10-16 year olds: 1	12-20 year olds: 1

The model was used to simulate two transmission settings; a higher transmission setting with an age-weighted mean worm burden of 155, and a lower transmission setting with a mean worm burden of 60. The data used to define the three scenarios is presented in [3].

The model was used to simulate two transmission settings; a higher transmission setting with an age-weighted mean worm burden of 155 (based on model fits to the data [5]), and a lower transmission setting with a mean worm burden of 60. To ensure the results for the different scenarios are comparable, the R₀ was adjusted such that the different scenarios had the same pre-control mean worm burden (i.e. we ensured that we are not comparing the impact of both a different age-infection profile and a different pre-control burden when comparing the different scenarios).

Supporting Table S3: Sensitivity of the relative increase in effectiveness when using annual community-wide versus school-based treatment to the treatment coverage in adults (55% vs. 75%).

Metric	Relative pre-control	ntrol Relative increase in effectiveness									
	worm burden in adults	Higher transmission setting	Lower transmission setting								
Worm-years	Low	15-17%	13-15%								
averted	Medium	27-30%	20-23%								
	High	72-80%	55-59%								
Prevalent case	Low	68-83%	59-70%								
years averted	Medium	101-124%	83-99%								
	High	228-303%	204-258%								
Heavy case	Low	21-23%	11-12%								
years averted	Medium	39-43%	16-18%								
	High	107-118%	49-52%								

The range in each cell shows the variation in the relative increase in effectiveness when using annual community-wide versus school-based treatment to the assumed level of treatment coverage in adults (55% vs. 75%). The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The results assume 5% systematic non-compliance and 75% treatment coverage of SAC. The analysis was conducted with a five-year implementation period and a 15-year time horizon (i.e. looking at the impact of five years of treatment over 15 years).

Supporting Table S4: Sensitivity of the relative increase in effectiveness when using annual community-wide versus school-based treatment to the assumed mean life expectancy of the adult worms (4 years vs. 5.71 years).

Metric	Relative pre-control	Relative increase in effectiveness										
	worm burden in adults	Higher transmission setting	Lower transmission setting									
Worm-years	Low	7-17%	5-15%									
averted	Medium	30-55%	23-30%									
	High	80-94%	59-61%									
Prevalent case	Low	70-83%	47-70%									
years averted	Medium	124-182%	99-149%									
	High	303-359%	258-302%									
Heavy case	Low	10-23%	4-12%									
years averted	Medium	43-83%	18-26%									
	High	118-139%	52-54%									

The range in each cell shows the variation in the relative increase in effectiveness when using annual community-wide versus school-based treatment to the assumed mean life expectancy of the adult worms (4 years vs. 5.71 years). The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The results assume a treatment coverage of 75% and 5% systematic non-compliance. The analysis was conducted with a five-year implementation period and a 15-year time horizon (i.e. looking at the impact of five years of treatment over 15 years).

Supporting Table S5: Sensitivity of the relative increase in effectiveness when using annual community-wide versus school-based treatment to the assumed level of systematic non-compliance (0% vs 20%).

Metric	Relative pre-control	Relative increase in effectiveness										
	worm burden in adults	Higher transmission setting	Lower transmission setting									
Worm-years	Low	16-17%	14-15%									
averted	Medium	28-30%	22-22%									
	High	76-81%	59-60%									
Prevalent case	Low	58-124%	49-98%									
years averted	Medium	74-195%	60-252%									
	High	178-491%	154-408%									
Heavy case	Low	21-25%	12-13%									
years averted	Medium	40-42%	17-21%									
	High	111-114%	48-60%									

The range in each cell shows the variation in the relative increase in effectiveness when using annual community-wide versus school-based treatment to the assumed level of systematic non-compliance (0% vs. 20%). The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The results assume a treatment coverage of 75%. The analysis was conducted with a five-year implementation period and a 15-year time horizon (i.e. looking at the impact of five years of treatment over 15 years).

Supporting Table S6: Relative increase in effectiveness when using annual community-wide versus school-based treatment when assuming poor school enrolment.

Metric	Relative pre-control	Relative increase in effectiveness										
	worm burden in adults	Higher transmission setting	Lower transmission setting									
Worm-years	Low	32%	23%									
averted	Medium	45%	33%									
	High	98%	74%									
Prevalent case	Low	169%	146%									
years averted	Medium	205%	168%									
	High	381%	330%									
Heavy case	Low	51%	18%									
years averted	Medium	70%	26%									
	High	149%	67%									

The results assume the systematic non-compliance rate is 20% for the school-based programme, and 5% when using community-wide mass treatment (simulating a scenario where many of the non-enrolled SAC are only reached when using a community-based programme). The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The treatment coverage was assumed to be 75%. The analysis was conducted with a five-year implementation period and a 15-year time horizon (i.e. looking at the impact of five years of treatment over 15 years).

