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1  SI Experimental Procedures 
1.1 Methods 
1.1.1 Experimental conditions 
 
We performed the experiments over 5 to 14 days following electrode implantation 
surgery while patients were undergoing 24-hours/day seizure monitoring. Experimental 
data were recorded simultaneously with clinical data from separate electrodes. In the 
following sections, we refer to a day of consecutive recordings as a ‘recording session’ 
and to one virtual navigation trial played in a given environment as a ‘game’. Each 
recording session took place in the hospital ICU while the patients were awake and fully 
alert. The patient was sitting or lying in a chair or bed in a dimly lit room in the presence 
of the experimentalist and an assistant. Recording sessions involved the patients’ active 
participation for between 15 and 30 min.  
 
Our goal was to obtain continuous recordings of single unit activity from the entorhinal 
cortex (EC) in consecutive days during games played in 4 virtual environments 
specifically designed for spatial navigation task in four patients implanted by research 
electrodes. However, we only present data from the two patients who provided complete 
sessions over consecutive days, while the other two patients provided fragmented data 
sets not included in this study.   
 
During the research-related recordings the clinical ECoG electrodes were also monitored 
through a separate clinical recording system for abnormalities. No clinical seizures were 
experienced during our experimental recordings. Occasional high frequency ripples 
occurred but in localized frontal areas far from the EC or hippocampal electrodes. They 
did not affect our recordings.  
 
 
1.1.2 Behavioral task 
 
Subjects were instructed to perform a virtual navigation task presented as a game on a 
tablet PC. The game’s repeated objective was to 1) find a randomly placed space alien, 
holding either a blue or yellow briefcase, and to 2) drop off each alien at a spaceship 
matching the briefcase’s color (Supplemental Video).  
 



The game encouraged active engagement and provided the user with a measure of 
relative success by displaying a counter of the number of aliens returned (out of a set goal 
of 40) along with a timer. Timely completion of the tasks required maintaining memory 
of object identity (color of briefcase) and location (of the target spaceships).  However, 
we usually terminated recordings after 5 min to ensure that all four environments could 
be played within the 30-minute time frame of uninterrupted patient availability. 
Exceptions to this occurred when we opted to increase trajectory coverage of an 
environment by allowing a game to be played for 10 minutes. The game environments 
were played in random order in each recording session. We occasionally performed 
cross-validations on neurons by repeating a game in the same environment non-
consecutively during the same session.  
 
 
1.1.3 Game control 
 
The task was performed on a tablet PC (ASUS Transformer 201 running Android 4.0 at 
1280 x 800-pixel resolution). Subjects maneuvered by pressing a “GO” button with their 
left thumb and controlled direction by pressing either a “LEFT” or “RIGHT” button with 
their right thumb. Before experimental data was collected, subjects were allowed to 
practice playing the game until they were accustomed to the game controls. The subjects’ 
virtual trajectory and heading (relative to the N-S axis in each game environment) were 
recorded.  
 
 
1.1.4 Virtual reality environments 
 
The virtual reality environments were designed using Unity 3D (version 3.5.6.) and were 
compiled for Android 4.0. The game rendered the 3D environment from the player’s 
point of view. The player was constrained to the flat ground surface of each map and 
their movement speed was a constant 5 m/s, unless the “GO” button was released or an 
obstacle inhibited movement.   
 
 
1.1.5 Properties of environments 
 
Virtual navigation was simulated in four environments: Backyard (BY), Louvre (LV), 
Luxor (LX) and Open Space (OS). The dimensions of the environments in virtual meters 
ranged from 18 x 18 to 70 x 70 (specific dimensions given in Supplemental Table 1.1 
along with other relevant parameters). No shadows were rendered in order to minimize 
absolute directional cues. The geometry of and sample views from the four environments 
are depicted in Fig. S1. On all maps except OS, a skybox with a sun, mountains and 
clouds (generated by Terragen, Planetside Software, UK) simulated the outside 
environment and provided distant spatial cues. 
 
• Backyard: The backyard was a relatively small (18 x18 m), square area bounded by 

a shed and tall stone walls. A mountain-covered terrain was visible over the walls, 



providing distant spatial cues. The ground was covered with a repetitive grassy 
pattern.  

• The Louvre: Modeled after one of the Louvre’s courtyards, the navigation area was 
confined by the three walls of a U-shaped building and a pedestal with a fence. This 
was the only rectangular environment (50 x 70 m). The ground was randomly 
patterned with irregularly shaped blocks. 

• The Luxor: This environment was a relatively large (52 x 52 m), square-shaped 
indoor space modeled after the ancient temple in Luxor, Egypt. The space was 
enclosed by walls on all four sides and by a ceiling above. A single large opening in 
one wall revealed the outside scenery but acted only as a visual cue and not as an 
exit path. More importantly, 36 equidistantly spaced pillars obstructed the navigable 
space and obscured the player’s view. The floor was covered with a sand-like texture 
(Supplemental Video). 

• Open Space: This environment served as a control with minimal external cues. It 
was a desert-like, flat environment with a boundless horizon and no landmarks other 
than the two target space ships. The sky was rendered a uniform blue, devoid of any 
spatial cues. An irregular and dried out texture patterned the ground. The area of 
possible alien placement, a 70 x 70 m square, was the largest among the four 
environments.  

 
1.1.6 Alignment of environments 
 
Since the rectangular edges of the bounded environments (BY, LV, LX) and the 
spaceships in the OS environment were all aligned to the North-South axis, the 
orientation of the player in the game was quantified relative to these axes for analysis. 
For all recording sessions and virtual navigation trials, the game always started with the 
player’s invisible avatar facing 60° from 0 on the XY analysis plane. The subjects’ 
orientation relative to the hospital room was also unchanged. This consistency of starting-
view orientation in each game allowed us to compare grid orientation across different 
environments within the same recording session as well as in the same environment 
across different days. 
 

1.1.7 Surgical procedures and electrode implantation and deplantation 
 
We recorded wide-band signals from no deeper than layer II-III (given the < .8 mm tissue 
penetration and the average 5 mm cortical thickness of human EC, though lacking 
histological verification) of the EC using AD-TECH macro/micro subdural electrodes 
and PMT micro-wire plugin arrays (Catalog code: CMMS-22PX-F478 and 2112-00-18-
004, respectively), custom made per our specifications (Fig. 1A). The microelectrodes 
were made of 35 µm platinum iridium wires that were arranged in 4 groups of 2 x 2 wire 
grids cut to .8 mm length from the electrode base and with nominal impedance < 3 
MOhm. The craniotomy and electrode implantations were performed under general 
anesthesia. After craniotomy, the electrodes were inserted subdurally to the surface of the 
entorhinal cortex by the neurosurgeon with stereotactic control. The dura was 
hermetically closed in a watertight fashion and the bone flap was reattached. The patient 



remained in the hospital ICU under continuous epilepsy monitoring for 5 to 14 days 
following the surgery. After sufficient evidence for seizure origin had been collected, 
electrode explantation and surgical resection of the seizure foci were performed under 
general anesthesia.  
 
1.1.8 Experimental subjects 
 
The diagnoses of the four subjects from whom we obtained entorhinal cortical recordings 
can be found in Supplemental Table 1.2. Only two patients (subject H and subject K) 
yielded stable, high quality recordings over consecutive days. 
 
 
1.2. Data analysis 
 
1.2.1 Synchronizing spatial navigation with neuronal data logging 
  
The subjects’ navigation data, recorded on the tablet, was associated with the neuronal 
data by sending a 25 ms duration square wave from the tablet’s audio output port to the 
analog auxiliary input port of the data acquisition system each time the “START” button 
for the game was released. The precision of data synchronization between the tablet and 
the neuronal data logging was < 20 ms (SD=18 ms). This resulted in a spatial localization 
error of less than 25 cm virtual distance (< .48% of average map width).  
  
 
1.2.2 Recording neuronal data 
 
Sixteen microelectrodes were implanted in the medial entorhinal cortex of the right 
temporal lobe for both patients. Signals were recorded from five microelectrodes at 24 
kHz sampling frequency using an FHC Guideline 4000 system, an FDA approved 
amplifier for neuronal data acquisition in the human brain. The 5 electrodes varied across 
the days and were selected before the recording session based on the largest amplitude 
and best single unit isolation. The 5 or 10 min traces were band-pass filtered (300 to 
6,000 Hz) by using a noncausal elliptic filter off-line. Because we selected 5 out of 16 
electrodes with the highest unit activity each day before data logging we are unable to 
claim identity of single units across different days. Nevertheless, because the electrodes 
were unlikely to move, some of the cells we recorded across multiple days might be the 
same neurons. Therefore, the total number of cells recorded is probably an overestimation 
of the independent neurons in our sample. 
 
