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Text S1 
 
Genomic Data 
We used published next generation sequencing data sets to extract the synonymous and 
nonsynonymous SFS. For humans, we used the sample of 112 individuals from Yoruba in 
Ibadan, Nigeria (YRI) from the 1000 Genomes Project (1). We downloaded the 1000 Genomes 
phase 3 dataset from the 1000 Genomes ftp site 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/, accessed Sept 2014). Using information in 
the sample information PED file, related individuals were removed and for each trio or family 
group only the mother and father were used. The SNPs were also filtered for whether they were 
within the exome capture array region and in the strict mask part of the human genome, as 
defined by the 1000 Genomes Project. The genotypes of YRI individuals were extracted and 
annotated using the SeattleSeq annotation pipeline 
(http://snp.gs.washington.edu/SeattleSeqAnnotation138/). For Drosophila melanogaster, we 
used the DPGP phase 3 data of a sample of 197 lines originating from Zambia, Africa (2). We 
accessed whole genome genotype data for the 197 genomes from the Pool lab 
(http://johnpool.net/genomes.html). These data were provided in non-standard vcf format (vcf 
sites file, downloaded August 2014), therefore we first converted these to a standard vcf format 
with the BDGP5.75 genome as the reference using a custom python script. We then merged all 
the individual vcf files and removed any sites with evidence of identity by descent or admixture 
using the masking package provided by the Pool lab. Only the 2L, 2R, 3L and 3R chromosome 
arms were used in our analyses. We then conducted variant annotation using SnpEeff v3.6 
using the BDGP5.75 database. 
 We filtered both datasets for sites with sample size > 99 and down-sampled all sites with 
larger sample size than 100 to a sample size of 100 using the hypergeometric probability 
distribution. Further, we selected only sites that were in exons and computed an exon length 
Lexon,i for each gene i. The nonsynonymous and synonymous sequence lengths (LNS, LS) depend 
on the transition/transversion ratio and CpG mutational bias. We assumed a 
transition:transversion ratio of 2:1 in Drosophila (3, 4) and 3:1 for human exons (5, 6). Further, 
we assumed a 10x mutational bias at CpG sites in humans, but no such effect in Drosophila (7). 
This leads to multipliers of LNS = 2.85 x LS in Drosophila, and LNS = 2.31 x LS in humans. We 
calculated the synonymous and nonsynonymous SFS, and the respective sequence lengths 
(LNS,i, LS,i), for each gene i. For all further inference, we used the folded SFS to avoid correcting 
for misidentification of the ancestral state. Ancestral misidentification could lead to unwanted 
and difficult to control biases (8). 
 To study the effect of gene expression on the DFE, we used two recent gene expression 
datasets from humans (9) and Drosophila (10) that provide mRNA expression level estimates in 
27 and 29 different tissues, respectively. For both datasets, we transformed the ‘fragments per 
kilobase of exon per million fragments’ (FPKMs) by computing log(FPKM+1) and quantile 
normalizing this value over all tissues using ‘normalize.quantiles’ of the R package 
‘preprocessCore’, resulting in an expression level S. We computed τ as a measure of tissue 

specificity for each gene: 𝜏 = 1 −!
!!!

!"# !!
!"# !!"# (!!!)

. Here, n is the number of tissues, Sj is the 

expression level in tissue j and Smax is the largest expression level over all tissues. We used τ to 
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classify genes as tissue specific (τ > 0.6) or broadly expressed (τ < 0.4). We further classified 
genes as low (𝑆 < 2), intermediate (2 < 𝑆 < 3) and highly expressed (𝑆 > 3), where 𝑆 = 𝑆! /𝑛. 
This classification leads to strongly different gene expression profiles between classes (SI 
Appendix, Fig. S2), but still enough data in every class to be able to reliably estimate the DFE 
(θS > 100 in humans and θS > 900 in Drosophila). 
 To infer the DFE in Mus musculus castaneus (mouse) and Saccharomyces paradoxus 
(yeast), we used the synonymous and nonsynonymous SFS data from Gossmann et al. (11). 
Our estimates of proportions of mutations in different Nes bins (SI Appendix, Fig. S10) are 
concordant with what has been reported previously (11–13). We then used mutation rate 
estimates for yeast (14) and mouse (15), respectively, to estimate Ne and transform the DFE 
from Nes to s.   
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Text S2 
 
Estimating demography and DFE 
We infer the parameters of a single size change model using the synonymous site frequency 
spectrum (SFS) under the Poisson Random Field framework (16). In this framework, the 
multinomial likelihood quantifies how well the empirical SFS fits to an expected SFS that is 
derived from specific demographic parameters (17). Assume that ΘD is a vector of demographic 
parameters (i.e., time and strength of a population size change), Xi is the count of SNPs with 
frequency i, Pi is the proportion of SNPs at frequency i, θ is the population mutation rate, and n 
is the sample size. The distribution of allele frequency q in the population (g[q|ΘD]) can be 
computed by numerically solving the diffusion approximation to the Wright-Fisher model, and 
can also incorporate selection (17–19). We used ∂a∂i (17) to numerically approximate g(q|ΘD). 
Further, the expected number of SNPs at frequency i in a sample of size n is 𝐸 𝑋!|𝛩! , 𝜃 =

𝜃 𝑛
𝑖

!
! 𝑞! 1 − 𝑞 !!!𝑔(𝑞|𝛩!)𝑑𝑞. The relative proportion of SNPs at frequency i can then be 

calculated as 𝑃! 𝛩! = ![!!|!!,!]
![!!|!!,!]!!!

!!!
, and the formula for the multinomial likelihood is 𝐿 Θ! =

𝑃!
!!!!!

!!! . To determine the maximum likelihood estimate of Θ! (Θ!) we maximized 𝐿 Θ! . 
 Conditional on the estimated demographic parameters, we estimate the DFE for new 
nonsynonymous mutations using the nonsynonymous SFS. In short, our approach utilizes the 
fact that more deleterious mutations segregate in lower numbers and at lower frequencies than 
less deleterious or neutral mutations. Thus, we do not directly quantify the deleteriousness of 
any specific mutation, but indirectly summarize the fitness effects over many sites by estimating 
the parameters of a DFE that fits the SFS. We used the Poisson likelihood instead of the 
multinomial likelihood to estimate the vector of parameters of the DFE (ΘDFE). We found that this 
strongly improves the precision of the estimate of the scale parameter of the gamma distribution 
compared to using the multinomial likelihood since the Poisson likelihood uses information from 
both the absolute number of SNPs as well as the curvature of the SFS (18, 20). Note however 
that we do not make use of fixed differences to an outgroup. Including information from fixed 
differences hardly improves inferring the DFE of deleterious mutations (21), which is the main 
focus of our paper. However, we do not filter out variants from the SFS that might have been 
segregating already for a long time (e.g. trans-specific polymorphisms). The reason is that the 
Poisson Random Field approach is designed to use overall patterns of polymorphism 
segregating within a species to estimate the distribution of selection coefficients of new 
mutations. Including old polymorphisms in our analysis is important because their age suggests 
that those mutations are neutral. Filtering them would bias our estimation by reducing the 
proportion of new mutations that are predicted to be effectively neutral. The likelihood of ΘDFE 

was thus calculated as 𝐿 Θ!"# Θ! , 𝜃 = !(!!|!!,!!"#,!)!!
!!!