Supporting Table S7: The effect of using different fitting methods to account for the ageintensity profile on the projected incremental increase in effectiveness when using annual community-wide versus school-based treatment.

-	When fitting to fully age structured data	When only fitting to the mean burdens in children and adults	Percentage difference between the two fitting methods
Average number of worm-years averted per person	645.38	830.58	29%
Prevalent case years averted (per 100 individuals)	308.39	439.36	42%
Heavy case years averted (per 100 individuals)	56.43	77.45	31%

In the first results column the model was fitted to fully age-structured data (and therefore accounts for the true shape of the age-intensity profile) [5]. In the second results column, the model was only fitted to reproduce the estimated mean pre-control worm burdens in SAC and adults from the same dataset. The data used in this example is from the lietune village (Kenya) [60]. The results assume a treatment coverage of 75% and no systematic non-compliance. The analysis was conducted with a five-year implementation period and a 15-year time horizon (i.e. looking at the effect of five years of treatment for 15 years).

Supporting Figure S1: The impact of annual school-based treatment on the mean worm burden in different age groups in three settings with a different relative pre-control worm burden in adults. The solid bars represent the pre-control burden and the hashed bars, the burden after 5 years of treatment. The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The results assume a treatment coverage of 75% and 5% systematic non-compliance. The results pertaining to the higher transmission setting are shown in Figure 4. Pre-SAC: 2-4 year-olds, SAC: 5-14 year-olds and adults: \geq 15 year-olds.

Relative pre-control worm burden in adults

Low	Intermediate	High
% systematic non-compliance		

20% systematic non-compliance

			Cove	erage o	of adult	ts (%)				Co	verage	of adu	ılts (%)				Co	verage	of ad	ults (%))
		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%
(%	0%	NA	NA	NA	NA	NA	-	0%	NA	NA	NA	NA	NA	-	0%	NA	NA	NA	NA	NA	-
AC (20%	NA	NA	NA	NA	NA	-	20%	NA	NA	NA	NA	NA	-	20%	NA	NA	13	11	10	-
of S	40%	10	10	10	9	9	-	40%	12	10	10	10	9	-	40%	NA	11	9	8	7	-
rage	60%	7	7	7	7	7	-	60%	9	8	7	7	7	-	60%	14	9	7	6	6	-
ove	80%	6	6	6	6	6	-	80%	8	7	6	6	6	-	80%	12	8	6	6	5	-
J	95%	-	-	-	-	-	-	95%	-	_	-	_	_	-	95%	-	-	-	-	-	-

0% systematic non-compliance

			Cove	erage o	of adul	ts (%)			Coverage of adults (%)								Coverage of adults (%)						
		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%		
(%	0%	NA	NA	NA	NA	NA	NA	0%	NA	NA	NA	NA	NA	NA	0%	NA	NA	NA	NA	15	14		
) (20%	NA	NA	NA	15	15	15	20%	NA	NA	15	14	14	13	20%	NA	14	10	8	7	7		
of S/	40%	8	7	7	7	7	7	40%	10	8	7	7	7	7	40%	15	9	6	5	5	4		
rage	60%	5	5	4	4	4	4	60%	6	5	5	4	4	4	60%	11	6	5	4	3	3		
ove	80%	3	3	3	3	3	3	80%	5	4	3	3	3	3	80%	9	5	4	3	3	2		
J	95%	3	2	2	2	2	2	95%	4	3	3	2	2	2	95%	8	5	3	3	2	2		

Supporting Figure S2: Sensitivity of the number of years of annual treatment to achieve elimination of *Schistosoma mansoni* to the assumed level of systematic non-compliance.

The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The results use the parameters for the lower transmission setting. When assuming a systematic non-compliance rate of 20% it is not possible to get 95% coverage (indicated by a dash on the figure). NA; Not achievable within 15 years of annual treatment.

Relative pre-control worm burden in adults

Low Intermediate High

Assuming a mean worm life expectancy of 4 years

			Cove	rage o	f adul	ts (%)		Coverage of adults (%)									Coverage of adults (%)						
		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%		
(%)	0%	NA	NA	NA	NA	NA	NA	0%	NA	NA	NA	NA	NA	NA	0%	NA	NA	NA	NA	NA	NA		
AC (S	20%	NA	NA	NA	NA	NA	NA	20%	NA	NA	NA	NA	NA	NA	20%	NA	NA	11	9	8	7		
of S	40%	11	10	10	10	10	10	40%	NA	12	10	9	9	8	40%	NA	10	7	6	5	5		
rage	60%	7	7	6	6	6	6	60%	11	8	7	6	6	6	60%	13	8	6	5	4	4		
ove	80%	5	5	5	5	5	5	80%	9	6	5	5	4	4	80%	11	7	5	4	3	3		
0	95%	4	4	4	4	4	4	95%	8	6	5	4	3	3	95%	10	6	4	3	3	2		

Assuming a mean worm life expectancy of 5.71 years (baseline assumption)

