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The question which prompts the present work is:
“How can the concept of the plant cell as an osmom-
eter with semi-permeable walls be justified, when
solutes may enter the plant cell vacuole?” Textbooks
of plant physiology and physical chemistry treat
osmosis in detail only for equilibrium conditions and
non-diffusible solutes. To extend the quantitative
treatment to the case of a diffusible solute we must
abandon the equilibrium approach and study the
problem dynamically. We introduce the dynamic ap-
proach by applying it to the classical cell osmometer;
then we proceed to the case of a diffusible solute.

Dy~namics oF THE Crassical CELL OSMOMETER:
We use the following symbols:

V, cell volume (em3). V,, cell volume at zero

turgor pressure.

v=V/V,-1, relative departure of cell volume from

o

A, external surface area of cell (em2). A,, value of
A at zero turgor pressure.

P, osmotic pressure of cell contents (in the sense of
Meyer (14), i.e., as a concentration-dependent
property of the solution, independent of the
hydrostatic system) (atm).

T, turgor pressure (atm). [Broyer and others (4,
21, 22, 27) have shown the general equiva-
lence of T and “wall pressure,” and that it is
a mistaken over-emphasis of an infinitesimal
second-order effect to dwell on the distinction
between them (6)].

K, permeability of cell wall to water (cm sec!
atm-1). t, time (sec).

We suppose that, initially, T =0, and P=P,, and
that the solutes in the system are non-diffusible. If
the cell is now placed in free water, water will enter
the cell until the (increasing) turgor pressure becomes
equal to the (decreasing) osmotic pressure. The dy-
namics of this process is described exactly by the
equation.

dV/dt = K.A[P — T] 1)
subject to the initial condition
t=0,V=YV, @)

Quite generally, K, A, P and T are functions of V.
If these functions are known, equation 1 may be inte-
grated. If experimental values of these functions are
used, numerical integration will generally be necessary.
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This presents no great difficulty, but it is simpler to
use certain approximations which enable the problem
to be solved analytically.

A increases with V (in fact A =~ A,(1+2v/3) for
isotropic swelling and shrinking) and K may vary
with V (e.g.,, (2)). This is unlikely to change the order
of magnitude of KyA, which affects the time scale of
osmometer dynamics, though not its general character.
We therefore simplify the analysis by taking K A as
constant and equal to K A,.

If we take P proportional to solute concentration
(as it is to a first approximation)

P= PoVo/V = Po/(l + V) (3)

If we assume that change of cell volume is propor-
tional to change in turgor pressure, we have for the
T (V) function

T=(V/Vo—1).ie. T = ev 4)

The elastic modulus, ¢, corresponds to the “coeffi-
cient of enlargement” of Broyer (5). As Broyer
states, e is not strictly constant for perfectly elastic
cell walls, except for infinitesimal volume changes.
Since the assumption that the wall obeys Hooke’s law
is, in any case, an approximation (9), it seems permis-
sible to adopt € as constant in the present analysis.

We recognize that, in real plants, marked deviations
from the linear T (v) relation to be used here may oc-
cur. In this sense the present work may be consid-
ered a first approximation. Essentially similar results
would follow from a more precise, though more elabo-
rate analysis along the same lines in which non-linearity
in T(v) was taken into account.

The existence of a unique T(v) function implies,
however, that the cell volume changes are elastic.
Obviously, the plastic, irreversible, deformations asso-
ciated with cell elongation are beyond the scope of the
present treatment, though it may prove possible to
include these in a similar, but. more complicated, anal-
ysis. Insofar as our special concern here will be with
cells at low levels of turgor, this is not a serious
limitation.

Using equations 3 and 4 in equation 1 then gives

dv KWAO[ P,

v _ Bwlel 1o 5
&=V, LA+w “’] )

This is integrable, but the further developments will
be simplified if we use the fact that v is generally
rather smaller than unity and introduce the approxi-
mation

Po/(1 4+ v) = Po(1 — V) (6)
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Equation 5 may then be rewritten

dv  KgA
= = w40 . — Po 7
G- P P @)
The particular integral of equation 7 which vanishes
for t =0 (in accord with equation 2) is

P, (e + P)K<A,
o= |1 e (- R
®)

Figure 1 shows the approach of the ideal osmometer
to the new equilibrium, v=P,/(e+P,), according to
equation 8. The predicted behavior is quite similar to
the observed behavior of plant tissues (e.g., (7, 16,
23)), though certain inherent differences are to be ex-
pected between the behavior of an individual cell and
of a tissue which is an aggregation of cells.