!!!
!!! 𝑒!!(!!|!!,!!"#,!). We set Θ! here to 

the maximum likelihood estimates of the demographic parameters Θ!, and 𝜃 to the 
nonsynonymous population mutation rate 𝜃!" = 4𝑁!𝜇𝐿!". We estimated 𝜃!" from 𝜃! by 
accounting for the difference in synonymous and nonsynonymous sequence length. 
 The formula of the Poisson likelihood depends on 𝐸(𝑋!|Θ! ,Θ!"# , 𝜃), i.e. on the expected 
SFS given the demography, 𝜃!" and some distribution of 𝑁!𝑠 with parameters Θ!"#. However, 
∂a∂i only allows computing the expected SFS  𝐸(𝑋!|Θ! ,N!𝑠, 𝜃) for a single selection coefficient 
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𝑁!𝑠 (and some arbitrary demography). Thus, we extend ∂a∂i’s functionality by computing the 
expected SFS for a grid of 1000 Nes values on an exponentially distributed grid between -15000 
and -10-4. This set of site frequency spectra is further used to calculate the expected SFS for an 
arbitrary distribution of Nes values. This is done by numerically integrating over the respective 
spectra weighted by the gamma distribution. The numerical integration was done using the 
‘numpy.trapz’ function as implemented in ∂a∂i. Due to numerical instabilities for strongly skewed 
distributions, we did not integrate all the way towards 0, but computed the weight of Nes values 
between -10-4 and 0 and added the product of this weight with the neutral SFS to the expected 
SFS. Mutations with Nes < -15000 are expected not to contribute to the SFS since they are 
strongly selected against.  
 Numerical optimization is used to find the parameters of the DFE that maximize the 
Poisson likelihood. For this optimization step, we use the BFGS algorithm as implemented in the 
‘optimize.fmin_bfgs’ function of scipy. To avoid finding local optima, we repeated every 
estimation approach (for both the simulations and the real data) from 50 uniformly distributed 
random starting parameters. Standard errors were based on the Hessian matrix of the log-
likelihood function, numerically computed at the maximum likelihood estimates using the 
‘Hessian.hessian’ function of ∂a∂i (17). They were computed as the square root of the diagonal 
elements of the inverse of the negative Hessian matrix (22). Confidence intervals were 
approximated as plus/minus two times the standard errors, except where specified otherwise. 
 Our approach allows us to estimate the parameters of any arbitrary distribution of Nes 
values. We implemented the gamma distribution, log-normal distribution, the formula of 
Piganeau and Eyre-Walker (23), eq. 7, assuming gamma distributed effect sizes, and the 
formula of Lourenço et al. (24), eq. 15. The formula of Lourenço et al. (24) provides an explicit 
solution to the DFE for Fisher’s geometrical model under fitness equilibrium. It is a function of 
three parameters: population size, effect size, and the average number of phenotypes affected 
by a mutation (pleiotropy). The DFE of Lourenço et al. (24) and Piganeau and Eyre-Walker (23) 
are distributions with some proportion of slightly beneficial mutations. In models with some 
proportion of beneficial mutations, those mutations are expected to segregate in the population 
and thus influence both the shape of the SFS and the absolute number of SNPs. We use this 
expectation to infer the full DFE (beneficial plus deleterious mutations) from the SFS, similar to 
Tataru et al. (25). To do this, we also integrate over beneficial mutations with Nes from 0 to 
15000.  
 Note that population genetic methods for estimating the DFE from the SFS can only 
estimate the composite parameter of selection coefficient s with effective population size Ne, 
since the effect of selection on the SFS depends on Nes and not s alone. However, the 
distribution of s can be derived from the distribution of Nes by scaling it by 1/Ne (e.g. multiplying 
the scale parameter of a gamma distribution of Nes by 1/Ne). Fitting the demographic model to 
the synonymous SFS provided an estimate of θS = 4NeµLS for synonymous sites, where µ is the 
neutral per base-pair mutation rate and LS is the synonymous sequence length. Using this 
formula, we estimated Ne by setting the neutral mutation rate to either 2.5x10-8 for humans and 
1.5x10-9 for Drosophila (phylogenetic estimates (26–28)) or to 1.5x10-8 for humans and 3x10-9 
for Drosophila (current estimates (27, 29, 30)). Note that when partitioning our data into different 
gene categories and estimating the DFE for each category separately, we also allow for a 
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different ancestral Ne and demographic estimates in those categories to control for different 
levels of background selection in different genomic regions (31, 32). 
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Text S3 
 
Robustness of DFE inference to possible confounding factors 
We inferred the shape (α) and scale (β) parameters of a gamma-distributed DFE conditional on 
the estimated demographic parameters in each species (SI Appendix, Text S2 and Table S2). 
We first fit a null model where the shape and scale parameters were constrained to be the same 
in both species (i.e., αH = αD and βH = βD), where H denotes human and D denotes Drosophila. 
This corresponds to a model where the DFE of s is the same in both species. Importantly, 
although the DFE is constrained to be the same, we condition on the inferred demographic 
model for each species when estimating the DFE. As such, this approach appropriately controls 
for the differences in population size between species. Further, by fitting a size change model, 
we also aim to control for any bias of the DFE parameter estimates caused by background 
selection, as suggested by simulation studies (20, 25) and theoretical work (33). We next 
estimated parameters in a full model where each species was allowed to have its own DFE (i.e., 
αH ≠ αD and βH ≠βD). Because the constrained model uses a subset of the parameters of the 
full model, the models are nested and we can compare the fit of the two models to our data 
using a likelihood ratio test (LRT), where the test statistic (Λ) is asymptotically chi-square 
distributed with two degrees of freedom. We find that Λ > 920 (p < 10-16), even after employing 
various data quality filters, or using alternate mutation rate estimates (SI Appendix, Table S2). 
Similarly large Λ values are found when assuming a log-normal instead of a gamma distributed 
DFE (SI Appendix, Table S3). Individually, the gamma distribution fits better than the log-normal 
distribution in both species (SI Appendix, Table S2 and S3). Further, the estimated parameters 
of the gamma DFE are comparable to those from previous studies (18, 34, 35). 

The results based on both gamma and log-normal DFEs suggest that mutations are on 
average about 80-fold more deleterious in humans than in Drosophila. However, due to the long 
tail of the gamma distribution, the scale parameter is difficult to estimate and potentially 
sensitive to the actual functional form of the DFE. Therefore, we tested the robustness of our 
findings by examining a range of alternative functional forms of the DFE. We tested the 
following additional distributions: 1) gamma + neutral point mass, 2) a DFE based on eq. 7 in 
Piganeau and Eyre-Walker (23), 3) a DFE based on eq. 8 in Lourenço et al. (24) 4) a DFE 
based on eq. 15 in Lourenço et al. (24) and 5) a DFE based on eq. 5 in Martin and Lenormand 
(36). For all tested cases, the average selection coefficient is at least 22 times more deleterious 
in humans than in Drosophila (SI Appendix, Fig. S8). Simulations under a null model suggest 
only a, at most, 1.5-fold difference at the 99% confidence level due to uncertainty in estimated 
parameters. In other words, we observe more deleterious mutations in humans than in 
Drosophila for all of the different functional forms of the DFE assumed during the inference. In 
addition to these distributions, we also tested a nonparametric discretized distribution to infer 
the properties of the DFE in humans and Drosophila (SI Appendix, Fig. S14). The distribution 
assumes four mutational effect classes, and each class is modeled as a uniform distribution. 
The classes are placed consecutive to each other, with the following boundaries on s: [0, -1e-5), 
[-1e-5, -1e-4), [-1e-4, -1e-3), [-1e-3, -1]. The probabilities of a mutation falling into each class 
are the four estimated parameters of the DFE. This and similar nonparametric distributions were 
shown to correctly approximate the general form of the underlying DFE even if the true DFE is 
multi-modal (13, 20). We found that humans have four-fold fewer mutations with |s| < 10-5, but 
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almost three-fold more mutations with |s| > 10-3 than Drosophila, again indicating a larger 
proportion of strongly deleterious mutations in humans than in Drosophila (SI Appendix, Fig. 
S14).  
 In conclusion, these results indicate that a model with distinct DFEs in humans and 
Drosophila fits the data significantly better than a model with the same DFE in both species (p < 
10-16). Further, mutations are estimated to be more deleterious in humans than in Drosophila, 
and this result is highly robust to the assumed functional form of the DFE. 
 Several factors could lead us to falsely reject the null hypothesis of the same DFE in both 
species. First, the Poisson Random Field approach for calculating the likelihood assumes that 
allele frequencies at different SNPs are independent. Violations of this assumption can lead to 
LRTs being too liberal (37, 38). Second, our inferences do not incorporate uncertainty in the 
demographic parameter estimates. Uncertainty in the demographic parameters might further 
broaden the distribution of Λ. Third, we numerically optimize the likelihood, which might result in 
finding suboptimal solutions to the true maximum likelihood estimate. Finally, the Poisson 
Random Field approach assumes that there is no interference between selected sites, or 
between selected and neutral sites. However, background selection, selective sweeps, and 
interference between selected sites can bias estimates of demographic parameters (39) and 
could lead to biased estimates of DFE parameters.  