 
1.2.3 Spike detection 
 
We applied WaveClus off-line spike detection and spike sorting (Fig. S2) (1). Spike 
detection was followed by isolation of single-unit activity using an unsupervised spike-
sorting method . For spike detection we applied a threshold fitted to the median standard 
deviation of the data (1): 



 
𝑇ℎ𝑟 = 4𝜎';  𝜎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑥

0.6745 ,  (1.2.3.1) 
 
where x is the bandpass-filtered signal and σn is an estimate of the standard deviation of 
the background noise. In cases when the amplitude nthreshold did not provide a clear 
separation between spikes and multiunit activity, the multiunit contamination generated a 
large “noise cluster” in the wavelet coefficient space at near zero amplitude. This isolated 
noise cluster enabled us to separate single unit clusters from noise with high confidence 
(example Figs. S10-28). We only included single unit activity in our dataset that was 
unambiguously distinct from the noise cluster (Figs. S12-16 and S18-28) or 
unambiguously separable from each other (Figs. S2, S5, S17). 
 
 
1.2.4 Spike sorting 
 
Spikes different from noise were sorted using an enhanced version of the WaveClus 
algorithm that uses superparamagnetic clustering as a non-parametric classifying engine 
(Fig. S2) (1). WaveClus is the second most popular semi-supervised method worldwide, 
used by more than 110 publications and the most efficient among the benchmarked spike 
sorting methods (2). The wavelet transform is defined as the convolution between the 
signal x(t) and a Haar wavelet functions ψa,b(t),   
 
𝑊ψ𝑋 𝑎,𝑏 = 𝑥 𝑡 |	ψ𝑎,𝑏 𝑡 ,   (1.2.4.1) 
 
 
 
where ψa,b(t) are dilated (contracted), and shifted versions of a unique wavelet function 
ψ(t), 
ψ𝑎,𝑏 𝑡 = |𝑎|

−1
2	ψ 𝑡−𝑏

𝑎 ,    (1.2.4.2) 
 
where a and b are the scale and translation parameters, respectively. We used a 
computational shortcut that accelerated the computation of wavelet coefficients. Finally, 
we obtained 12 wavelet coefficients and reduced those to 4 dimensions with the highest 
multimodality and deviation from normal distribution. These were the dimensions best 
discriminating the spikes in wavelet coefficient space. Each spike was associated with a 
combination of these k most informative wavelet coefficients, hence represented by a 
point in the k-dimensional space. The data using superparamagnetic clustering resulted in 
clusters associated with spikes of similar waveforms, where k=12 for all present datasets. 
The spike times of classified waveforms were tested against 4 ms refractoriness before 
associated with putative neurons. We only included neurons where the Mahalanobis 
distance between noise cluster and single unit cluster and between single unit clusters 
were x > 20. We refer to these single unit clusters as ‘neurons’ (Fig. S2). Spike times 
were rounded to the nearest 1 ms interval and expressed in 1 ms precision. 
 
 



1.2.5 Validation of stability and quality of spike sorting 
 
Spike waveforms were extracted from the continuous signal recorded from 5 
microelectrodes, which comprised the navigation epochs in all different environments 
presented on a given day. If the recording started at T0, then the first, second third and 
fourth game started at T1, T2, T3 and T4, respectively, and each ended at Ti+5 min. The 
complete session ended at T5. We performed the spike sorting between the entire T0-T5 
interval (20-30 min), and associated the games with the spike trains between T1, T2, T3 
and T4 after spike sorting. Hence, spike sorting artifacts due to electrode movement and 
confusion of spike cluster identifiers across environments were ruled out. To support this 
claim and verify stability of spike sorting and identity of single units across different 
environments we tracked the quality of unit isolation and neuronal identity across 
recordings of different environments each day. Figure S2 illustrates the integrity (stability 
and consistency) of waveform classification across environments. 
 
In addition, in 3 sessions (one day for subject H and two days for subject K) we played 
the same 5 min game twice with a 10-minute separation and recorded the activity of the 
same neurons in the same virtual environment twice during the same recording session. 
This allowed for cross-validation between the spatial firing fields of the isolated neurons 
(Fig. S5). We observed a satisfactory consistency with respect to both single unit 
waveforms and their spatial mapping on the environments.  
 
 
1.3. Computational methods 
 
1.3.1 Computing head direction 
 
By analyzing each cell’s average firing rate versus head direction (in 5° bins), we 
assessed the direction-tuning of neurons in each environment. We computed the 
Resultant vector length, the mean direction and Rayleigh's test for non-uniformity. We 
classified a neuron as direction-tuned when pRayleigh< .05. 
 
 
1.3.2 Construction of spatial mapping of single unit activity 
 
The navigation data stored by the tablet consisted of the player’s trajectory (X and Y 
coordinates, and head direction) and a time-stamp so that any deviations from the 
intended 500 Hz sampling frequency could be accounted for. The trajectory data was 
interpolated up to 1 kHz to match the 1 ms precision of spike times. After synchronizing 
the virtual trajectory data with the neuronal data (Supplemental Experimental Procedures 
1.2.1), spikes of putative neurons were projected onto the navigation area according to 
the player’s location at the time of each spike (Supplemental Video).  
 
 
1.3.3 Spatial firing rate maps and Autocorrelation (AC) 
 



To identify topographically consistent firing fields before characterizing their spatial 
coherence, it was necessary to create a spatial firing rate map and compute its 
autocorrelation. For the firing rate map, the game area was binned into 1 x 1, 2 x 2 or 3 x 
3 m areas, depending on the virtual environment (Supplemental Table 1), and the average 
firing rate was computed within each tile. Binning had no significant effect on the grid 
parameters (Fig. S34). This was accomplished by dividing the number of spikes 
occurring within each bin by the time spent within it. To compute the autocorrelation, the 
firing rate map was first smoothed with a Gaussian filter (5 x 5 bin neighborhood, 
sigma=.8) and unvisited bins were assigned a firing rate of 0. Autocorrelograms were 
computed as follows. Given that the original firing rate map is (f) and the number of 
overlapping bins between the original and shifted firing rate maps at a given 𝜏𝑥, 𝜏𝑦	offset 
is n, the equation for the two-dimensional discrete autocorrelation is 
 

𝑟 𝜏B, 𝜏C = 	 ' D B,C D BEFG,CEFH E D B,C D BEFG,CEFH

' D B,C IE( D B,C )I ' D BEFG,CEFH
IE D(BEFG,CEFH)

I
	,  (1.3.3.1) 

 
where 𝑟 𝜏B, 𝜏C  is the autocorrelation. Correlations were estimated for all values of n. 
The central peak of the autocorrelogram was removed by before computing the gridness 
(3, 4).  
 
 
1.3.4.1 Quantifying “gridness” (gridness score) 
 
We quantified canonical “gridness” based on the autocorrelograms (ACs) by computing a 
60° gridness score (g) step-by-step following the exact procedure outlined by Barry et al 
(5), Sargolini et al (6) and Krupic et al (7) as illustrated in Fig. S3D. We first normalized 
the firing-rate maps by the sizes of environments that allowed for equal spatial 
resolutions for the ACs of different environments, but we kept the aspect ratio 
differences. Next, we computed the 2-dimensional ACs by applying 2D cross-correlation 
to the firing-rate maps (Fig. S3B). After centering and clipping the AC to a 100 x 100 
matrix, we located the largest peak after the removal of central peak, which defined a 
concentric ring containing the circular or ellipsoid arrangement of the first set of 
autocorrelation peaks at radius R. The outer radius of the ring was, based on the BK 
method, chosen to be 2.5*R (5, 7) (Fig. S3C). For the computation of gridness scores we 
followed the method by Sargolini et al (6). Accordingly, we filtered the AC with the 
above-defined ring. Then we rotated the extracted ring from 1 to 180°, and computed the 
Pearson’s correlation coefficients 𝑟1°…	180°	 between the original and rotated matrix with 
an 8-point moving average applied to it (Fig. S3D). We determined gridness (g) as the 
difference between the minimum of r60° or r120° and the maximum of r30°, r90° or r150°. This 
function of gridness assumed a 60° modulation of AC as it expresses the modulation 
depth relative to 60° rotation symmetry. Because r-modulation was limited between 0 
and 1, g was bounded between 0 and 1, inclusive.  
 
 
 
1.3.4.2 Quantifying “general spatial periodicity” (gsp score) 



 
In addition to gridness, we also defined a “general spatial periodicity” score (gsp) by 
computing the depth of modulation of the correlation between the original and the rotated 
ACs at a broader range or rotations that captured any rotational symmetry between 10° 
and 90°. Technically, instead of taking the minimum r at predefined angles, as in Barry et 
al. (5) and Sargolini et al. (6) outlined in 1.3.4.1, we quantified the modulation depth of 
spatial periodicity over 1° to 90° of rotations on the 𝑟10°…	90°		curve (Fig. S3D). We 
computed gsp score as the difference between the first >0° positive peak and the first 
negative peak of of 𝑟10°…	90°	 and located the positive peak in angle space (g). The angle 
providing the best registration of AC peaks between the original and the rotated AC 
defined the rotational symmetry of AC. The difference between r+peak

 and r-peak served as 
the general spatial periodicity score gsp (Fig. S3D). Because r-modulation was limited 
between 0 and 1, gsp was also bounded between 0 and 1, inclusive. This allowed for the 
detection of a broader range of grid geometries beyond hexagonal. 
 