The half-time of the approach to the new equi-

_ 0.693V,
A‘:::Kw(e + Po).

dimensions and permeability, the speed of adjustment
is directly proportional to (e+P,). Thus both the
elastic properties of the cell wall and the quantity of
solute in the cell exert important influences on cell
dynamics.

It will be noted that the relationships used here fail
for the plasmolyzed cell, and that the analysis is re-
stricted to cells in the normal unplasmolyzed condition.

The preceeding treatment may be applied to more
general problems in the dynamics of the classical cell
osmometer. No now principles are involved in such
generalizations.

“OsMosIS” IN THE PRESENCE OF A DIFFUSIBLE SOL-
utE: The propriety of the term “osmosis” is open to
question if the solute is diffusible. Strictly, the proc-
ess is one of dialysis. Just as in the ideal osmometer,
a diffusion pressure (14, 1) difference is set up across
the membrane. In the ideal case, net movement of
solvent across the membrane may be prevented by
applying a constant hydrostatic pressure difference.
In the present case, however, “osmotic” equilibrium
would require that the applied pressure difference
vary in accord with changes in concentration produced
by diffusion of the solute.

The question arises as to whether the “osmotic
pressure” depends only on the concentrations of solute
or whether it is influenced by the permeability of the
membrane to the solute. An argument similar to that
given by Ostwald (quoted in (10)) to demonstrate the
equality of the osmotic pressures developed by all
ideal membranes shows that the transient osmotic
pressures we examine here also depend only on the
solute concentrations. The viewpoint of Hildebrand
(12) that osmosis “is primarily a consequence of the
tendency of two different liquid species, under the im-
pulse of thermal agitation, to achieve a state of maxi-
mum disorder by any available path, and that the
route via osmosis is no more significant theoretically

librium is That is, for a given cell
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than one via the vapor state” leads to the same con-
clusion.

CeLL DyNAMICS IN THE PRESENCE OF A DIFFUS-
1BLE SOLUTE: After the cell we have considered above
attains its final equilibrium, let it be removed and im-
mersed in a large body of a solution of diffusible solute.
In considering subsequent cell behavior, we use the
following additional symbols:

P,, osmotic pressure of the cell contents due to

non-diffusible solutes (atm).

P4, osmotic pressure of the cell contents due to dif-
fusible solute (atm).

P,, osmotic pressure of the external solution (of
diffusible solute) (atm).

K,, apparent permeability of cell wall to diffusible
solute, essentially defined by equation 10 (cm
sec1).

¢y, concentration of diffusible solute in the external
solution (g cm=3).

¢, concentration of diffusible solute in the cell con-
tents (g cm3).

q, quantity of diffusible solute in the cell (=cV) (g).

Our model of solute movement consists of purely
passive diffusion. It is for this reason that we call K,
apparent permeability. The simple proportionality
between rate of solute movement and concentration
difference implicit in the model is certainly not always
realized in plant cells. Nevertheless the model enables
some exploration of the effects of solute diffusibility on
osmotic behavior of the cell.

The system of equations describing the movement
of water and diffusible solute is then

dV/dt = KeA(P, + Py — P, — T) 9)
dq/dt = K:A(er — ¢) (10)

Equations 4 and 6 enable us to rewrite equation 9 as

dv KA,

SY o Dwlik 11
&=V, (1)
We must establish Py as a function of time before

we can integrate equation 11. All volume changes are

relatively small, so we may introduce the approxima-
tion that, even though K, A and V all vary, the quan-
tity K;A/V is constant and equal to K A,/V,. This
enables equation 10 to be reduced to
de KA,

Frian A (e —¢)
Then, for Py, P4 proportional to ¢;, ¢ (as they will

be to a first approximation) equation 12 becomes
dPy KA,

—d _ Betbop

dt v, Fr—Pd
Now P3=0at t=0, so Pq is given by the particular

integral of equation 13,

0w

[Po + Pd - Pl - (6 + PO)V]

(12)

(13)

Pd=P1[1—exp(—I—{VA°
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Using equation 14 in equation 11, we obtain

dv _ K.A KA,
=V, [Po— P, exp (— V. t)

- (E + Po)v]’ (15)

which is subject to the initial condition
t=0,v="P/(e+ P,) (16)

Numerical solutions of equation 15 subject to
condition 16 are shown in figure 2. The most impor-
tant quantity governing the time-dependence of the
cell-behavior is K¢A,/V,. For this reason the curves
are plotted against the dimensionless quantity K At/
V,. The other significant parameter of the system,
(e+P,)K,/K,, influences the relative rate of ap-
proach to the initial quasi-equilibrium.