To test if these four factors in combination lead to false-rejection of the null hypothesis, we 
performed forward simulations under the Wright-Fisher model including realistic levels of 
background selection and linkage disequilibrium. We assumed the estimated demographic 
models (SI Appendix, Table S1) and the shape and scale estimates of both the full model and 
the constrained model (SI Appendix, Table S2, All Data). We then performed our inference 
procedure on each simulated dataset and tabulated the distribution of Λ. Our forward 
simulations assumed a spatial distribution of selected elements that reflects the empirical 
distribution of coding and conserved non-coding (CNC) sequence in the genome of humans and 
Drosophila. We further simulated under realistic maps of recombination rate across the two 
genomes (SI Appendix, Text S4). Mutations in CNC regions are assumed to be selected with 
gamma distributed selection coefficients for humans (40) and Drosophila (41). The simulations 
resulted in considerable amounts of background selection, with average reduction in neutral 
diversity of 10% in humans and 12% in Drosophila. However, when we estimated the DFE from 
the simulations of the full model, the estimates were unbiased (Fig. 3A). This suggests that the 
size change model fit to synonymous polymorphisms successfully controls for the effects of 
background selection (SI Appendix, Fig. S3, see also (20, 25)). As expected, the null distribution 
of Λ derived from simulations under the constrained model is broader than the chi-square 
distribution with two degrees of freedom (Fig. 3C). However, all of the 300 Λ values that we 
simulated were smaller than 34, suggesting the probability of seeing a Λ value bigger than 920 
is substantially less than 0.33% under the null.  

Since selective sweeps were suggested to be a major determinant of genetic diversity in 
Drosophila (42), we also examined the effect of recurrent selective sweeps on our inference. As 
estimated by Keightley et al. (35), we modified the DFE used to simulate the data such that 
0.5% of new nonsynonymous mutations were beneficial with Nes=12. Note that although the 
proportion of beneficial mutations seems small, it is in line with McDonald-Kreitman table based 
estimates that 50% of amino acid substitutions are positively selected (35). We then inferred the 
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demography using synonymous sites and then, conditional on the demographic parameter 
estimates, inferred the DFE for nonsynonymous mutations. Importantly, to mimic the inference 
done on the empirical data, the DFE that we fit to the new nonsynonymous mutations was a 
gamma distribution that only included deleterious mutations. We did the inference of the DFE of 
nonsynonymous mutations in two ways. First, we removed all the beneficial segregating 
nonsynonymous variants from the simulated data. This scenario examines the indirect effects of 
positive selection on segregating deleterious mutations (i.e. the effect of linkage of a deleterious 
mutation to a positively selected one). In line with other studies (25), we found that selective 
sweeps, similar to background selection, do not significantly bias our DFE estimates when 
correcting for the effect of demography using the observed SFS at neutral sites (SI Appendix, 
Fig. S9). Second, we repeated our inference of the DFE of nonsynonymous mutations leaving 
the segregating beneficial variants in the simulated SFS. Biologically, this scenario allows for 
some segregating nonsynonymous polymorphisms to be under positive selection. We then fit a 
gamma DFE that included only deleterious mutations. Here, the presence of beneficial 
nonsynonymous polymorphisms in the SFS slightly biases estimates due to model 
misspecification. However, this bias is only small and cannot explain the difference in estimates 
that we observe between Drosophila and humans (SI Appendix, Fig. S9). 

Another potential confounder of our inference is strong selection on synonymous sites. A 
recent study suggested that selection on synonymous sites in Drosophila could be strong, and 
that synonymous diversity is reduced by 22% due to this effect of strong selection (43). This 
study is based on comparing patterns of genetic diversity between synonymous sites and short 
introns. Other studies suggested that the positions 8-30 of short introns (<=65bp) can be used 
as a neutral reference that is free of the influence of weak or strong selection (44, 45). However, 
differences in the mutation rate between synonymous and intronic sites make direct use of the 
intronic SFS as neutral standard difficult (45). Therefore, to test the proposed effect of strong 
selection on synonymous sites, we generated a truly neutral synonymous SFS, assuming that 
the study of Lawrie et al. (43) is correct and 22% of synonymous diversity is missing due to 
strong selection. We generated this new neutral synonymous SFS by 1) estimating the shape 
(i.e. the proportional SFS, or the proportions of SNPs at each frequency bin) of the SFS from 
data from short introns according to the definition in Parsch et al. (44), and 2) setting the total 
synonymous SNP count to a factor of 1/(1-0.22) larger than what is observed for synonymous 
sites in the data. We use this new synonymous SFS as neutral standard for estimating 
synonymous 𝜃!, demographic parameters, and effective population size. We then use this new 
estimate of Ne and 𝜃!  to infer the distribution of s on nonsynonymous mutations from the 
estimates of 2 Nes. We see no qualitative difference in the estimated proportions of mutations in 
different ‘s’ or ‘Nes’ bins compared to the results using plain synonymous sites as neutral 
reference (SI Appendix, Fig. S7). In particular, the difference in the DFE we observe between 
humans and Drosophila is robust to which neutral standard is used.  
 Another concern is that the observed differences in the DFE between species could be 
solely due to analyzing different sets of genes under distinct selective pressures in one species 
compared to the other species. Such a scenario might generate a difference in the DFE of s not 
due to selection acting differently in the two species, but by selection acting on different gene 
classes. To address this issue, we repeated our analyses of the DFE considering sets of 
orthologous genes in both humans and Drosophila. To find orthologous genes between humans 
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and Drosophila, we integrate 10 different tools for predicting orthologous gene relationship by 
using the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). 
We identify a highly confident set of orthologous genes by requiring the orthologous relationship 
to be supported by at least 4 different prediction tools, resulting in retaining about half of the 
genes in both humans (7356/14245) and Drosophila (5827/12304). Inferences based on this set 
of genes were similar to those described in the main text (Figure 2), and revealed a significant 
difference in the DFE between humans and Drosophila (Λ = 8,370, p < 10-16; see SI Appendix, 
Table S2 and S3 and Fig. S5A and S6A).  
 Another potential concern is that studies of the rate of protein sequence evolution suggest 
that levels of evolutionary constraint, and therefore the DFE, strongly depend on expression 
level and tissue specificity of the genes (46–48). To investigate how differences in gene 
expression could affect our results, we classify genes into sets with different gene expression 
profiles (SI Appendix, Fig. S2 and Text S1). We use two recent gene expression datasets from 
humans (9) and Drosophila (10) that provide mRNA expression level estimates in 27 and 29 
different tissues, respectively. We computed average expression level, and τ as a measure of 
tissue specificity for each gene. We further classified genes as low, medium, or highly 
expressed, and tissue specific (τ > 0.6) or broadly expressed (τ < 0.4). We found differences in 
the nonsynonymous over synonymous polymorphism ratio for genes with different expression 
profiles in both species, suggesting differences in constraint, and thus the DFE, between genes 
(SI Appendix, Fig. S1). However, fitting a gamma DFE to each set of genes using our method, 
we still find that the average selection coefficient E[s] is about 70-110 fold more deleterious for 
humans than for Drosophila, regardless of the overall expression level or tissue specificity of the 
genes (SI Appendix, Fig. S12A).  
 In summary, a combination of confounding factors of linkage, uncertainty in demographic 
parameters, background selection, selective sweeps, interference, selection on synonymous 
sites, poor numerical optimization, and analyzing different sets of genes cannot account for our 
finding of different DFEs between human and Drosophila. 
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Text S4 
 