 
1.3.5 Statistical validations 
 
1.3.5.1 Statistical validation of gridness scores by Poisson spike processes 
 
In order to statistically validate each cell’s gridness score (g) with a known confidence 
we determined the confidence interval (gconf) for each cell individually based on Monte 
Carlo randomization of the cell’s own original spike trains. With a set confidence level 
(5%) we could determine whether a given gridness parameter (g) can be drawn from the 
spatial configuration of Poisson spike processes (H0) or, alternatively, from a 
configuration that is spatially-periodically clustered with 60° rotational symmetry (H1). 
To allow a margin of p < .05 probability for false positives, we compared each cell’s g 
with the 95 percentile of the distribution of gRND computed from 1,000 randomized spike 
trains derived from the original single unit activity. The randomization was done by 
random assignment of every spike to a randomly chosen different time during the 
navigation in that specific environment with 1 ms precision by also paying attention to 
preserving the original inter-spike-interval statistics. We computed individual gRND values 
for each surrogate spike train. The 95 percentile of the distribution of 1,000 gRND values 
provided the confidence limit (gconf) at which the likelihood that a g score was considered 
different from a random process while it was drawn from a distribution of random spike 
times was exactly .05.  If the actual g was larger than gconf, then we accepted H1 with a 
confidence of p < .05 and concluded that the spike train was generated by a spatially 
controlled process (Fig. S3E).  
 
The same procedure was applied to test the significance of general spatial periodicity 
(gsp), but instead of computing gRND from the randomized spike trains we computed 
gspRND. 
 
 
1.3.5.2 Statistical validation of gridness scores by theta modulated and directionally 
tuned spike process 



 
In addition to the validation of gridness scores by Poisson spike processes (1.3.5.1), we 
constructed random spike trains from specific physiologically constrained distributions. 
Entorhinal cortical neurons exhibit temporal modulation by theta (4-7 Hz) and intrinsic 
subthreshold membrane potential oscillation at alpha (8-15 Hz) frequency bands (8–10). 
They also display various degrees of directional tuning. In order to rule out that the 
observed spatially periodic activity statistically emerged as a byproduct of theta- or 
alpha-modulation of firing probability combined with directionally tuned spike process 
we subjected the gridness scores to a more rigorous validation process. Namely, we 
constructed surrogate spike trains with temporal periodicity and directional tuning 
combined. Firstly, we took the original spike train of a neuron (Fig. S4A) and we 
computed the circular distribution of direction vectors from the typically 5-minute 
navigation (Fig. S4 B). Next, we reassigned the original spikes to path segments of the 
navigation that fell within a 15º range centered around a randomly selected direction from 
the heading direction distribution (Fig. S4C-D). We used the same number of spikes as in 
the original spike train, hence the overall firing rate of the cells remained unchanged. 
Next, we dispersed the spikes according to a interspike intervals sampled from a Poisson 
process (1.3.5.2.1) with l=200 ms (5 Hz). Then we combined them with spike processes 
sampled from a Poisson process modulated by l =83.333 ms (12 Hz).  
 
   𝒇 𝒙 λ = SG

B!
𝑒ES; 𝑥 = 0, 1, 2, … ,∞.    (1.3.5.2.1) 

 
In addition, we introduced burst firing with 5 ms refractoriness, also typical of EC 
neurons. The combination of these resulted in a complex periodically modulated spike 
train endowed with directional tuning except spatially coherent periodic activity (Fig. 
S4). We verified the statistics of the new spike train by autocorrelograms (Fig. S4F,G). 
finally firing rate maps an autocorrelograms verified the correctness of the statistical 
procedure. 
 
To obtain confidence intervals for the computed gridness score of each single unit, we 
generated 1,000 theta/alpha-modulated and directionally tuned spike-trains based on the 
previously described procedure. The distribution served as a Null to compare the gridness 
score of the recorded single unit with. The gridness of a single unit in this population was 
qualified to be significant if it exceeded the upper 95% (µ ± 2σ) of the Null distribution. 
 
 
1.3.5.3 Statistical validation of spatially periodic processes 
 
In addition to validating each single unit train to its own randomized sequence (1.3.5.1), 
we generated 1,000 surrogate firing rate maps constructed from a mixture of randomly 
displaced 2D Gaussians. We carefully modeled random firing rate maps by generating 
100 randomly positioned instances of 2D Gaussians with a 2xSD = 5 m. While 100 
patches may seem too many, they tend to form clusters by random superposition, most 
similar to the observed firing rate maps. When the Gaussians overlapped, we merged 
them to a larger mixed cloud of Gaussians resulting in average 7 +/- 2 clouds typical in 
the observed firing rate maps. We normalized the Gaussians by the average firing rate of 



neurons in each environment. We found that the sizes and shapes of mixed Gaussians 
reproduced the statistics of the observed firing rate maps well. The 50 percentile (median) 
and 95 percentile of gsp scores of the random Gaussian mixture model were at gsp(50)= 
.2400 and gsp(95)= .3355, respectively (Fig. S3F).  
 
  
1.3.5.4 Cross-validation of firing rate maps 
 
The environmental coverage in our experiment was less complete than is typical in 
similar animal studies (11–13) owning to the clinically constrained 20-30 min recording 
sessions per day. When an incomplete coverage combines with a low firing rate cell, 
especially when the navigation paths during the first and the second half of the task are 
non-overlapping, chances for high spatial covariance of neuronal activity between the 
two intervals are very low. Despite the overall low firing rate of neurons, the spatial 
coherence of single spikes was evident from individual examples (Fig. S36). Therefore in 
our experiment, the method of two-fold cross-validation widely used (11, 14), when 
dividing the recording time into a first and a second half (in our experiment 2 x 2’30”) 
and computing correlations between the two firing rate maps, was biased toward negative 
correlations. To manage the inherent bias, we performed two tests for stability, cross-
validation and stationarity analysis and applied them on two types of datasets, the SPC 
and PGChi-conf datasets from both subjects combined. The concordance of two tests are 
shown in Figure S5F,G. 
 
 
1.3.5.5 Two-fold cross-validation of firing rate maps 
 
The first type of cross-validation we applied was the standard k-fold method of dividing 
each navigation trial into k non-overlapping and equal-duration segments (in our case k=2 
leading to two intervals of 2’30”) and constructed corresponding firing rate maps from 
the two spike trains. Without trying to predict the second segment from the first, we 
computed a 2D correlation between the two firing rate maps:  
 

 

𝑟 = (VWXEVXW )(YWXEY)
( (VWXEV)I)E( (YWXEY)IXWXW )	

   (1.3.5.5.1) 

 
where 𝐴 and 𝐵 were the means of A and B firing rate maps, respectively. The distribution 
of r relative to 0 median provided an estimate of the overall stability of grids evident 
from the firing rate maps. 
 
 
1.3.5.6 Testing stationarity of firing rate maps 
 
Because of the randomized placement of targets (i.e. space aliens in the game) and 
incomplete coverage of the environment made navigation paths often uncorrelated 
between the first and second time intervals, and to gain a confidence on the stability of 
grid patterns over time, we sought for an alternative method of cross-validation. Since the 
stability of firing rate distributions is dependent on the stationarity of the underlying 



spike processes, we tested for stationarity of the firing rate maps as an estimate for 
temporal consistency of grid patterns. Stationarity is less affected by the low-firing rate of 
neurons, the uncorrelated trajectories, the relatively short time window (5 minutes) then 
cross-validation and it does not depend on repeated visits of the same locations of virtual 
environments. A time series is considered strictly stationary when X1

k and Xt
t+k−1 have 

the same distribution, for all k and t, the distribution of blocks of length k is time-
invariant (15, 16). In our case X1

k and Xt
t+k−1 were matrices of firing rates in the spatial 

domain. We maximized the overlap of navigation pathways between the two samples by 
assigning the odd numbered spikes and even numbered spikes to separate groups of 
spikes (Fig. S37B) and computed the firing rate maps X1

k and Xt
t+k−1 for the two spike 

groups. Next, we computed the element-wise 2D correlation coefficients between the two 
matrices (Eq. 1.3.5.5.1). Although slow drifts in the firing properties of the neurons might 
not be detected by this method, we were able to test the consistency of firing rate maps 
and compared those correlations with the results of two-fold cross-validation. The other 
slight difference between stationarity and cross-validation (1.3.5.5) was that the latter 
method balances the time but not the number of spikes, while the former method balances 
the number of spikes but not the time intervals. 
 