			Cove	erage o	of adul	ts (%)			Coverage of adults (%)									Coverage of adults (%)						
		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%		0%	20%	40%	60%	80%	95%			
(%)	0%	NA	NA	NA	NA	NA	NA	0%	NA	NA	NA	NA	NA	NA	0%	NA	NA	NA	NA	NA	15			
SAC (20%	NA	NA	NA	NA	15	15	20%	NA	NA	NA	15	14	14	20%	NA	15	11	9	8	7			
of S	40%	8	8	8	8	7	7	40%	10	9	8	7	7	7	40%	NA	9	7	6	5	5			
rage	60%	5	5	5	5	5	5	60%	7	6	5	5	5	5	60%	12	7	5	4	4	3			
Cove	80%	4	4	3	3	3	3	80%	5	4	4	3	3	3	80%	10	6	4	3	3	3			
•	95%	3	3	3	3	2	2	95%	5	4	3	3	3	2	95%	9	5	4	3	2	2			

Supporting Figure S3: Sensitivity of the number of years of annual treatment to achieve elimination of *Schistosoma mansoni* to the assumed mean life expectancy of the worms.

The scenarios for the relative pre-control burden in adults are shown in Figure 2 (note they have the same age-weighted overall mean worm burden). The results use the parameters for the lower transmission setting, and assume 5% systematic non-compliance. NA; Not achievable within 15 years of annual treatment.

Reference

- 1. Anderson RM, May RM: Infectious diseases of humans : dynamics and control. Oxford ; New York: Oxford University Press; 1991.
- 2. Truscott JE, Hollingsworth TD, Brooker SJ, Anderson RM: Can chemotherapy alone eliminate the transmission of soil transmitted helminths? *Parasit Vectors* 2014, 7(1):266.
- 3. Anderson RM, Turner, H.C., Farrell, S.H. and Truscott, J.E.: Studies of the transmission dynamics, mathematical model development, and the control of schistosome parasites by mass drug administration in human communities. *Adv Parasitol* 2016, 94:199-246.
- 4. Truscott JE, Turner HC, Farrell SH, Anderson RM: Soil Transmitted Helminths: mathematical models of transmission, the impact of mass drug administration and transmission elimination criteria. *Adv Parasitol* 2016, 94:133-198.
- 5. Anderson R, Turner H, Farrell S, Yang J, Truscott J: What is required in terms of mass drug administration to interrupt the transmission of schistosome parasites in regions of endemic infection? *Parasit Vectors* 2015, 8(1):1-11.
- 6. Truscott JE, Turner HC, Anderson RM: What impact will the achievement of the current World Health Organisation targets for anthelmintic treatment coverage in children have on the intensity of soil transmitted helminth infections? *Parasit Vectors* 2015, 8(1):551.
- 7. Farrell S, Truscott JE, Anderson RM: The importance of patient compliance in repeated rounds of mass drug administration (MDA) for the elimination of intestinal helminth transmission. *Parasit Vectors* 2017, In press.
- 8. Truscott, J.E., Gurarie. D., Alsallaq, R., Toor, J., Yoon, N., Farrell, S.H., Turner, H.C., Phillips, A.E., Aurelio, H.O., Ferro, J., King, C.H., and Anderson, R.M (2017). A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. Epidemics, 18, 29-37.
- 9. Anderson RM, Medley GF: Community control of helminth infections of man by mass and selective chemotherapy. *Parasitology* 1985, 90:629-660.
- 10. Fulford AJ, Butterworth AE, Ouma JH, Sturrock RF: A statistical approach to schistosome population dynamics and estimation of the life-span of Schistosoma mansoni in man. *Parasitology* 1995, 110 (Pt 3):307-316.
- 11. Chan MS, Guyatt HL, Bundy DA, Booth M, Fulford AJ, Medley GF: The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni. *Epidemiol Infect* 1995, 115(2):325-344.
- 12. Zwang J, Olliaro PL: Clinical efficacy and tolerability of praziquantel for intestinal and urinary schistosomiasis-a meta-analysis of comparative and non-comparative clinical trials. *PLoS neglected tropical diseases* 2014, 8(11):e3286.
- de Vlas SJ, Nagelkerke NJ, Habbema JD, van Oortmarssen GJ: Statistical models for estimating prevalence and incidence of parasitic diseases. *Stat Methods Med Res* 1993, 2(1):3-21.
- 14. Pullan RL, Kabatereine NB, Quinnell RJ, Brooker S: Spatial and genetic epidemiology of hookworm in a rural community in Uganda. *PLoS Negl Trop Dis* 2010, 4(6):e713.
- 15. Anderson RM, Truscott JE, Hollingsworth TD: The coverage and frequency of mass drug administration required to eliminate persistent transmission of soil-transmitted helminths. *Philos Trans R Soc Lond B Biol Sci* 2014, 369(1645):20130435.
- 16. Anderson RM, May RM: Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. *Parasitology* 1979, 79(01):63-94.