An idea of orders of magnitude can be gained by
inserting numerical values. A,/V,=10% for a spher-
ical cell of radius 3 x 10-3 em. Kj is difficult to evalu-
ate, but may be about 5x 10-8 for plant cell mem-
branes and the salts of interest here (19, 8). The
experimental data on K indicates 5x 10-7 as typical
for plant cells (11). Broyer (3) has deduced ¢ ~ 60 for
potato tuber tissue while Ordin and Bonner’s data for
Avena coleoptiles (16) yield (e + P,) ~ 100. We may
therefore take (e+P,) of order of magnitude 50 to
100. On the basis of these values, the unit of dimen-
sionless time scale of figure 2 would be about 6 hours,
while (e+P,) K, /K would be of order 500 to 1000.
The curves of figure 2 cover the range 50 to 5000.

It is seen that the behavior of the cell on immersion
in a solution of diffusible solute has three phases: (i)
a very rapid adjustment to V and T values little dif-
ferent from those which would be developed by the
ideal osmometer; (ii) a period of quasi-equilibrium,
during which the classical equilibrium values of V and
T continue to be approximately realized; (iii) a slow
drift back to the initial condition of cell volume and
turgor.

It must not be supposed, however, that the cell has
returned to its initial state. Whereas the osmotic
pressure of the cell contents was initially Poe/(e+ P,),
it has now increased to Pye/ (e + P,) +P;.

Accordingly, if the cell is now removed from the
solution of diffusible solute and replaced in free water,
iz will increase in volume rapidly until v approaches
the value P,/(e+P,) +P;/e (i.e., T approaches the
value P,e/(e+P,) + P;). This will be followed by a
gradual (nearly exponential) return to a state in
which v=P,/(e+P,). If, after this state is attained,
the cell is removed from the free water and placed in
a solution of non-diffusible solute of osmotic pressure
P,, the volume decreases rapidly to V,, the turgor
pressure to zero and the osmotic pressure of the cell
contents to P,. The cell has now returned to the state
in which it was originally introduced. Figure 3 pre-
sents schematically the cycle of operations to which
we have subjected it. The osmotic pressure history of
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both external solution and cell contents, and the vol-
ume (or turgor) changes which the cell undergoes, are
shown.

CeLL Dynamics WiITH CHANGING EXTERNAL CON-
CENTRATION OF DIFFUSIBLE SoLuTe: It will be clear
from the preceding section that deviations from clas-
sical osmotic behavior induced by the presence of dif-
fusible solutes become apparent only some time after
external conditions change. We now consider cell be-
havior when the external concentration of diffusible
solute changes gradually but continuously, as one
might expect in nature.

Let us interrupt the previous cycle of operations
on the cell at the point where it has reached equi-
librium with free water (C of fig 3). We now sup-
pose that a diffusible solute is introduced continuously
into the water, so that, at any time, t, the osmotic
pressure of the external solution is at.

The equation governing the increase of osmotic
pressure of the cell contents due to the entry of dif-
fusible solute is again equation 13. P, is not constant
here, but is equal to at, so that we have

Qd _ KsAo
dt Vv,
The particular integral of equation 17 which van-
ishes for t =0 is:

Py = at — 122,[1 — exp (— K\’;?"t)] (18)

Equation 11, describing the volume change of the
cell, holds here also. However, (Pq—P;) is now

i (50

so that the equation becomes

dV _ KWAO _ aVo _ _ KsAo
&=V, [P° K,Ao[1 exp( v, t)]

—(e+ Po)v] (19)

(at — Pa) 17)

subject to the condition
t=0,v="PFP/(e+ P, (20)

Provided (e+P,) Ky /K, is much greater than
unity (we have estimated the probable range of values
at 50 to 5,000), the solution of equation 19 subject to
20 is, to a high degree of accuracy

- e (- 5] @

This result is shown graphically in figure 4. It will
be seen that, no matter how high the external concen-
tration of diffusible solute becomes, the consequent
change in v cannot exceed aV,/(e+P,) K A,. Thus,
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F1c. 1 (top left). The dynamics of the classical osmometer. Transition from zero to full turgor on immersion

in free water.