 
1.3.6 Computing grid period 
 
Grid period is the wavelength of the spatially periodic single unit activity. It is equivalent 
with distance between adjacent nodes of the autocorrelogram. Since autocorrelograms are 
periodic by construction, this spatial wavelength is defined as the inverse of the 
predominant spatial frequency component, also could be measured by hand as the 
average grid distance (11). When grids deviate from the 60° symmetry, the grid distance 
becomes multimodal. To estimate the exact unbiased grid periods, we performed a 2D 
spectral analysis on the ACs. Because the AC of spatial activity does not always generate 
a map with discrete patches when a spatially periodic pattern is still apparent, we 
characterized grid periods on spectral domain and derived the grid frequency from the 
AC periodograms. We refer to the periodograms computed from ACs as 
autoperiodograms. After the removal of the central peak from the AC (as described in 
1.3.4.1), which is non-specific to the spatial pattern, we computed the 2D spectral density 
of the ACs by taking the complex conjugate of the inverse 2D Fourier transform (7). We 
next averaged the 2D spectral distribution across the X and Y coordinates and determined 
the largest amplitude peak positions. The peak position corresponds to the predominant 
spatial frequency component of the grid. This method was chosen because it is more 
precise and less biased than measuring the distance between the nodes by hand. Dividing 
the dimensions of the AC by the spatial frequency provided the distance of the X-Y peak 
in spatial bins. We then computed the Euclidian distance of the peak (defined by its X 
and Y coordinates) from the origin, the center of the autoperiodogram. This distance was 
multiplied by the scalar bin size (in m) to give the main grid period (l). Grid frequencies 
were computed for ACs generated by each neuron and compared between environments.  
 
 
1.3.7 Computing principal grid orientation  



 
Grid orientations were computed from the autoperiodograms (Supplemental 
Experimental Procedures 1.3.5). Since the tangent of the orientation angle is the ratio of 
the X and Y coordinates of the largest peak on the 2D spectral distribution, the principal 
orientation (b) is defined as: 
 
𝛽 = arctan b

c
.         (1.3.7.1) 

 
 
1.3.8 Angle of rotational symmetry of grids 
 
Because the angle of rotational symmetry was defined by the angle (g) of rotation that 
brings a rotated AC into maximal overlap with its original pattern, we computed g 
together with the gridness score (Supplemental Experimental Procedures 1.3.4.1) as the 
angle of rotation of the AC at which the Pearson correlation between the original and 
rotated AC was maximal. Since b is the orientation of the grid (Eq. 4), b + g gave the 
orientation of the second principal axis relative to the principal axis of each grid. Plotting 
b and g on the ACs allowed for visual confirmation of the computed grid orientations 
(Fig. 1E and Figs. S12-28). When the observed rotational symmetry was compared to 
60°, we applied a 60°±s confidence interval, where s represented the upper and lower 
95% confidence limit of the mean direction (17) (s=3.076° and 2.68° for subject H and K, 
respectively).  
 
 
1.3.9 Statistics 
 
For the association between environmental features and grid pattern to be clearly 
delineated, the most robust analysis would consider how the grids from single neurons 
changed across environments. However, only a fraction of cells produced qualified 
spatially periodic patterns in all three landmark-rich environments, and even a smaller 
fraction of those were considered putative grid cells with ~60° rotational symmetries 
(Fig. S3G). Therefore, to produce the most robust dataset possible, we created a set 
consisting of only those neurons that produced spatially periodic activity or hexagonal 
grids in all environments, including or excluding OS. We refer to these as the “persistent” 
datasets with a distinctive “p” prefix (pSPC and pPGC) to discriminate those from SPC 
and PGC datasets. The Open Scene (OS) environment was excluded from the 
qualification criteria because the lack of visual cues and unbound area produced much 
fewer grids than any of the other three environments. The same-cells dataset is thus a 
subset of the full collection of recordings that produced qualified grids. We refer to the 
full set of qualified grids as the spatially periodic (SPC) and putative grid cell (PGC) 
datasets, without a prefix. In these datasets, the spike trains producing significant spatial 
periodicity of gridness in a given environment may derive from cells that did not display 
significant spatial modulation in any of the other environments. Hence, these spike train 
datasets from different environments may consist of single unit activity deriving from 
partially overlapping population of neurons. The intrinsic heterogeneity of these datasets 
should have increased the variance of neuronal responses to environmental differences. 



Instead we observed a very consistent environmental dependency within and across days 
that improved the robustness of the statistics. Moreover, because we had no basis to 
assume that neurons display uniform gridness in each environment, we treated the single 
unit activity in the SPC and PGC datasets as independent entities as they were generated 
by cells that might have contributed selectively to different environments. In contrast, 
cells included by pSPC and pPGC datasets were treated as non-independent entities.  The 
inclusion of both types of data and applying two different statistical methods together 
minimized the potential bias in our analysis deriving from either assumption. 
 
With all SPC and PGC datasets, the general linear model ANOVA and its non-parametric 
version the Kruskal-Wallis test (Matlab, Mathworks®, Nattick, MA) were applied to 
compare gridness scores and grid periods across environments. The main factor was the 
environment (BY, LV LX, OS) and the dependent variable was gridness and grid period. 
ANOVA with repeated measures or its non-parametric version, the Friedman test, was 
used on the pSPC and pPGC datasets. First, we tested each variable for normality using 
the Lilliefors test and determined whether ANOVA or non-parametric alternatives can be 
applied. The selected features of spatial periodicity, including gridness scores, grid 
period, orientation and rotational symmetry were treated as dependent variables, and 
were pooled across a variable set of neurons for an independent measure general linear 
models of ANOVA (or Friedman’s as a non-parametric alternative) for the SPC and PGC 
datasets, and pooled across constant set of neurons for a repeated measure ANOVA (or 
non-parametric alternatives).  
 
To compare grid orientations and grid symmetry between environments we applied 
circular ANOVA (Watson-Williams test) on von Mises distributions (17) or Wheeler 
Watson as alternative, when von Misesness did not qualify (18). We performed Rayleigh 
tests for testing non-uniformity of circular data and Watson's goodness of fit test for 
testing conformity with the von Mises distribution. The main factor of circular ANOVA 
was the environment (BY, LV LX, OS). The dependent variables were the grid 
orientation and grid symmetry. We applied the Matlab® Circular Statistics Toolbox 
versions of Watson-Williams test for independent samples (SPC and PGC) and for the 
balanced repeated measures (pSPC and pPGC) (17). 
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2  SI: Tables 
 
1 Tables related to Experimental Procedures 
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Backyard 
(BY) 

18 x 18 324 1 x 1 square ✔ none  ✔ open 

Louvre  
(LV) 

50 x 70 3,500 2 x 2 rectangle ✔ none  ✔ open 

Luxor  
(LX) 

52 x 52 x 10 2,704 2 x 2 square ✔    
  ✔ 

 ✔ closed 

Open  
Space (OS)  

(70 x 70) * 4,900 3 x 3 N/A None none Space-
ships 

open 

 
Table S1.1 Dimensions and features of the virtual environments. 
* Because the open space environment did not have boundaries, the above dimensions 
indicate the area within which aliens might appear in the game.  
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(d
ay

s)
  

K Complex partial 
epilepsy due to 
cavernous angiomas 
in the right mesial 
temporal lobe and 
in the inferior 
aspect of the right 
frontal lobe 

Intractable 
seizures 

Right Left An array of subdural 
electrodes over the 
right convexity temporal 
lobe and EC 

Bilateral hippocampal 
depth electrodes. 

8 

H Complex partial 
epilepsy 

Intractable 
seizures 

Right Left An array of subdural 
electrodes over the 
right convexity temporal 
lobe and EC 

Bilateral hippocampal 
depth electrodes. 

7 

S Chronic refractory 
partial and bilateral 
hippocampal 
sclerosis  

The patient had a 
VNS implant 

Intractable 
seizures 

Right Left Array of subdural 
electrodes grid 
placement, two 
posterior and anterior 
depth electrodes 
terminating in the right 
temporal pole and right 
lateral orbitofrontal gyri. 

2 

W Chronic partial 
epilepsy 

Altered mental 
status with 
syncope. 
Seizures and 
non-epileptic 
seizures 

Right Left Right temporal frontal 
grid placement and 
bilateral hippocampal 
depth electrodes. 

4 

 
Table S1.2. Patients’ data and diagnoses 
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2. Data Types 
 
Types of cells Description Short  

name 
trials cells 

Single units Total single unit activity isolated  1,588 ~397 
Spatially periodic 
cells 

Defined by spectral method SPC 824  206 

Spatially periodic 
cells with 
hexagonal firing 
fields 

Spatially periodic cells with 60° 
rotational symmetry 

pSPC60° 141 47 

Permanent 
spatially periodic 
cells 

Permanent spatial activity in 3 
environments 

pSPC 276 92 

High-confidence 
putative grid cells 

Defined based on spatially 
periodic activity distinguished 
from theta-modulation and 
directional tuning.  

PGChi-conf 262 65 

Permanent High-
confidence 
putative grid cells 

Defined based on spatially 
periodic activity distinguished 
from theta-modulation and 
directional tuning active in 2 or 
more environments. 

pPGChi-conf 260 65 

Putative grid cells Putative grid cells with significant 
grid scores determined by using 
the Barry and Krupic method (7). 

PGC 292 73 

Permanent 
putative grid cells 

Putative grid cells active in 2 or 
more environments 

pPGC 156 39 

 
Table S2. Types of cells recorded and classified. Numburs represent trials and cells 
after combining them from two subjects (H,K). Trials represent spike trains recorded 
from a given cell type during one navigation session in one environment. Colors associate 
individual tables with data types in the rest of the Supplemental Material. We refer to the 
datasets in the text with their short names. We only used SPC, pSPC, PGC and pPGC.  
The pSPC60° dataset was used only in one statistical analysis. 
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# 

D
at
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et

 

Te
st

 

Su
bj

ec
t 

Se
gm

en
ts

 

Fa
ct

or
s 

d.f. F P H 

3.1 

SP
C

 

Three-way ANOVA with 
independent samples. 