Forward simulations 
To compute the null distribution of the likelihood ratio test statistic, Λ, we performed forward 
simulations under the estimated demographic models for humans and Drosophila. Selection 
coefficients for nonsynonymous mutations were drawn from a gamma distribution with shape 
and scale parameters estimated from the constrained model (i.e., αH = αD and βH = βD). We 
assume a spatial distribution of selected elements that reflects the empirical distribution of 
coding and conserved non-coding (CNC) sequence in the genome. Further, we simulate varying 
recombination across the genomes that is based on empirical high-resolution recombination 
maps (49, 50). Mutations in CNC regions are assumed to be selected with gamma distributed 
selection coefficients taken from Torgerson et al. (40) for humans and Casillas et al. (41) for 
Drosophila. The exon element ranges where taken from GENCODE v14 (51) for humans and 
BDGP 6.79 FlyBase gene annotation (52) for Drosophila. To define CNC ranges in both 
species, we used predicted conserved elements by phastCons (53), downloaded from the 
UCSC genome browser. All forward simulations were carried out using the simulation software 
‘SLiM’ (54). For both species, we simulated under a single size change model with the 
empirically estimated parameters (SI Appendix, Table S1). Since Drosophila has a prohibitively 
large population size for forward simulations, we simulated both species with an ancestral 
effective population size of 10,000 and scaled mutation rate, recombination rate, selection 
coefficients and demographic parameters accordingly (55). To assess power, we performed a 
different set of simulations assuming the gamma DFE parameter estimates from the full model 
(SI Appendix, Table S2). 
 Further, to allow quasi genome-wide simulations, we followed a bootstrapping approach by 
first simulating 1000 x 7 Mb large regions that were selected randomly from the respective 
genome. We then selected a centered 3 Mb window from the simulated 7 Mb region and 
discarded the rest of the sequence to remove edge effects, notably the lower strength of 
background selection at the edges (56). From those 1000 x 3 Mb regions, we resampled 
regions until we arrived at a full genome data set, i.e. similar numbers of synonymous and 
nonsynonymous SNPs as seen in the actual data. That way, we simulated data of 300 
independent genomes. In both species, the simulations resulted in considerable amounts of 
background selection, with average reduction in neutral diversity in the 7Mb region of 10% in 
humans and 12% in Drosophila. For each simulated genome data set, we first estimated the 
demographic model from the synonymous SFS and then the DFE parameters from the 
nonsynonymous SFS conditional on the estimated demographic parameters. 
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Text S5 
 
Theoretical models of DFE evolution 
The factors that drive differences in the DFE between humans and Drosophila are unclear. As 
discussed in the main text, several theoretical models make predictions regarding the factors 
that are influencing the evolution of the DFE, but they have not been tested with population 
genetic data from natural populations. These five categories of models lead to contrasting 
predictions regarding DFE differences between Drosophila and humans. Here we describe the 
assumptions and the predictions of the five models that we use to discriminate among them. 
Functional importance model 
The functional importance of a protein is generally thought to be a major determinant of its 
evolutionary rate (57), although a number of recent studies have challenged this view (48). Our 
functional importance model posits that the importance of a protein for fitness is the major 
determinant of fitness effects of mutations in a protein. The more important a protein is for the 
fitness of an organism, the more deleterious are mutations at functional sites in that protein. 
Under the assumption that the distribution of functional importance of proteins stays constant 
over evolutionary time, this model then suggests that the DFE of s of protein-changing 
mutations is the same between different species. Note that individual proteins may shift in their 
importance over evolutionary time as long as those shifts cancel each other out such that the 
overall distribution of functional importance stays the same. 
Protein stability models 
In contrast to the functional importance model, the basic idea behind protein stability models is 
that much of the selection pressure on coding regions involves maintaining thermodynamic 
stability of the proteins (46, 47, 58). Fitness of a protein is a concave function of “protein folding 
stability”, the difference in free energy between the folded and the unfolded protein state. The 
shape of the function is defined by the fraction of proteins that fold at equilibrium (58), the 
cytotoxic effects of protein misfolding (59), or the effect of enzyme stability on metabolic flux 
(59). The distribution of Nes values that is generated by such a one-dimensional fitness-
phenotype relationship was shown to be gamma distributed (59) and independent of the 
effective population size (Ne) when at equilibrium (58). Thus, this model predicts that Nes is the 
same across taxa. Since the effective population size (Ne) in Drosophila is estimated to be 120-
415-fold larger in humans, this model predicts that |s| must be at least 120-fold smaller (i.e. less 
deleterious) in Drosophila. We observe a factor of less than 100 (SI Appendix, Fig. S8). The 
discrepancy is even more extreme in a comparison of humans with mouse, where complexity 
might be considered more comparable. Here, effective population size is estimated to be about 
40-fold larger than in humans, thus |s| must be 40-fold less deleterious in mouse. We estimate a 
factor of only 4 (Fig. 4A), which is inconsistent with the prediction of the protein stability model.  
 Note that a major assumption made by protein stability models is equimutability (60), 
meaning that the effect size distribution of a mutation on protein stability (ΔΔG) is independent 
of the stability of the wild-type (ΔG). This assumption has been verified experimentally and with 
simulations (61–63), however, some authors propose a negative correlation between ΔΔG and 
ΔG (59, 64). Another key assumption is constant population size. Long-term fluctuating 
population size was shown to have an effect on the DFE from protein stability models when 
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averaged over time (58). Further studies on the relevance of such deviations from model 
assumptions for the expected DFE under protein stability models are warranted. 
Back-mutation models 
Back-mutations restore the ancestral state after a previous mutation has occurred. For example, 
after an A to G mutation has fixed in a population, a new G to A mutation would be referred to 
as a back-mutation. Back-mutation models rest on the assumption that if there is a category of 
slightly deleterious mutations that fix in the population, then there should also be a category of 
slightly advantageous back-mutations, i.e. mutations back to the ancestral state (65). These 
models usually make two assumptions (65–68): 1) the back-mutation has the same absolute 
value of the selection coefficient as the forward-mutation, but with opposite sign, and 2) there is 
no epistasis, i.e. the selection coefficient of a mutation is independent of the genetic 
background. Back-mutations models predict that in small populations, the proportion of slightly 
beneficial mutations is greater than in large populations, because more slightly deleterious 
mutations can become fixed in small populations, leading to more opportunities for new 
beneficial back-mutations. However, this mechanism is slow, since it relies on the occurrence of 
new mutations and their fixation. Thus, this model predicts that long-term effective population 
size (Ne,long-term) is a key factor determining the DFE.  

Piganeau and Eyre-Walker (23), eq. 7, derived a formula for the equilibrium DFE as a 
function of population size (see also eq. 6 in Rice et al. (68)). To test predictions of the back-
mutation model, we use the formula of Piganeau and Eyre-Walker within our Poisson Random 
Field method by assuming gamma distributed effect sizes (i.e., |s| ~ Γ(α, β)). Under the back-
mutation model, any difference in the DFE between two populations is the result of the effect of 
different long-term population sizes on the DFE, leading to a shift in the proportion of deleterious 
vs. beneficial mutations. The fixation of deleterious mutations in small populations leads to an 
increase in beneficial back-mutations with same selection coefficient, but opposite sign (i.e. 
same effect size |s|). Importantly, this process does not change the effect size distribution or the 
average effect size of new mutations (i.e. |s|). Thus, we can test this model by testing if E[|s|] is 
the same in both populations. 
Mutational robustness models 
Mutational robustness models postulate that more robust organisms have, on average, less 
deleterious mutations (69). There are several mechanisms that could lead to increased or 
decreased levels of robustness. Kimura was one of the first to suggest that more complex 
organisms have a higher level of physiological homeostasis than less complex organisms, 
which should lead to a larger proportion of neutral mutations and thus more robustness (70). 
Later theoretical work and computer simulations supported this idea by showing that robustness 
emerges directly as a property of complex metabolic and regulatory networks, and that more 
highly connected networks have higher robustness (71–74). In other studies, robustness is not 
an intrinsic property of the system, but evolves directly under natural selection. For example, 
two-locus models have been developed where mutations at the first (modifier) locus reduce the 
deleterious selection coefficient of mutations at the second locus (75). Modifier mutations fix 
because they reduce the mutational load of the robust lineages. A specific example of such 
modifier mutations is mutations that increase the expression level of heat shock proteins. Heat 
shock proteins aid in correct folding and enhance stability of proteins. They allow mutated 
proteins to retain their correct function and thus reduce the deleterious effect of the mutation 
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(76). In the context of Fisher’s Geometrical Model (see the next model description), evolution of 
robustness is modeled by allowing modifier mutations to affect the flatness of the fitness 
function, such that the same mutation has a smaller effect on fitness in a more robust organisms 
than in less robust ones (77). In such models, smaller populations tend to evolve higher levels 
of robustness (78), and this tendency is increased by higher phenotypic complexity and more 
positive epistasis (77).  
 Irrespective of which factor is driving the evolution of robustness, these models predict 
greater mutational robustness in humans than in Drosophila, because humans are more 
complex and have a smaller effective population size compared to Drosophila. Further, 
robustness models predict that less pleiotropic mutations are more deleterious, since the 
smaller effective complexity of such mutations impedes the evolution of robustness. 
Fisher’s Geometrical Model (FGM) 
In the final model, FGM, phenotypes are represented as points in a multidimensional space, and 
fitness is a decreasing function of the distance to the optimal phenotype (69). The 
dimensionality of the phenotype space is termed “complexity”. Mutations are represented as 
random vectors that change the current multivariate phenotype to a random new phenotype with 
a new fitness value. Recent studies have increased the realism of FGM, for example by allowing 
for mutational and selectional correlations (36, 79), or by relaxing the assumption that every 
mutation affects every phenotype (restricted pleiotropy; see (24, 36, 80)). Explicit solutions for 
the shape of the DFE have been derived under the assumption that both the fitness function 
and the mutational distribution are Gaussian functions (24, 36, 69, 80).  