F1c. 2 (top right). Cell behavior on immersion in solution of diffusible solute. The numbers on the curves de-

note values of (e+Po)Kw/Ka..

Fic. 3 (bottom left). Schematic diagram of cycle of operations to which cell is subjected. Upper full curve
represents osmotic pressure of the cell contents, P. Broken curve represents osmotic pressure of the external solu-

tion, P,. Points in the time sequence:

>

. Cell placed in free water.

Cell at zero turgor in equilibrium with non-diffusible external solution of osmotic pressure Po.

. Cell removed and immersed in solution of diffusible solute.

B

C

D. Cell returned to free water.

E. Cell returned to original non-diffusible solution.

F. Cell at zero turgor in equilibrium with original non-diffusible solution.
Fi1c. 4 (bottom right). Cell behavior with changing external concentration of diffusible solute.

if we assume a change in external osmotic pressure
(due to diffusible solute) of 1 atm per day (a=1.16 x
10-5) and takes K A,/V,=5x10"5, (e+P,) =75, the
maximum change in v is 0.0032. That is, the maxi-
mum change in cell volume is less than 1 in 300.

The behavior of cell volume, and the osmotic pres-
sure of external solution and cell sap, is shown in fig-
ure 5 for this numerical example (P,=15). The ex-
ternal osmotic pressure is allowed to increase 1 atm
per day for 20 days, after which it remains constant.
Note that the slight loss of turgor is quickly regained
once the external concentration ceases to increase.

CeLL Dynamics AND DoNNAN PHENOMENA: To
this point we have referred to “diffusible’” and “non-
diffusible” solutes without specifying whether the dis-
solved material is ionic or molecular. Only where the
Donnan phenomenon operates need this be done.

Table I summarizes various combinations of constitu-
tion of cell contents and external solution, and indi-
cates the presence or absence of the Donnan phenom-
enon in each case.

Case 1 occurs, for example, during plasmolytic de-
termination of osmotic pressure. Case 2 arises when
the degree of ionization of the cell contents is negli-
gible, and is perhaps improbable. Case 3, the most
general one, is relevant, for example, to the interaction
of a plant with the soluble salts of the soil.

The effect of the Donnan phenomenon, where it
operates, on the previous analysis may be gauged by
considering the problem treated under “Cell Dynamics
in the Presence of a Diffusible Solute.” Let us sup-
pose that certain diffusible ions, originally in the cell,
remain bound there, due to the presence of non-
diffusible ions of opposite charge, so long as there are
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TaBLE 1
Doks Don-
EXTERNAL NAN PHE-
Case CELL CONTENTS SOLUTION NOMENON
OPERATE?
1 Diffusible electrolyte Non-diffusible No
or non-electrolyte, electrolyte or
plus (possibly) non-electro-
non-diffusible com- lyte
ponents
2 Non-diffusible elec- Diffusible elec- No
trolyte or non-elec- trolyte or
trolyte, plus (pos- non-electro-
sibly) diffusible lyte, plus
non-electrolytes (possibly)
non-diffusible
components
3 Electrolyte with at Diffusible elec- Yes
least one diffusible trolyte, plus
ion, plus (possibly) (possibly)
non-diffusible com- non-diffusible
ponents components
no diffusible ions in the external solution. Let these

“bound” ions contribute (at zero turgor pressure) a

partial osmotic pressure P;.

30

25

‘————

0.200

106

190

4

8 12

16

20

It is found that, if these ions are treated as non-
diffusible while they remain bound, but as diffusible
once the cell is placed in the large body of electrolyte
solution, the analysis developed above predicts the
final equilibrium osmotic pressure of the cell contents
with a fractional error of about P;2/8 P, (P,+P;).
This is clearly small if Pj is rather less than P; and P,
Thus, for P,=15, P;=5, Py=2, the error is 1/200.
The Donnan phenomenon produces a much greater
effect on the concentrations of the individual ionic
species than on the total concentration, which is the
significant quantity influencing osmotic pressure.