H 378 Env. 3 429.03
04 

<0.001 
(1.1158e-120) 

*** 

Electrodes 4 0.8367 0.5025  
Neurons 6 0.1679 0.9852  

K 425 Env. 3 581.40
83 

<0.001 
(3.4310e-154) 

*** 

Electrodes 4 0.6290 0.6420  
Neurons 6 1.6721 0.1399  

Grid period as dependent variable. 
3.2 Two-way ANOVA with 

independent samples.  
Subj. Segm. Fact. d.f. F P H 
H 378 Env. 3 13.28 <0.001 

(1.6839e-05) 
*** 

Days 6 0.9031 0.4680  
K 425 Env. 3 7.8888 <0.001 

(9.0850e-04) 
*** 

Days 6 1.8398 0.1330  
Grid period as dependent variable, Environments and Days as factors. 

3.3 Two-way ANOVA with 
independent samples.  

Subj. Segm. Fact. d.f. F P H 
H 378 Env. 3 1.0733 0.3483  

Days 6 1.1295 0.3512  
K 425 Env. 3 0.4317 0.6514  

Days 6 2.8501 0.0313 * 
Normalized grid period as dependent variable, Environments and Days as factors. 

3.4 

SP
C

60
° 

Kruskal–Wallis one-way 
ANOVA to test the 
effect of environment on 
the normalized grid cell 
periods scaled by the 
size of environment. 
across two subjects 
(H,K). 

Subj. Neurons Fact. d.f. Chi-
square 

P H 

Comb 41 Env. 2,38 5.9547 0.0509  

Normalization involved scaling the grid periods by the size of the environment. Data 
are from the pSPC60° dataset. The dataset included neurons displaying hexagonal 
autocorrelogram and 60 ±10 ° symmetry. Data were combined. 

3.5 

SP
C

 

Kruskal–Wallis one-way 
ANOVA to test the 
effect of environment on 
the grid cell period.  

Comb 824 Env. 3,82
0 

621.24 <0.001 
(2.49831e-134) 

*** 

SPC dataset combined across two subjects (H,K). 
 

3.6 Kruskal–Wallis one-way 
ANOVA to test the 
effect of days on the 
grid cell period. SPC 
dataset separately for 
subjects H and K.  

Subj. Segm. Fact. d.f. Chi-square P H 
H 123 Days              Env: BY                                  5 7.1130 0.2124  
H 110 Days              Env: LV                                  6 4.0413 0.6711  
H 114 Days              Env: LX                                  6 4.3685 0.6269  
H 41 Days              Env: OS                                  5 3.7068 0.5923  

SP
C

 

K 206 Days              Env: BY                                  7 5.4195 0.6089  
K 96 Days              Env: LV                                  6 7.0305 0.3180  
K 109 Days              Env: LX                                  6 4.4495 0.6161  
K 25 Days              Env: OS                                  2 0.4960 0.7804  
SPC dataset separately for subjects H and K. 

3.7 

pS
PC

 

Friedman’s non-
parametric repeated 
measures test for the 
effect of days on the 
grid cell period. 

Subj. Neurons Fact. d.f. Chi-square P H 
H 73 Days 4 1.5532 0.8172  
K 73 Days 4 0.4505 0.9781  
The pSPC dataset combined separately for subjects H and K. 

3.8 Friedman’s test for non-
parametric repeated 
measures data to test 

Subj. Neurons Fact. d.f. Chi-square P H 
Comb 73 Env. 3,21

6 
147.6575 <0.001 

(8.4344e-32) 
*** 
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the effect of 
environment on the grid 
cell period. 

Data are from the pSPC dataset combined across two subjects (H,K). 

3.9 Friedman’s test for non-
parametric repeated 
measures dataset. 

Comb 115 Env. (BY- 
LX,LV,OS) 

3,34
2 

122.5536     <0.0001 
(2.1748e-26) 

*** 

Testing the effect of environment ([BY] – [LV, LX, OS]). on the grid cell period from 
the pSPC dataset combined across two subjects (H,K). 

3.9.1 

PG
C

hi
-c

on
f Kruskal-Wallis non-

parametric test for the 
effect of environment 
(BY, LV, LX, OS) on the 
grid cell period. 

H 113 Env. (BY,LX,LV,OS) 3,10
9 

68.1321 
 

<0.0001 
(1.0719e-14) 

*** 

K 85 Env. (BY,LX,LV,OS) 3,81 70.2800 <0.0001 
(3.7179e-15) 

*** 

 Data from the PGChi-conf dataset from two subjects (H,K).  

3.9.2 

pP
G

C
hi

-c
on

f 

Friedman’s test for non-
parametric repeated 
measures dataset to 
test the effect of 
environment ([BY, LV, 
LX, OS]) on the grid cell 
period 

Subj. Neuron
s 

Fact. d.f. Chi-square P H 

Comb 10 Env.  3,27 27.1200 <0.0001 
(5.5560e-06) 

*** 

Data from the pPGChi-conf dataset combined across two subjects (H,K).  
 

3.9.3 Friedman’s test for non-
parametric repeated 
measure datasets.  

Comb 10 Env.: BY-[LV, LX, OS] 1,9 10 0.0016 
  

** 

Testing the effect of environment (BY-[LV, LX, OS]) on the grid cell period. Data 
from the pPGChi-conf dataset combined across two subjects (H,K). 

3.9.4 Wilcoxon rank sum test 
for non-parametric 
repeated measures 
dataset. 

Comb 10 Env.: large (LV-LX)  1,31 0.6015 0.5475  
Testing the effect of environment (LV-LX) on the grid cell period. 
Data from the pPGChi-conf dataset combined across two subjects (H,K). 

3.10   

pP
G

C
 

Wilcoxon signed rank 
test a non-parametric 
repeated measures 
dataset. 

Subj. Neuron
s 

Fact. d.f. Zval 
(Wilcoxon) 

P H 

Comb 19 Env. BY-[LV, LX, OS] 18 3.8277 <0.001 
(1.2937e-04) 

*** 

Testing the effect of environment (BY – [LV, LX, OS]) on the grid cell period from the 
pPGC dataset. Grid distances were combined across two subjects (H,K). In order to 
achieve a sufficient sample size, we combined data from the large environments 
(LX,LV,OS) before comparing them to the small (BY).  

3.11 Wilcoxon signed rank 
test a non-parametric 
repeated measures 
dataset. 

Comb 5 Env. (LX-LV) 1,4 12     >0.05 
(0.3125) 

 

Testing the effect of environment on the grid cell period from pPGC dataset. Grid 
distances were combined across two subjects (H,K). This test compares the grid 
sizes between two large environments (LX and LV). 

3.12 Friedman’s test for non-
parametric repeated 
measures dataset. 

Comb 20 Env. (BY- LX,LV,OS) 19 -2.5413 <0.05 
(0.011)  

* 

Testing the effect of environment ([BY] – [LV, LX]) on the normalized grid cell period 
from the pPGC dataset combined across two subjects (H,K).  
Normalization involved scaling the grid periods by the size of the emvironment. 

3.13 Friedman’s test for T-
test repeated measures 
dataset to test the effect 
of environment.  

Comb 5 Env. (LX,LV) 4 -0.1346 0.9165   

Comparing environments (LV, LX) on the normalized grid cell period from the pPGC 
dataset combined across two subjects (H,K). Normalization involved scaling the grid 
periods by the size of the emvironment. 

3.14 A 2-ways ANOVA K 26 Env.  3 0.9147 0.4547  
  Days 6 1.7560     0.1685  
H 28 Env.  3 1.0819     0.3819  
  Days 7 0.2148    0.9772  
Testing the factors of Environment and Days on normalized grid distances in the 
PGC data set for the two subjects separately. Normalization involved scaling the 
grid periods by the size of the emvironment. 

3.15 S P C
 Median grid periods in 

different environments 
Subj. BY (18 x 18 m) LX (52 x 52 m) LV (50 x 70 

m) 
OS (70 x 70 m) 
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for two subjects in [m].  H 4.9624    < 16.9613    ≈ 17.3384    < 26.3877 

K 5.4801 < 17.5989 ≈ 17.5089 < 23.6084 
The less-than signs represent significant differences. Equals signs mean no 
significant difference. 

 
Table S3. Environmental dependency of grid period 
 
 
 

St
at

 #
 

D
at

as
et

 

Te
st

 

Su
bj

ec
t 

Se
gm

en
ts

 

Fa
ct

or
s 

d.f. F P H 

4.1 

SP
C

 

ANOVA with 
independent measures, 
gridness as dependent 
variable in the SpC 
dataset.  

H 384 Env. 3 18.6852 <0.001 
(2.4727e-

11) 

*** 

H 223 Env. LV-LX 1 0.0245 0.1072  
K 229 Env. 3 39.457 <0.001 

(1.9651e-

15) 

*** 

K 204 Env. LV-LX 1 0.0563 0.8127  
Average gridness across different environments for two subjects. Gridness was 
determined by spectral methods. 