Here, we test three predictions of FGM (see also Fig. 1): 1) Mutations in more complex 
organisms are on average more deleterious, since mutations are more likely to disrupt 
something important in a complex organism than in a simple one (81, 82) (see SI Appendix, 
Text S7 for assumptions that go into this prediction). 2) Smaller populations have a larger 
proportion of beneficial mutations due to increased fixation of deleterious mutations in smaller 
populations (drift load; e.g. (24)). 3) Less pleiotropic mutations have a greater variance in fitness 
effects, i.e. selection coefficients tend to be either close to neutral or very deleterious (36).  
 The first prediction suggests that humans have more severe deleterious mutations than 
Drosophila, since humans likely have higher complexity (larger number of genes, proteins and 
protein-protein interactions (83), and cell types (84)). Stronger stabilizing selection and larger 
effect sizes of mutations in humans than in Drosophila could also contribute to more deleterious 
mutations under FGM, but seem less parsimonious as an explanation (36).  
 The second prediction suggests that because of their smaller effective population size, 
humans contain more slightly beneficial mutations than Drosophila. Note that, given a certain 
distance to the optimum, a higher complexity decreases the range of directions in phenotype 
space that lead toward the phenotypic optimum, decreasing the probability that a random 
mutation increases fitness. Thus, the higher human complexity might counteract the effect of 
small population size. However, increasing complexity also has a second, opposite effect: it 
increases the distance to the optimum because of an increase in drift load, and this in turn 
increases the proportion of beneficial mutations again (24). In the formulation of Lourenço et al. 
(24), these two effects of complexity on the proportion of beneficial mutations cancel out and, at 
equilibrium, there is no effect of complexity on the proportion of beneficial mutations. We tested 
the prediction of a larger proportion of beneficial mutations in humans by fitting a DFE that is 
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based on FGM as derived by Lourenço et al. (24). Similar to the back-mutation model of 
Piganeau and Eyre-Walker (23), in this model a smaller long-term effective population size 
parameter (Ne,long-term) leads to fixation of slightly deleterious mutations due to less effective 
selection. This increases the distance of the population to the optimum in FGM and thus leads 
to an increase of the proportion of slightly beneficial compensatory mutations at equilibrium. 
Note that the long-term effective population size, and therefore effectiveness of selection, could 
be reduced by recurrent selective sweeps as well as background selection. This would, 
however, not affect the prediction under FGM that species with strongly different effective 
population sizes, as estimated from neutral diversity, reside at different distances to the 
optimum and thus have different proportions of beneficial mutations.  
 The last prediction of FGM is related to the pleiotropy of mutations, i.e. the effective number 
of fitness-related phenotypes that are affected by a mutation (24, 80). Pleiotropy changes the 
“total effect” of a mutation on the phenotypes, which is the length of the random mutational 
vector in the phenotype space of FGM. The total effect can be shown to follow a generalized 
chi-distribution, where the degrees of freedom are equal to the pleiotropy (24). Thus, most 
mutations with large pleiotropy have intermediate effects on phenotype and therefore a smaller 
variation in s than mutations with little pleiotropy. In fact, the coefficient of variation of selection 
coefficients CV(s) is inversely related to the pleiotropy of mutations (36). Since pleiotropy is 
difficult to measure directly in higher organisms, we use tissue specificity of gene expression as 
a proxy for pleiotropy. Mutations in genes that are expressed in more tissues would be assumed 
to have more pleiotropic effects than mutations in genes expressed in fewer tissues. Pleiotropy 
can be estimated by fitting the DFE formula of Lourenço et al. (24), eq. 15, to the data using the 
Poisson Random Fields approach (see SI Appendix, Text S2). Equation 15 of Lourenço et al. is 
derived from FGM, assuming a Gaussian fitness function. It contains an explicit pleiotropy 
parameter (m) that is defined as the number of selected traits affected by a mutation and that is 
smaller than the total number of selected traits (complexity) n. It considers a haploid population 
of effective size Ne that is under selection-mutation-drift equilibrium. A non-equilibrium version of 
the DFE under this model was derived as well (eq. 8 of Lourenço et al. (24)) that can be used to 
test for deviations from equilibrium conditions. 
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Text S6 
 
Model choice procedure 
Here we present in short the logic of the model choice procedure that we applied to discriminate 
between the five evolutionary models of Fig. 1 based on our data. The five models make distinct 
predictions on how the DFE differs between species with different population size and/or 
complexity. Due to the higher quality and sample size of data from humans and Drosophila, we 
first use those two species to discriminate among the models. However, we then add estimates 
of the average selection coefficient from additional data from mice and yeast to support our 
model choice in a larger phylogenetic context. Note, however, that more subtle differences in 
the shape of the DFE or in the amount of beneficial mutations between species cannot be 
tested with those datasets (i.e. fitting different functional forms of the DFE result in the same 
likelihood, see SI Appendix, Table S4). 
 The first step of our model choice procedure is to show conclusively that the null assumption 
of the same distribution of s in both species is violated. We develop a likelihood ratio test and 
use extensive forward simulations to derive the null distribution of the test statistic and show 
robustness to a multitude of potential confounding factors (see Online Methods and SI 
Appendix, Text S3 and S4). The same approach can be extended to test the distribution of Nes. 
These two tests allow evaluation of the functional importance model and the protein stability 
model, respectively. Similarly, we test for differences in E[|s|], the average absolute selection 
coefficient. The back-mutation model is inconsistent with large differences in E[|s|] between 
species because the model predicts that the distribution of |s| is the same between species. 
Thus, this pattern can be used to test the back-mutation model. Using different functional forms 
of the DFE to estimate E[|s|], we show that any established difference is not sensitive to the 
specific functional form of the DFE (SI Appendix, Fig. S8A). 
 After establishing differences in the distribution of s and |s|, the direction of the difference in 
E[s] between species discriminates between robustness models and FGM: robustness models 
predict a less deleterious DFE in the more complex organism (less negative E[s]), whereas 
FGM predicts a more deleterious DFE in the more complex organism (more negative E[s]). 
Using different functional forms of the DFE to estimate E[s], we show that any established 
difference is not sensitive to the specific functional form of the DFE (SI Appendix, Fig. S8B). 
Using data from mice and yeast we show that the trend observed in humans and Drosophila 
can be replicated in different datasets in a wider phylogenetic context (Fig. 4A). Finally, we use 
more subtle predictions of the influence of population size and pleiotropy on the shape of the 
DFE to further validate FGM. In particular, these include predictions about how population size 
affects the proportion of beneficial mutations, and how pleiotropy affects the variation in s (see 
SI Appendix, Text S5).  
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Text S7 
 