The question of how the Donnan phenomenon af-
fects the dynamics of approach to equilibrium is some-
what obscure. Diffusion rates of electrolytes (or their
ions) through membranes may well be of the same
order of magnitude whether Donnan effects are pres-
ent or not. If so, the overall dynamic picture pre-
sented above remains relevant in the presence of the
Donnan phenomenon.

OSMOMETER ANATOMY AND REAL PranTt CELLS:
In this study the model we have used is the classical
cell-osmometer, with the complication added that cer-
tain solutes are free to diffuse through the cell wall.
The classical cell-osmometer wall is envisaged as pro-
viding: (i) the geometrical limits of the cell; (ii) the

40
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Cell behavior with changing external concentration of diffusible solute.
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Upper full curve repre-

sents osmotic pressure of the cell contents, P. Broken curve represents osmotic pressure of the external solution, P,

Lower full curve shows relative cell volume, v
Fie. 6 (right).
by various theories.
Walter (26).
of liquid continuity between soil water and root cell.

Variation of “effective soil moisture stress,” ¥, with volumetric moisture content, 6, as implied
Upper broken curve—according to Wadleigh (25, 24).
Solid curves—behavior indicated by present theory for cases A and B. §; denotes value of § at failure

Lower broken curve—according to
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mechanical strength and elasticity supporting the
turgor pressure; (iii) the semi-permeable membrane.

In the mature vacuolated plant cell, there are, as
well as the wall and the vacuole, the plasmalemma,
the cytoplasm and the tonoplast. Either of the mem-
branes may operate as the effective resistance to the
passage of water or of a particular solute; the cyto-
plasm itself may provide a significant resistance, or
may have osmotic properties distinct from those of
the vacuole.

A model sufficiently complex to include all these
effects could be developed. However, the number of
parameters in the system would be large, and the
analysis cumbersome, even though the general results
would not differ greatly from those we have obtained
here for a simpler model. Nevertheless, there are
points where some ambiguity arises when we apply the
classical model to real plant cells.

Thus we have, throughout, referred to cell volume
and cell contents, though we recognize that, where the
effective barrier is the tonoplast, it would be more
appropriate to work with vacuolar volume and vacu-
olar contents. The question of how cell volume varies
with vacuolar volume raises such matters as change in
cytoplasm volume, and the means of transmission of
turgor from the cell wall across the cytoplasm to the
vacuole. Further, we have referred all permeabilities
to cell surface area, though, where the barrier between
the external solution and the vacuole resides away
from the cell wall, a smaller area (nevertheless, of the
same order of magnitude) should, strictly, be used.

SoLuTE Dr1rFrusiBILITY AND PLaANT WATER Econ-
oMmY: In the real plant, both concentration gradients
and effective diffusion cross-section per cell may be
less than for the single cell, so that one can expect the
effects of solute diffusibility to be somewhat retarded.
However, with this qualification, the present analysis
appears to be pertinent, and we conclude that solute
diffusibility exerts a real influence on the water bal-
ance of whole plants.

Maximov (13) quotes work by a number of inves-
tigators which supports our analysis and this conclu-
sion. Thus Renner added 19 KNOjz to water cul-
tures of beans, and found that absorption of water
was immediately reduced, but that subsequently ab-
sorption became more rapid, the plant apparently
adapting itself to the change in solution. Monfort ob-
served that a sudden increase in concentration of the
external solution caused a temporary cessation of gut-
tation; guttation was subsequently renewed, finally
increasing above the original level. Ursprung and
Blum found that immersion in concentrated solutions
increased the suction pressure of the cells in the
absorbing zone of the root. All these experiments fol-
low the course predicted in figure 2, though it is pos-
sible that some other effect, such as increase in mem-
brane permeability, operates where the final uptake
rate is in excess of the initial one.

Also significant are the experiments of Rybin.
After immersion of plant roots in salt solution had re-
duced water uptake to about half its normal value, the
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solution was suddenly replaced by pure water. There
was an immediate increase in absorption to about 1.5
times the normal rate. On continued immersion in
the water, the absorption rate approached its initial
value. Sabinin observed similar phenomena. These
experiments follow the course predicted in phases
CDE of figure 3, if we regard the observed absorption
rate as proportional to the difference in diffusion pres-
sure deficit between the root cells and the solution.