4.2 

pS
PC

 One-way ANOVA with 
repeated measures, 
gridness as dependent 
variable in the pSPC 
dataset.  

H 26 Env. 3,25 0.9647 0.4248  
K 24 Env. 3,23 1.4380 0.2575  
Variance of average gridness across different environments for two subjects. 

4.3 

pP
G

C
hi

-c
on

f One-way ANOVA with 
repeated measures.  

K 12 Env. 3 2.4970 0.1258  
H 16 Env. 3 2.2323 0.1330  
Testing the effect of Environments on the gridness score as dependent variable in the 
pPGChi-conf dataset. Average gridness across different environments for two subjects.  

 
Table S4. Environmental dependency of gridness 
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   Subject Segments Factors d.f. F P H 
5.1 

SP
C

 
ANOVA with 
independent 
measure on the 
complete SPC 
dataset. 

H 389 Env. 3 1.8147 0.1441  
K 435 Env. 3 2.1640 0.0919  
Using firing rate as dependent variable. Average firing rate across different environments for 
two subjects. 

5.2 

pS
PC

 

Two-way ANOVA 
with repeated 
measures applied 
to the pSpC 
dataset. 

H 74 Days 4 0.7577 0.5569  
  Env. 2 1.9692 0.1485  
  Interaction 8 0.7577 0.6408  
K 74 Days 2 1.2694 0.2920  
  Env. 4 0.9291 0.4005  
  Interaction 8 0.6364 0.7440  
Average firing rate across different days and environments for two subjects. Dataset 
containes a subset of neurons neurons that displayed significant gridness in 3 
environments. 

5.3 

pP
G

C
 ANOVA 

independent 
measure on the 
pPGC dataset.  

H 26 Env. 3 1.3881 0.2695  
K 24 Env. 3 0.0100 0.9986  
Using firing rate as dependent variable. Average firing rate across different environments for 
two subjects. 

 
Table S5. Average firing rate across environments 
 
 

 
Table S6. The variation in areal coverage 
 

St
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# 

Te
st

 

Su
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t 
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Fa
ct

or
s 

d.f. F P H 

6.1 One-way ANOVA 
repeated measures (5 
days 4 tasks) on 
environment coverage 
as dependent vaiable.  

H  20 Env. % coverage 
71.24 > 54.74 ≈ 
51.57 > 31.64 

3 106.15 <0.001 (8.9612e-11) *** 

K  20 Env. % coverage 
72.45 > 49.94 < 
52.93 > 19.23 

3 23.65 <0.001 (4.0125e-6) *** 

Coverage was expressed as percent of the total area visited during the spatial navigation 
session. 

6.2 One-sample  T-test to 
compare the difference 
in coverage between the 
LV and LX 
environments. 

Subj. days Factors d.f. T-stat P H 
H  5 Env. 1  1.6567 >0.05 (0.1729)  
K  5 Env. 1  -3.7323 <0.05 (0.0203) * 

Subj. Sess. Fact. d.f. F P H 
6.3 Two-Factor repeated 

measure ANOVA on 
coverage as dependent 
variable.  

H  20 Env.  3 19.4820 <0.001 (6.6206e-05) *** 
Days 4 0.2949 0.8757  

K  20 Env. 3 23.65 <0.001 (4.0125e-6) *** 
Days 4  3.2498  0.0504  

6.4 Dataset Test Subj. Neurons Fact. d.f. Chi-
square 

P H 

pS
PC

 

Kruskal-
Wallis non-
parametric 
multiple 
comparision
. 

H 79 Env. (BY,LX,LV,OS) 3,75 64.6974 
 

<0.0001 (5.8221e-

14) 
*** 

K 164 Env. (BY,LX,LV,OS) 3,160 121.1995 <0.0001 (4.2568e-

26) 
*** 

Testing for the effect of environment on grid distances under balanced environmental 
coverage for the two subjects separately. 
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7.1 

SP
C

 

Two-way circular 
ANOVA (Watson & 
Williams) results on 
grid orientation from 
the SPC dataset.  

H  311 Env. 2 35.4449 <0.001 
(1.6209e-

14) 

**
* 

Days 5 2.5680 0.0271 * 

K  376 Env. 2 12.9579 <0.001 
(3.7015e-

6) 

**
* 

Days 6 1.8633 0.9281  
Factor 1: Environments (BY, LV, LX) Days: 1-7 consecutive days (Fig. 
S25). 

7.2 

pS
PC

 

Two-way circular 
ANOVA (Watson & 
Williams) with 
repeated measures.  

H  47 Env. 2 4.4184 0.0162 * 
Days 4 0.7737 0.5466  

K  47 Env. 2 4.8958 0.0107 * 
Days 4 1.0595 0.3845  

From the pSPC dataset, grid orientation as dependent variable.  
Factor 1: Environments (BY, LV, LX), Factor 2: Days: 1-5 days. 

7.3 The angular mean orientations of grids in 
the three different envieonments with 
respect to external orientation cues 
(pSPC dataset).  

Subj n BY LV LX 
H 74 44.9

502° 
33.3972° 47.9038

° 
K  74 45.2

648° 
36.3928° 45.2994

° 
The cells from the pSPC dataset included spatially 
periodic cells that were active in all 3 environments.  
 

7.4 

pP
G

C
 

Circular ANOVA 
(Watson & Williams) 
results on pPGC 
dataset.  

Subject Neuro
ns 

Fact d.f. F P H 

[H,K] 30 Env. 3,26 4.2524     0.0143 * 
Data were combined from the two patients. 

7.5 The angular mean orientations of grids in 
the three different envieonments relative 
to external orientation cues.  

Subj n BY LV LX 
[H,K]  30 56.1

092° 
36.2281° 61.0761

° 
The cells in the sample included spatially periodic 
cells that were active in all 3 environments from the 
pPGC dataset. 

7.6 

pS
PC

 

Watson-Williams 
test for the equality 
of mean grid 
orientation on the 
pSPC same-cells 
dataset. 

Subject Segm Env. d.f. F P H 
H -K 49 BY 1, 48 0.4029 0.5286  
H -K 49 LV 1, 48 2.0493 0.1588  
H -K 49 LX 1, 48 3.2680 0.0769  

7.7. Watson-Williams 
test for the equality 
of mean grid 
orientation.  

Comb 49 Env. 
BY-LV 

1,97 15.6364 <0.001 
(01.4511e-

4) 

**
* 

Comb 49 Env. 
LV-LX 

1,97 5.1152 <0.05 
(0.0259) 

* 

Comb 49 Env. 
BY-LX 

1,97 1.7934 0.1836  

Test between BY-LV, LV-LX and BY-LX environments on the pSPC 
same-cells dataset combined across subjects. 

7.8 

SP
C

 Watson-Williams 
test for the equality 
of mean grid 

Comb 436 Env. 
BY-LV 

1,434 69.2849 <0.001 
(1.1102e-

15) 

**
* 
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orientation.  Comb 289 Env. 
LV-LX 

1,287 55.5930 <0.001 
(1.0603e-

12) 

**
* 

Comb 445 Env. 
BY-LX 

1,443 1.3459 0.2466  

Test between BY-LV, LV-LX and BY-LX environments on the SPC 
dataset combined across subjects.  

7.9 

PG
C

hi
-c

on
f 

The angular mean 
orientations of grids.  
 

Subject n 
 

BY LV LX 

K  112 40.77
07° 

29.3931° 48.2491° 

H 117 48.40
61° 

40.5197° 43.0110° 

Data from the PGChi-conf dataset in three different envieonments relative 
to external orientation cues for the two subjects. 

7.10 Circular ANOVA 
(Watson Williams 
test) of differences 
in angular mean 
orientations of grids.  

Subject Segm
ents 

Env. d.f. F P H 

K 112 BY, 
LV, LX 

2, 
109 

5.1829 P<0.01 
(0.0071) 

** 

H  117 BY, 
LV, LX 

2,114 7.9491 P<0.001 
(5.8643e-

04) 

**
* 

From the PGChi-conf dataset in three different envieonments relative to 
external orientation cues. 

7.11 

pP
G

C
hi

-c
on

f 

Circular ANOVA 
(Watson Williams 
test) applied to 
mean orientations of 
grids.  

[H, K] 39 BY, 
LV, LX 

3, 
152 

3.2626 P<0.05 
(0.0232) 

* 

Data from the pPGChi-conf dataset combined from two subjects for testing 
differences between three environments relative to external orientation 
cues. 

7.12 Parametric Two-way 
Circular ANOVA 
(HK test) applied to 
mean orientations of 
grids.  

[H, K] 116 Env. 
(BY, 
LV, LX) 

2 4.3472 P<0.05 
(0.0161) 

* 

  Days 11 1.4320 P= 0.1748  
From the pPGChi-conf dataset combined from two subjects. The factors 
were Environments and Days. 

7.13 Repeated-sample 
circular test for 
mean grid 
orientation in 
differently sized and 
shaped 
environments using 
the pPGChi-conf 
dataset. 