The influence of complexity and pleiotropy on the average selection coefficient in FGM 
Here we discuss how complexity and pleiotropy can influence the DFE under FGM. First, we 
define a few key variables. Let n be the total complexity of the organism, or the number of 
independent and evolvable phenotypes an organism exposes to natural selection. A somewhat 
related quantity, ne, is the effective number of traits exposed to selection after accounting for 
mutational and selective correlations (36). Lastly, mutational pleiotropy, m, refers to the number 
of traits affected by a particular mutation.  
 Under the classical version of FGM, mutations are assumed to affect all phenotypic axes 
similarly and have no preferred direction (universal pleiotropy). In this model, n=ne=m. More 
specifically, a mutation changes the multivariate phenotype, and the vector that connects the 
pre-mutant phenotype with the new phenotype is the mutational vector. For a random mutation, 
this vector has a random direction and length r. Further, fitness follows the Gaussian function, w 
= exp(-z^2), where z is the distance from the optimum. It can be shown that under this model, 
the mean selection coefficient of a random mutation is E[s|r] = -1/2 r^2 (85). Thus, the average 
selection coefficient E[s] is predicted to be negative, and becomes more negative with 
increasing r. Increasing complexity means that more and more dimensions are added to the 
phenotype space. As long as the average effect of the mutation on each individual phenotype 
does not decrease with increasing complexity, this added dimensionality inevitably leads to an 
increase of the average length of the mutational vector. Since a longer mutational vector length 
(i.e. larger r) leads to more negative E[s], this suggests that the DFE becomes more deleterious 
in more complex organisms. 
 However, recent high-throughput methods and quantitative genomics approaches seem to 
reject the concept of universal pleiotropy (reviewed in Wagner and Zhang (86)). They suggest 
that most mutations only affect a small number of phenotypes (restricted or partial pleiotropy). 
Furthermore, estimates of the effective number of traits ne arrive at unrealistically small values 
(36). Lourenço et al. (24) suggest that the low estimates of ne are more likely reflecting 
mutational pleiotropy m than the total complexity of the organism (n). Again, the low estimates 
of mutational pleiotropy suggest that most mutations effectively change only a small number of 
phenotypes (24).  
 Given that universal pleiotropy is unlikely, we would like to know how E[s] depends on the 
total complexity of the organism under models that relax this assumption. However, different 
formulations of FGM come to different conclusions about the dependency of E[s] on n, ne, and 
m. In the model of Martin and Lenormand (36) (eq. 1) and Chevin et al (80) (eq. 3c), for a given 
strength of selectional and mutational correlations (ρ! and ρ!), E[s] is negatively related to n. 
Thus, their prediction is matching the prediction of the classical formulation of FGM. 
 In Lourenço et al. (24), E[s] does not depend on n (see eq. A3 in Lourenço et al. (24)). 
Instead, here, the DFE depends on the pleiotropy parameter m and the scale parameter σ. 
However, the model of Martin and Lenormand and the model of Lourenço et al. can be shown to 
be equivalent (24). The scale parameter of Lourenço, σ, corresponds to the effective scale 
parameter λe (σ = sqrt(λe/2) ) of Martin and Lenormand (36) and Chevin et al. (80). The effective 
complexity, ne, of Martin and Lenormand corresponds to the pleiotropy parameter of Lourenço 
et al. (m = ne). In the Lourenço model, the average selection coefficient E[s] is a product of the 
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scale and pleiotropy parameters (E[s] = - m σ2 = - 1/2 ne λe). However, whereas the scale 
parameter (λe) increases with total complexity n under the model of Martin and Lenormand (see 
Appendix 2 in Martin and Lenormand (36)), the scale parameter in Lourenço et al. (σ) is fixed 
and not related to n in their study (eq. 2 in Lourenço et al. (24)). Thus, the behavior of E[s] with 
n depends on how the scale parameter changes with total complexity n, similar to the result 
derived in the classical model. 
 We suggest that it is biologically and experimentally justified to assume that the scale 
parameter σ (or λe) positively depends on complexity (n). Biologically, it is realistic to assume 
that when total complexity n is increased, mutations also affect these new phenotypes. If more 
phenotypes are affected on average per mutation, this increases the length of the mutational 
vector, even if this happens in a strongly correlated manner and thus keeping pleiotropy in the 
sense of 'effective dimensionality' ne low. Furthermore, experimental data seem to support the 
assumption of increasing σ with increasing complexity, since mutations that affect more 
phenotypes also show a larger effect on each individual phenotype (87, 88). Finally, our results 
also suggest that the scaling parameter σ increases with increasing complexity of the organism, 
whereas the pleiotropy parameter m does not show such a trend (SI Appendix, Fig. S11). In 
agreement with experimental data, our results also support a model where σ (or λe) is not 
constant, but increases with increasing complexity. Thus, the increase in deleteriousness with 
increasing complexity of the organism shown in our work and in experimental data from Martin 
and Lenormand (36) is in line with the prediction of FGM.  
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Fig S1. Different diversity patterns between humans and Drosophila. (A) The folded synonymous and 
nonsynonymous SFS for humans (blue) and Drosophila (red). The expected SFS under the MLEs of the model 
parameters are shown in light colors. The x-axis is binned according to the minor allele frequency. Sites with minor 
allele frequency of 21-50 are combined into the last bin. (B,C) Boxplot of the distribution of nonsynonymous to 
synonymous polymorphism ratio (pN/pS) per gene, for humans (B) and Drosophila (C). Results are shown for three 
different overall expression levels and two levels of tissue specificity (see main text). Broadly expressed genes have 
τ < 0.4, tissue specific genes have τ > 0.6.  
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Fig. S2. Expression profiles for human and Drosophila genes. (A-F) Expression profiles for human genes. (G-L) 
Expression profiles for Drosophila genes. Each grey line represents a gene. For each gene, the tissue is ordered 
according to the expression level, i.e. expression level is plotted in decreasing order, beginning with the tissue with 
the largest expression level. Genes are classified into broadly expressed genes (A, B, C, G, H, I) and tissue-specific 
genes (D, E, F, J, K, L), and into low (A, D, G, J), intermediate (B, E, H, K), and highly (C, F, I, L) expressed genes 
(see SI Appendix, Text S1 for definitions). The red line represents the average across genes.  



 