The concept of “physiological dryness” (20) in
saline soils has had a long currency in the literature of
plant ecology. This viewpoint presupposes that the
plant behaves as an ideal osmometer. The osmotic
pressure of the soil water due to the soluble salts of
the soil (which are diffusible through the plant mem-
branes) is envisaged as opposing the entry of water
into the plant via the root system. Wadleigh (25, 24)
has used the “total soil moisture stress,” defined as the
sum of the tension and the osmotic pressure of the soil
water, as a measure of the diffusion pressure deficit
which must be exceeded in the epidermal cells of plant
roots before water may be absorbed by them. Ex-
pressed thus, the concept is unexceptionable. How-
ever, the concept would seem to be of use only if the
external electrolyte fails to diffuse into the cells of the
root.

The analysis of solute diffusibility presented here
indicates that the concept of salt-induced “physio-
logical dryness” may not always be soundly based.
Since, in nature, the osmotic pressure of the soil water
is unlikely to change at rates much in excess of the
1 atm per day assumed in the numerical example
above, it appears that the direct osmotic effect on
plant water uptake is unlikely to be large, provided
that liquid phase continuity between the soil water
and the root surfaces is maintained. (We discuss this
proviso below.) The basis of the deleterious effect of
soil salinity in fairly moist soils may need to be sought
elsewhere. It is possible that in such cases symptoms
which have been interpreted as due to “physiological
drought” have in reality been caused by the entry of
diffusible solutes in toxic quantities.

Study of the movement of soil water to the absorb-
ing root system (18) indicates that, during transpira-
tion, large moisture gradients may develop near the
root surfaces. As a result, even at fairly high mean
soil moisture contents, the soil immediately adjoining
the absorbing surface may become so dry that the
final transfer of water to the root must take place in
the vapor phase (17). The failure of continuity may
be aggravated by the shrinkage of the root cells as
they lose turgor in a drying soil. The vapor gap pro-
duced operates as an ideal semi-permeable membrane.
Thus, a moderately dry soil, combined with meteoro-
logical conditions which impose a high transpiration
rate upon the plant, may produce a situation in which
the concept of “physiological drought” becomes rele-
vant.

Walter (26) states, “Formerly it was assumed that
salty soils, through the osmotic effects of the salts, are
physiologically dry for plants. But this osmotic effect
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is balanced by the intake of salts.” Walter gives no
qualification or further explanation of this statement.
This total rejection of the physiological drought con-
cept, like its total acceptance, appears to be incorrect.
His statement might, however, be accepted by persons
working with water cultures. In these no continuity
problem arises, and experiment tends to confirm the
analysis developed here (13).

The possibility of solute diffusibility makes the
term “effective soil moisture stress” useful. We define
it here as the minimum value of (P,-T) in the root
cells necessary to produce movement from the soil into
the plant. It will be recalled that P, is the osmotic
pressure of the cell contents due to non-diffusible sol-
utes. Now, since diffusible solutes may be present in
the root cells as well as in the soil water, we may
write, quite generally,

¥ =¥+4 P — Py (22)

where ¥ is the effective soil moisture stress (atm),
and ¥ is the soil moisture tension (atm). P;, P4 now
represent the osmotic pressure of the soil solution and
the partial osmotic pressure of the cell contents due to
diffusible solute, respectively. Let @ be the volumetric
moisture content of the soil (em3 liquid water/cm3
soil) and @, the value of § at which liquid continuity
fails. Then

for 8 > 6;, P, = Py, so that ¥/ = ¥ (23)

When 4 < §; matters are more complicated, as the
quantity of diffusible material in the plant may de-
pend on the salinity history of the root zone before
failure of continuity. When, for example, all the salt
accumulates in the soil after the continuity failure
(we shall call this the limiting case A),

P, = P6,/6, Pa =0 (24)

where P, denotes the osmotic pressure (atm) of the
soil solution, if the soil were at the saturation mois-
ture content 6, and contained the same amount of salt
per unit soil volume. Equation 24 assumes propor-
tionality between osmotic pressure and solute concen-
tration. This gives the result

Case A  for 6 < 6;, ¥/ =¥ + P.4,/0 (25)

In this case ¥ would agree with Wadleigh’s “total
soil moisture stress” in the range 6 < 6;.