Subject Neuro
ns 

Env. d.f. Mu  (conf.  
interval) 

P H 

[H, K] 39 BY, LV 1, 38 -0.1161 (-
0.2067,-0.0255) 

P<0.05  * 

[H, K] 39 LV, LX 1, 38 -0.1153 (-
0.2077,-0.0229) 

P<0.05 * 

[H, K] 39 BY, LX 1, 38 -0.1161 (-
0.0661,0.0640) 

P>0.5  

Testing the effect of environmental-geometry on the grid orientation. BY 
and LX are both square shaped, LV is rectangular. 

 
Table S7.  Environmental dependency of grid orientation 
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d.f. F P H 

8.1 

SP
C

 

One-way circular 
ANOVA (Watson-
Williams test) with 
independent samples 
on the SPC dataset.  

H 213 Env. 3 13.259
7 

<0.001 
(5.9108e-8) 

*** 

K 214 Env. 3 21.956
9 

<0.001 
(1.1520e-12) 

*** 

Dependent variable: grid rotational symmetry. Factor: Environments (BY, LV, 
LX, OS). 

8.2 Circular ANOVA 
(Watson-Williams 
test). 

H 74 Env. (LV,LX) 1,132   0.8875 * 
K 74 Env. (LV,LX) 1,136   0.1640 ** 
Comparison of grid rotational symmetry between LV and LX environments in 
the SPC dataset. 

8.3 Average angle of grid 
rotational symmetry 
by environment for 
two subjects in 
angular degree. 

Subj. BY  
(18 x 18 m) 

Ha LX  
(52 x 52 m) 

Ha LV  
(50 x 70 
m) 

Ha OS  
(70 x 70 
m) 

H 61.59°  >> 45.28° ≈ 44.77° > 32.98° 
K 59.08°  >> 47.89° ≈ 43.06° >> 27.81° 
SPC dataset. Ha is the accepted alternative hypothesis of inequality in 
rotational symmetry between environments (‘≈’ P>0.05; ‘>’ P<0.01; ‘>>’ 
P<0.001). 

8.4 

pS
PC

 

Repeated measure one-
way circular ANOVA 
(Watson-Williams test) 
on the rotational 
symmetry in the pSPC 
dataset. 

H 74 Environments 
(BY,LV,LX) 

2,72  
5.7739 

P<0.01 
(0.0047)  

** 

K 71 Environments 
(BY,LV,LX) 

2,69 20.569
4 

P<0.001 
(9.8483e-08)  

*** 

Dependent variable: grid rotational symmetry. Factor: Environments (BY, LV, LX). 

8.5 Repeated measure two-
way circular ANOVA 
(Watson-Williams test) 
on the rotational 
symmetry in the pSPC 
dataset. 

H 74 Environments 
(BY,LV,LX) 

2  5.6501  P<0.01 
(0.0059) 

** 

 74 Days 6 0.9213 0.4871  

K 71 Environments 
(BY,LV,LX) 

2 19.776
5 

P<0.001 
(9.8483e-08)  

*** 

 71 Days 4 1.7248 0.1571  

Dependent variable: grid rotational symmetry and days. Factor: Environments (BY, LV, 
LX). 

8.6 

pP
G

C
hi

-c
on

f 

Circular ANOVA 
(Watson-Williams test) 
on the rotational 
symmetry in the PGChi-
conf dataset with 
balanced coverage 

H 78 BY, LV, LX, 
OS 

3, 75 9.034 P<0.001 
(3.5194e-

05) 

*** 

K 140 BY, LV, LX, 
OS 

3,13
4 

23.783
9 

P<0.001 
(2.1031e-

12) 

*** 

After 50% reduction of trajectory in the BY environment. Factor: Environments (BY, LV, 
LX, OS). 

8.7 Pairwise Circular 
ANOVA (Watson-
Williams test) on the 
rotational symmetry in 
the PGChi-conf dataset 
with balanced coverage. 

H 50 BY, LV 1,49 15.749
7 

P<0.001 
(2.3587e-

04) 

*** 

H 32 LV, LX  1,31 0.0329 P=0.8573  

H 27 LX, OS 1,26 0.3311 P=0.5700  
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K 79 BY, LV 1,78 40.252
8 

P<0.001 
(1.3508e-

08) 

*** 

K 42 LV, LX 1,41 0.1320 P=0.7183  

K 57 LX, OS 1,56 0.6542 P=0.4220  

After 50% reduction of trajectory in the BY environment. Factor: Environments (BY-
LV,LV- LX and  LX-OS). 

 
Table S8. Environmental dependency of grid rotational symmetry 
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9.1 

PG
C

hi
-c
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One-way ANOVA for 
testing the environment-
dependent variation of 
heading directions of all 
neurons in the PGChi-
conf dataset. 

H 85 BY, LV, LX, OS 3, 81 2.6122 0.0569  
Dependent variable: average tuning direction; Environments: BY, LV, LX, and 
OS. 

9.2 One-way ANOVA for 
testing the environment-
dependent variation of 
resultant vectors of the 
direction-tuning of 
neurons in the PGChi-conf 
dataset. 

H 85 BY, LV, LX, OS 3, 81 0.1616 0.9219  
Dependent variable: resultant vector; Environments: BY, LV, LX, and OS. 

9.3 

pP
G

C
hi

-c
on

f 

Repeated sample 
ANOVA for testing the 
environment-dependent 
variation of resultant 
vectors of the direction-
tuning of neurons active 
in multiple environments 
from the pPGChi-conf 
dataset 

H 74 Days 4 1.2264 0.3092  
  Environments: BY, 

LV, LX, OS 
2 0.2782 0.7581  

Dependent variable: resultant vector; Environments: BY, LV, LX, and OS. 

 
Table S9. Direction tuning of putative grid cells 
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10.1 

SP
C

 

Wilcoxon signed rank 
test for testing the 
hypothesis that the 
distribution median is 
equal to 0. 

Comb. 879 BY, LV, LX, OS 1,878 0.093181 4.726e-49 *** 

Two-fold cross-validation: Dependent variable: 2D correlation coefficient 
between firing rate maps of the first and second half of the 5 min navigation 
trial.  

10.2 

PG
C

hi
-

co
nf

 

Wilcoxon signed rank 
test for testing the 
hypothesis that the 
distribution median is 
equal to 0. 

Comb. 285 BY, LV, LX, OS 1,284 0.1412 1.4887e-19 *** 

Two-fold cross-validation: Dependent variable: 2D correlation coefficient 
between firing rate maps of the first and second half of the 5 min navigation 
trial. 

10.3 

SP
C

 

Wilcoxon signed rank 
test for testing the 
hypothesis that the 
distribution median is 
equal to 0. 

Comb. 969 BY, LV, LX, OS 1,968 0.13829 1.2137e-86 *** 
Stationarity: Dependent variable: 2D correlation coefficient between firing rate 
maps constructed from odd and even numbered spikes. 

10.4 

PG
C

hi
-

co
nf

 

Wilcoxon signed rank 
test for testing the 
hypothesis that the 
distribution median is 
equal to 0. 

Comb. 311 BY, LV, LX, OS 1,310 0.20958 1.1556e-35 *** 
Stationarity: Dependent variable: 2D correlation coefficient between firing rate 
maps constructed from odd and even numbered spikes.  

 
Table S10. Stability of grids estimated by cross-validation and stationarity of firing 
rate maps. 
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Fig. S1: Layout of the four virtual environments. (A) Scale invariant representations 
of the four environments. Bolded circles indicate the position of space ships. Bolded 
lines outline the navigable area of each map. The open space environment did not have 
physical boundaries so the dashed area represents the range of alien placements. 
Arrows in the middle of environments indicate the initial orientation of the player. Red 
dashed lines indicate the angle of corners from the center. (B) Corresponding screen 
shots (backyard, Louvre, Luxor, open space). 
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Fig. S2. Spike sorting and integrity of single-unit activity across environments. Single unit 
activity extracted from continuous recordings, including navigation in four different virtual 
environments, illustrated with examples from two patients (S-D: patient 1; E-H: patient 2). (A) 
Classification of spike waveforms collected during a 20 min recording session. (B) Clustering of 
wavelet coefficients indicate spikes originating from 3 putative neurons shown with 3 of their 
wavelet coefficients. (C) The same 3 waveforms clusters superimposed and sorted according to 
the environments (env 1-4). The 3D insets illustrate the consistent quality of unit isolation during 
the navigation in each environment. (D) The raster plot of three single-unit cluster during the four 
blocks of navigation in the four different environments. (E-H) Same representation as in (A-D), 
except these single units were isolated from a different subject during a 25 min recording session. 
For the sake of illustration only the first 100 waveforms are plotted. Heavy lines over waveforms 
represent means. Spikes were amplitude and time aligned within a 1.166 ms window (28 sampling 
points after smoothing and down-sampling the 48 kHz recordings to 24 kHz). 
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Fig.  S3. Definition gridness and spatial 
periodicity. (A) Single unit activity detected 
and classified based on wavelet coefficients 
extracted from a 20 min recording session. 
(B) A subset of those single units was active 
in the LV environment. (C) Traces of 5 min 
navigation in the LV environment (gray lines) 
with single unit activity superimposed (red 
markers). (D) Autocorrelogram constructed 
based on the firing rate map (not shown). (E) 
The normalized autocorrelogram after 
removal of the central peak. The inner and 
outer circles represent the omission of the 
central peak and the 2.5-times the radius of 
largest peaks around the center, 
respectively. In this example, the outer ring is 
beyond the boundaries of the 
autocorrelogram. (F) Correlation coefficients 
as a function of rotation of the 
autocorrelograms. The autocorrelogram was 
rotated from 1° to 180°. The modulation 
depth of correlation defined as the difference 
between the maximum of troughs at 30, 90 
and 150°, and the minimum of peaks, served 
as the gridness score g (red arrow). Spatial 
periodicity, in contrast, was defined as the 
difference between the local minimum (r-peak) 
closest to the 0° and the first local maximum 
(r+peak

 ) at an angle larger than the angle of 
local minimum of correlation. The angles at 
which the peak correlation occurred (green 
dashed lines) defined the angle (g) of spatial 
periodicity (sp).  
 