27/43 

 
Fig. S3. Demographic parameter estimation for 300 simulated data sets. True parameter values are shown as crosses, 
estimated parameters as points. (A) Simulations under the full model. (B) Simulations under the constrained model 
(see main text). Note that the demographic parameter estimates are biased due to background selection and linked 
selection. However, DFE parameter estimates are unbiased (see Figs. 3A,B).   
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Fig. S4. The proportion of new mutations for various ranges of 2Ne|s|. Proportions are computed from the estimated 
(A) gamma distribution, (B) mixture of gamma distribution with neutral point mass, and (C) log-normal distribution. 
The grey bars indicate the proportions under the null hypothesis of the same distribution of 2Ne|s| in both species 
(constrained model). Darker colors in (B) reflect the estimated proportions of neutral mutations.  
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Fig. S5. The proportion of new mutations for various ranges of |s|. (A) Using data filtered for genes that have 
orthologs in both species. (B) Using data after filtering out singletons. (C) Assuming the recent mutation rate 
estimates (SI Appendix, Text S2). (D) Using the recent mutation rate estimates and filtering out singletons. 
Proportions are computed from the estimated gamma distribution (left column), mixture of gamma distribution with 
neutral point mass (middle column), and log-normal distribution (right column). The grey bars indicate the 
proportions under the null hypothesis of the same distribution of |s| in both species (constrained model). Darker 
colors in the middle column reflect the estimated proportions of neutral mutations. 
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Fig. S6. The proportion of new mutations for various ranges of 2Ne|s|. (A) Using data filtered for genes that have 
orthologs in both species. (B) Using data after filtering out singletons. Proportions are computed from the estimated 
gamma distribution (left column), mixture of gamma distribution with neutral point mass (middle column), and log-
normal distribution (right column). The grey bars indicate the proportions under the null hypothesis of the same 
distribution of 2Ne|s| in both species (constrained model). Darker colors in the middle column reflect the estimated 
proportions of neutral mutations.
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Fig. S7. Examining the possible effect of strong selection on synonymous mutations in Drosophila on estimates of 
the proportion of new nonsynonymous mutations for various ranges of 2Ne|s| and s. We generated a modified SFS 
that accounts for strong selection on synonymous sites. The modified SFS has 1/(1-0.22) times more SNPs than the 
observed synonymous SFS, and the same shape as the SFS from short introns (see SI Appendix, Text S3). Thus, it 
represents the truly neutral synonymous SFS when assuming that synonymous diversity is 22% smaller due to 
strong selection, and mutations in short introns are neutral (43). Proportions of the DFE for nonsynonymous 
mutations are computed from the estimated (A) gamma distribution, (B) mixture of gamma distribution with neutral 
point mass, and (C) log-normal distribution. Darker colors in (B) reflect the estimated proportions of neutral 
mutations. Note that the estimated DFEs for nonsynonymous mutations change only slightly when using the 
modified SFS as a neutral standard than when using the plain synonymous SFS as a neutral standard.   
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Fig. S8. Robustness of the difference in expected selection coefficient between humans and Drosophila to the 
functional form of the DFE. (A) Estimated average selection coefficient in humans over Drosophila 
(E[s]Human/E[s]Drosophila), assuming different functional forms of the DFE. E[s] is consistently estimated to be more 
deleterious in humans than in Drosophila. The individually best fitting DFE refers to the Gamma + Neutral 
distribution in both species, and suggests E[s] is 36-fold more deleterious (i.e. negative) in humans than Drosophila. 
(B) Back-mutation models assumes that the distribution of the absolute value of s (effect size |s|) is the same 
between species. Therefore, back-mutation models predict that although E[s] might be different due to different 
proportions of beneficial mutations, the average effect size (E[|s|]) should be the same between species. Thus, in (B) 
we show estimated average effect sizes in humans over Drosophila (E[|s|]Human/E[|s|]Drosophila), assuming different 
functional forms of the DFE. Note that all examined DFEs in (B) contain beneficial mutations because this is a 
central feature of the back-mutation model. The average effect size E[|s|] is consistently estimated to be larger in 
humans than in Drosophila, in contradiction to the back-mutation model. The individually best fitting DFE refers to 
the equilibrium Lourenço et al. distribution in humans and the shifted gamma distribution in Drosophila, and 
suggests E[|s|] is 55-fold larger in humans. In both (A) and (B), the null distribution in grey was calculated from 
forward simulations assuming the same gamma DFE in both species (see SI Appendix, Text S4). These simulations 
suggest it is unlikely to see E[s]Human/E[s]Drosophila values > 2 assuming the same DFE between both species. Further, 
E[s]Human/E[s]Drosophila (or E[|s|]Human/E[|s|]Drosophila) from the empirical data is consistently > 5 regardless of the 
functional form of the DFE assumed.  
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Fig. S9. The effect of positive selection in Drosophila on the inference of the deleterious DFE. We assume that there 
is both positive and negative selection in Drosophila, but only negative selection in humans. For simulations with 
positive selection, 0.5% of new nonsynonymous mutations are positively selected with Nes=12. We estimated shape 
and scale parameters of a gamma DFE that only includes negative selection from 300 simulations of Drosophila 
(red, orange) data. Human results (blue) are the same as in Fig. 3 and are included only for comparative purposes. 
(A) Estimates from simulations under the alternative hypothesis (H1), i.e. assuming maximum likelihood gamma 
parameters in both species (dashed lines). Results show that indirect effects of positive selection (selective sweeps) 
do not bias our estimates in Drosophila (red), and that indirect plus direct effects (i.e. here positively selected 
nonsynonymous variants are included in the nonsynonymous SFS) of positive selection only slightly bias the 
estimates to lower shape parameters (orange). (B) Estimates from simulations under the null hypothesis (H0), i.e. 
assuming a single set of parameters of the deleterious gamma DFE in both species (dashed lines). Results show that, 
under H0, the indirect effects of positive selection do not bias our estimates in Drosophila (red), and that indirect 
plus direct effects of positive selection only slightly bias the estimates to lower shape and higher scale parameters 
(orange).  
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Fig. S10. The proportion of new mutations for various ranges of 2Ne|s| and s for humans, Mus musculus castaneus 
(mouse), Drosophila melanogaster, and Saccharomyces paradoxus (yeast). Proportions are computed from the 
estimated (A) gamma distribution, (B) mixture of gamma distribution with neutral point mass, and (C) log-normal 
distribution. Darker colors in (B) reflect the estimated proportions of neutral mutations. 
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Fig. S11. Parameter estimates of the Lourenço et al. DFE in four species with increasing complexity: 
Saccharomyces paradoxus (yeast), Drosophila melanogaster (fruitfly), Mus musculus castaneus (mouse), and Homo 
sapiens (humans). ‘Scale’ refers to the scale parameter σ in Lourenço et al. (24), and ‘Pleiotropy’ to the pleiotropy 
parameter m. Note that the scale parameter increases with increasing complexity, but the pleiotropy parameter does 
not. 
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Fig. S12. The effect of gene expression on estimated E[-s] under a gamma DFE, and on the estimated effective 
population size. (A) Average selection coefficient E[s] is 70-110 fold less deleterious in Drosophila than in humans, 
independent of expression level or tissue specificity. (B) Estimated ancestral population size versus expression 
profiles. The ancestral population size was calculated from estimates of the synonymous population mutation rate θS 
for each category of genes, by fitting separate demographic models to the respective synonymous SFS, but assuming 
the same neutral per site mutation rate for each category (see SI Appendix, Text S2). Differences in the effective 
population size between expression categories can be the result of varying levels of linked selection (e.g. 
background selection, selective sweeps) on synonymous diversity.  
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Fig. S13. The effect of gene expression on parameter estimates of the Lourenço et al. DFE. (A) Estimated Lourenço 
et al. DFE parameters for genes with different gene expression profiles. Average selection coefficient (E[-s]) is 70-
110 fold less deleterious in Drosophila than in humans, independent of expression level or tissue specificity. (B) The 
pleiotropy parameter of the Lourenço et al. DFE depends on the breadth of gene expression. Tissue-specific genes 
have a smaller pleiotropy parameter m than broadly expressed genes, suggesting less pleiotropy in tissue-specific 
genes. 
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Fig. S14. Estimating the proportions of mutations in different bins of |s| assuming a non-parametric discretized 
distribution as defined in Kim et al. (20). The DFE assumes a uniform probability mass within each bin. Estimates 
using this DFE were shown to correctly approximate the general form of the underlying DFE even if the true DFE is 
multi-modal (20). Errors bars denote 95% confidence intervals obtained from simulations where each entry of the 
nonsynonymous SFS is drawn from a Poisson distribution with the mean being that expected under the demographic 
and selection model.  
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Table S1. Demographic parameter estimates. 

a Assuming phylogenetic mutation rate estimates 
b Assuming estimates of current mutation rate 
  

Filter 
Synonymous 

sequence 
length 

Species θS 
Time in 
units of 

2Ne,ancestral 

Ne,current/ 
Ne,ancestral 

Ne,ancestral
a Ne,Drosophila/ 

Ne,Humans
a Ne,ancestral

b Ne,Drosophila/ 
Ne,Humans

b 
Log- 

likelihood 

All 
5.86E+06 Humans 4,144 

(93.1) 
0.426 

(0.0410) 
2.34 

(0.0441) 7.07E+03 
394 

1.18E+04 
118 

-230.9 

4.74E+06 Drosophila 79,253 
(196) 

0.0919 
(0.00156) 

2.73 
(0.0187) 

2.79E+06 1.39E+06 -471.8 

No 
singletons 

5.86E+06 Humans 
3,864 
(111) 

0.631 
(0.0689) 

2.23 
(0.0550) 6.59E+03 

416 
1.10E+04 

125 
-188.1 

4.74E+06 Drosophila 77,883 
(225) 

0.122 
(0.00347) 

2.11 
(0.0292) 2.74E+06 1.37E+06 -318.4 

Only 
common 

genes 

3.37E+06 Humans 2,200 
(44.2) 

0.420 
(0.0304) 

2.50 
(0.0532) 6.53E+03 

414 
1.09E+04 

124 
-212.5 

2.95E+06 Drosophila 47,852 
(153) 

0.0958 
(0.00203) 

2.74 
(0.0222) 

2.70E+06 1.35E+06 -379.4 
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Table S2. Testing the null hypothesis of the same gamma DFE in both humans and Drosophila. Various types of data 
filtering are considered, as well as a different set of mutation rate estimates that are based on estimates of the current 
mutation rate (see SI Appendix, Text S2). The likelihood ratio test statistic Λ = –2*log(LConstrained,max/LFull,max) tests the 
null hypothesis of no difference in shape and scale parameters between humans and Drosophila. 