If, on the other hand, we consider the contrasting
case B, where the salt in the soil is present in constant
(volumetric) concentration before, as well as after the
failure of continuity, equation 24 must be replaced by

P]_ = PSOS/O, Pd = Pses/of (26)

(The expression for Py neglects the effect of turgor
changes in the root and may therefore be somewhat
too small.) Equations 22 and 26 then yield

Case B for 6 < 6,

' = 11
v _\1/+Psos(0 0£> (27)
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This case gives a ¥ which gradually deviates from
Walter’s concept of ¥’ =¥ as § decreases below 6, but
which everywhere remains somewhat less than Wad-
leigh’s “total soil moisture stress.”

In general terms we may state that, according to
the present ideas, ¥’ = ¥ so long as § > ;. For § < ;
the exact behavior of ¥ depends on the salinity his-
tory of the root zone, but, in general, ¥ can be ex-
pected to assume a value intermediate between that
implied either by total acceptance or total rejection of
the physiological drought concept.

Figure 6 illustrates the W’(4) relationships im-
plicit in the physiological drought theory and in the
opposing view of Walter, as well as the relationships
for Cases A and B according to the present considera-
tions. The ¥(#) function was based on data of Moore
(15) for a soil of moderate clay content, and the value
P, =5 was used.

SUMMARY

The dynamic theory of the classical osmotic plant
cell is developed in quantitative form and extended to
the case where a diffusible solute is present. It is
shown that solute diffusibility may result in marked
deviations from classical behavior. Where Donnan
membrane phenomena are operative, the analysis
needs modification, but the gross character of the
dynamic behavior remains similar. The “physiological
drought” theory of the influence of soluble salts in the
soil on the water economy of plants depends on their
non-diffusibility. On the other hand, Walter (26)
states, “the osmotic effect is balanced by the intake of
salts.” Neither view seems wholly correct, since both
solute diffusibility and liquid phase continuity may be
important factors.

The author acknowledges the helpfulness of eriti-
cisms by his colleagues, both in C. 8. I. R. O. and
C. 1. T.; in particular those of Mr. C. I. Davern and
Dr. James Bonner.
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PROPAGATION OF TURGOR AND OTHER PROPERTIES
THROUGH CELL AGGREGATIONS?

J. R. PHILIP

DivisioN oF Brorocy, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA,2
AND DivisioN oF PranT INpusTtrRY, C.S.I.R.O., AUSTRALIA 3

Inferences are often drawn about the osmotic be-
havior of pieces of tissue composed of an aggregation
of cells, or even of whole plants, by reference to the
classical single cell osmometer. Treating the aggre-
gate as an individual introduces no error when the
system is in internal equilibrium. However, in the
dynamic problems of interest to the physiologist, this
is not the case.

We consider first the behavior of a linear aggrega-
tion of cells, as shown in figure 1. The cells are iden-
tical in the sense that, at zero turgor, their dimen-
sions, and the osmotic pressure of their contents, are
equal, and that the elastic and permeability properties
of their walls and membranes are equal. A is the ef-
fective area of wall available for the passage of water
between adjoining cells (cm2), K is the permeability
of the surface of an individual cell to water (cm sec!
atm1), @ is the diffusion pressure deficit (atm), T is
the cell turgor pressure (atm), P is the osmotic pres-
sure of the cell contents (atm), V is the cell volume

1 Received February 27, 1958.

2 Address for 1958. This work was supported in part
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8 Permanent address.

(ecm3), t is the time (sec), and numerical suffixes de-
note values obtaining in the appropriately numbered
cell. Then, for any sequence of cells, 1, 2, 3,

Rate of flow of water from 1 to 2 =
A
K (g
(1

Rate of flow of water from 2 to 3 =
AK
=5 (65 — 62)

In attributing definite values 6y, 65, 63 to the diffusion
pressure deficits of cells 1, 2, 3, we imply that osmotic
pressure differences within each cell are negligible.
Commonly the cell dimensions, and the rates of water
transfer, will be so small that this is the case.

It follows that

Rate of volume increase of cell 2 =
A
le—0)— 0 - 0] @

By introducing a relationship between V and 6, we
could now write down a differential equation express-