  

GAMMA DFE 
	  

  Hypothesis Species Shape (α) Scale (β) E[|s|] Log -
likelihood 

Λ	   p-value 
H1/H0 

All Data 

Full model (H1) 

Humans 0.19 7.41E-02 1.40E-02 -245 

    Drosophila 0.35 3.77E-04 1.33E-04 -389 

Total       -634 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.24 4.28E-03 1.02E-03 -6640 12012 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.33 2.52E+03   -11502 21734 <1E-16 

Only 
orthologous 

genes 

Full model (H1) 

Humans 0.24 5.88E-02 1.43E-02 -203 

    Drosophila 0.40 4.07E-04 1.64E-04 -285 

Total       -488 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.26 6.45E-03 1.68E-03 -4673 8370 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.38 2.54E+03   -6236 11497 <1E-16 

No singletons 

Full model (H1) 

Humans 0.16 2.07E-01 3.29E-02 -181 

    Drosophila 0.33 6.01E-04 1.98E-04 -252 

Total       -433 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.21 2.49E-02 5.16E-03 -1715 2564 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.29 5.48E+03   -9204 17542 <1E-16 

Using recent 
mutation rate 

estimates 

Full model (H1) 

Humans 0.19 4.45E-02 8.39E-03 -245 

    Drosophila 0.35 7.54E-04 2.66E-04 -389 

Total       -634 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.29 2.56E-03 7.31E-04 -3389 5510 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.32 2.54E+03   -11502 21734 <1E-16 

No singletons 
& recent 

mutation rate 
estimates 

Full model (H1) 

Humans 0.16 1.25E-01 1.99E-02 -181 

    Drosophila 0.33 1.20E-03 3.96E-04 -252 

Total       -433 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.26 7.64E-03 1.95E-03 -1012 1159 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.29 5.51E+03   -9205 17544 <1E-16 
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Table S3. Testing the null hypothesis of the same log-normal DFE in both humans and Drosophila. Various types of 
data filtering are considered, as well as a different set of mutation rate estimates that are based on estimates of the 
current mutation rate (see SI Appendix, Text S2). The likelihood ratio test statistic Λ = –2*log(LConstrained,max/LFull,max) 
tests the null hypothesis of no difference in the two parameters of the log-normal distribution (mean and SD) between 
humans and Drosophila. 

 
  

LOGNORMAL DFE 
 

  
Hypothesis Species Mean SD Median 

(|s|) 
Log -

likelihood Λ p-value 
H1/H0 

All Data 

Full model (H1) 

Humans -6.86 4.89 1.05E-03 -278 

    Drosophila -9.61 4.01 6.72E-05 -649 

Total       -927 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -8.74 4.88 1.59E-04 -3510 5166 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  5.92 4.26   -11844 21834 <1E-16 

Only 
orthologous 

genes 

Full model (H1) 

Humans -6.10 4.02 2.23E-03 -223 

    Drosophila -9.10 3.79 1.11E-04 -426 

Total       -649 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -7.99 4.77 3.38E-04 -2669 4041 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  6.42 4.00   -6423 11547 <1E-16 

No singletons 

Full model (H1) 

Humans -6.30 5.94 1.84E-03 -181 

    Drosophila -8.67 4.77 1.71E-04 -261 

Total       -442 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -7.19 6.07 7.55E-04 -950 1015 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  7.10 5.30   -9224 17564 <1E-16 

Using recent 
mutation rate 

estimates 

Full model (H1) 

Humans -7.37 4.58 6.32E-04 -278 

    Drosophila -8.91 4.01 1.34E-04 -649 

Total       -927 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -8.49 4.43 2.06E-04 -1809 1765 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  5.92 4.25   -11844 21834 <1E-16 

No singletons 
& recent 

mutation rate 
estimates 

Full model (H1) 

Humans -6.81 5.94 1.10E-03 -181 

    Drosophila -7.98 4.77 3.42E-04 -261 

Total       -442 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -7.49 5.20 5.58E-04 -532 181 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  7.12 5.32   -9225 17566 <1E-16 
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Table S4. Maximum likelihood parameter estimates and log-likelihoods for alternative DFE functions. The last column 
shows the difference in the Akaike Information Criterion (AIC) between the relevant DFE model and the gamma DFE.  
 

Species DFE Parameter 1 Parameter 2 Parameter 3 Parameter 4 Log - 
likelihood AICModel 

AICModel-
AICGammaDFE 

H
um

an
s 

Gamma shape=0.19 scale=0.074   -245 494 0 

Lognormal mean=-6.86 SD=4.89   -278 560 65 

Gamma+Neutral shape=0.73 scale=0.0082 pneutral=0.281  -219 443 -51 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=0.28 scale=0.022 shift=0.66  -232 469 -25 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.29 scale=0.021 Ne,long-term=2642  -224 455 -39 

Lourenço et al. 
(2011), eq.8 

z=0.042 n=22.2 m=0.52 sigma=0.12 -225 459 -36 

Lourenço et al. 
(2011), eq.15 

m=0.58 sigma=0.109 Ne,long-term=2476  -222 451 -43 

D
. m

el
an

og
as

te
r 

Gamma shape=0.35 scale=3.8E-04   -389 782 0 

Lognormal mean=-9.6 SD=4.0   -649 1302 519 

Gamma+Neutral shape=0.38 scale=0.00032 pneutral=0.011  -384 775 -7.5 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=0.36 scale=0.00036 shift=0.027  -388 782 -0.7 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.35 scale=0.00038 
Ne,long-term= 
5.2E+19 

 -389 784 2.2 

Lourenço et al. 
(2011), eq.8 

z=0.00035 n=14632 m=0.70 sigma=0.014 -389 787 4.6 

Lourenço et al. 
(2011), eq.15 

m=0.71 sigma=0.014 Ne=8.4e7  -390 785 3.0 

S.
 p

ar
ad

ox
us

 

Gamma shape=0.22 scale=3.7E-04   -11.6 27.3 0 

Lognormal mean=-10.5 SD=6.0   -11.6 27.3 0 

Gamma+Neutral shape=1.1 scale=5.5E-6 pneutral=0.15  -11.6 29.2 1.9 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=0.24 scale=0.00025 shift=0.086  -11.6 29.2 1.9 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.56 scale=1.00 Ne,long-term=43000  -85.3 177 149 

Lourenço et al. 
(2011), eq.8 

z=0.00068 n=5.8 m=76 sigma=0.00014 -13.2 34.5 7.2 

Lourenço et al. 
(2011), eq.15 

m=0.53 sigma=0.0095 Ne=7.3E6  -11.6 29.2 1.9 

M
. m

us
cu

lu
s 

ca
st

an
eu

s 

Gamma shape=0.22 scale=0.016   -19.0 42.0 0 

Lognormal mean=-6.8 SD=6.2   -19.0 42.0 0 

Gamma+Neutral shape=0.79 scale=0.00036 pneutral=0.14  -19.0 43.9 1.9 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=1.2 scale=0.00010 shift=8.0  -18.9 43.9 1.9 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.31 scale=0.0022 
Ne,long-term= 

194000 
 -19.0 44.0 2.0 

Lourenço et al. 
(2011), eq.8 

z=0.0040 n=4.3 m=1.3 sigma=0.012 -18.9 45.9 3.9 

Lourenço et al. 
(2011), eq.15 

m=0.44 sigma=0.088 Ne=1.98E7  -19.0 44.0 2.0 
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Table S5. Likelihood ratio (LR) test statistics for all pairwise species comparisons. The LR test statistic tests the null 
hypothesis of the same DFE in both species, either on scale of s or Nes. It assumes that the true DFE is gamma 
distributed. A star indicates rejection of the null hypothesis at a 1% significance level, based on the simulation-derived 
null distribution shown in Fig. 3C. 
 

  
 

Null	  hypothesis	   Species	  pair	   Human	   Mouse	   Drosophila	   Yeast	  

DFE(s)Species	  'A'	  =	  
DFE(s)Species	  'B'	  

Human	   0	   	  	   	  	   	  	  
Mouse	   5.9	   0	   	  	   	  	  
Drosophila	   12011*	   11	   0	   	  	  
Yeast	   64*	   17	   103*	   0	  

DFE(Nes)Species	  'A'	  =	  
DFE(Nes)Species	  'B'	  

Human	   0	   	  	   	  	   	  	  
Mouse	   64*	   0	   	  	   	  	  
Drosophila	   21734*	   20	   0	   	  	  
Yeast	   48*	   3.1	   98*	   0	  