(G) The distribution g after shuffling the spatial firing configurations of single unit activity 1,000-times. 
Dashed line near zero represents the 95 percentile confidence of the distribution. Because for the single 
unit in this example g=0.20867 > 95 percentile, we rejected the Null and accepted the alternative that the 
spatial activity of this unit was periodically modulated. (H) We computed the distribution of grid scores 
from 1,000 randomized autocorrelograms as well as the distribution of observed spatial periodicity (sp) 
and the two histograms were superimposed. Blue bars represent the combined distribution of spatial 
periodicity (sp) from n=2,008 single unit data segments. The black histogram represents the distribution of 
sp over a population of 1,000 randomly generated autocorrelograms. Dashed line signifies the 95 
percentile of the random gridness distribution. The left side ordinate represents the number of segments at 
a given sp, while the right ordinate represents the approximate number of cells these data segments 
derive from. (I) The proportional Euler diagram represents the number of trials and neurons used in this 
study (Supplemental Table 3). The largest circle corresponds to the whole sample of isolated single units 
and trials, also correspond to the blue histogram in (H). A fraction of these cells was identified containing 
spatially periodic (SPC) cells and they correspond to the right side of the distribution (sp>0.33) where the 
overlap with the sp computed from the randomized firing rate maps was less than 5 percent. A subset of 
those cells displayed persistent activity in at least 3 environments, labeled as persistent spatially periodic 
(pSPC). The inner two circles represent the subset of putative grid cells (PGC) and persistent putative grid 
cell (pPGC) populations. Fractions are proportional to the total number of trials and isolated single units 
(outer circle). 
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Fig. S4. Modeling and verifying theta-frequency modulated spike trains combined with directional 
but no spatial tuning. (A) Recorded spikes (red symbols) and the path of virtual navigation overlaid. Data 
were collected over 5 min of spatial navigation in the BY environment. (B) Heading directions of the 
navigation are color-coded. (C) Iso-directional pathway segments (330°+/-15 in this example) extracted from 
the original pathway in (A and B). (D) Spikes dispersed along the iso-directional segments constrained by a 
sharp direction tuning and a combination of theta and alpha frequency modulation. Bursts firing and 5 ms 
refractoriness was added to the temporal modulation of the spike train. (E) Angular histogram verified the 
direction tuning of the simulated spike train. The direction tuning for a given spike train was sampled from a 
uniform von Mises distribution. (F) The autocorrelogram spikes reflects a periodic ~5 Hz theta frequency 
modulation and a smaller amount of 10 Hz modulation. (G) Autocorrelogram at small timescale verified a ~5 
ms burst firing. (H) Spatial firing rate map of the simulated neuron’s activity. (I) Spatial autocorrelogram of 
the firing rate map on (H). 
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Fig. S5. Cross-validation of the spatial mapping of single unit activity. In this example, we were 
monitoring the spatial activity of the same two putative neurons during the same but non-contiguous 
navigation session in two identical environments separated by 10 min. (A) Single unit waveforms 
associated with the first 5 min game session and (B) the other 5 min game time in the same environment 
(B). The waveforms are superimposed and their wavelet coefficient clusters are shown in 3D insets. 
(C,D) the spatial activity of single unit #2 was mapped during the two non-contiguous navigation 
sessions. (C) Raster plots of spike times associated with the two single unit clusters (consistent color 
coding) during the two navigation sessions. The associated heat maps represent the topography of the 
firing rates of the two single units during 5 min spatial navigation. Hot colors indicate high firing 
probability. The two-dimensional correlation coefficients between the two firing rate maps were 
significant (r> .5, p(n=22,22) <.0001) for both single units. (E) The spatial autocorrelogram of firing rate map 
a, the spatial cross-correlogram of firing rate map a and b and the element-by-element product of firing 
rate maps a and b of panel (C) and (D). Neither the spatial autocorrelogram nor the a x b cross-
correlogram differed significantly (Student’s paired-sample t-test, t= .3072 p(n=22,22)= .7588). Conversely, 
the element-by-element product of a and b unraveled the grid structure shared between the two 
navigation trials. Pink insets represent the layout of the BY environment where the 5 min navigation took 
place. (F) Two-fold cross-validation of the stability of firing rate maps across two populations of spike 
trains. Histograms represent the distribution of 2D correlation coefficients between firing rate maps 
computed from the first 2.5 minutes and second 2.5 minutes of every navigations session in combined 
across different environments, days and subjects. SPC dataset on top and PGChi-conf dataset below. (G) 
Stationarity analysis. Histograms represent correlation coefficients computed between firing rate maps 
from single units sampled every odd numbered and every even numbered spike, recorded during the 
same recording session. Vertical black lines mark r=0 and vertical red lines represent the medians of 
distributions. R > 0 predominates in all distributions. Y axes: number of spike train segments; X axes: 2D 
Pearson’s correlation on pixels. (F,G) 68-83% of cells achieved r>0.2 correlations between the first and 
second intervals. (n: the total number of data segments; N: the number of neurons). See further 
examples for cross-validation and stationarity analysis in Fig. S37. 
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Fig. S6. Correlation between grid period and environmental size at actual and 
normalized scales in the SPC dataset. (A) Correlation between grid periods and scene 
dimension. Data points at 18, 50, 52 and 70 correspond with the edge lengths of the four 
environments. This plot further emphasizes the linear relationship between environment size 
and grid distance depicted in Fig.3A except this was constructed from the pSPC dataset after 
combining data from the two subjects (92 neurons that showed significant spatial periodicity in 
at least 3 environments during the same day). Environments were backyard [BY], Luxor [LX], 
Louvre [LV], and open space [OS]. The length of the shorter axes of given environments (x) is 
plotted against the grid period (y). (B) Correlation between grid frequency (normalized grid 
size) and scene dimension. Same as in (A) except grid periods were normalized by the 
environment size. After normalization, grid size differences between the small and large 
environments decreased yet remained significant (p<0.05). At the top are the layouts for 
illustration of the scale differences before and after normalization. 
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Fig. S7. Correlation between grid period and environmental size at actual and normalized 
scales within the PGC dataset. (A) Correlation between grid periods and scene dimension. Data 
points at 18, 50, 52 and 70 correspond with the edge lengths of the four environments in meters. 
The relationship between environment size and grid distance is linear as also depicted in Fig.3A, 
except this was constructed from the PGC dataset after combining data from the two subjects (n=73 
neurons and 292 trials collected over multiple days). Environments were backyard [BY], Luxor [LX], 
Louvre [LV], and open space [OS]. The length of the shorter axis of the environment (x) is plotted 
against the grid period (y). (B) Correlation between grid frequency (normalized grid size) and scene 
dimension. Same as in (A) except grid periods were normalized by the environment size. After 
normalization, grid size differences between the small and large environments disappeared (NS). 
The straight lines represent linear regression of the data points. (C) Daily variation of grid periods 
grouped according to environments. Black bars represent first days and open bars represent last 
days. Missing bars correspond to days when no putative grid cells were observed. Error bars are SE 
of the mean. The insets above the bars illustrate the scale-proportionate layouts of the environments 
corresponding to the four groups of grid periods. 
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Fig. S8. Correlation between grid period and environmental in the PGChi-conf dataset. (A) 
Correlation between grid periods and scene dimension for subject H and K (left and right side 
plot, respectively). Open circles represent mean grid periods. Lines depict the linear regression of 
the data points represented by + symbols. Data points at 18, 50, 52 and 70 correspond with the 
edge lengths of the four environments in meters. The relationship between environment size and 
grid distance is linear as also depicted in Fig.3A S5 and S6, except this was constructed from the 
PGChi-conf dataset. Environments were backyard [BY], Luxor [LX], Louvre [LV], and open space 
[OS]. The length of the shorter axis of the environment (x) is plotted against the grid period (y). 
(B) Daily variation of grid periods grouped according to environments. Dark blue bars represent 
the first days and yellow bars represent last days. Missing bars correspond to days when none of 
the single units classified as PGChi-conf. Error bars are SE of the mean. The insets below the bar 
charts illustrate the scale-proportionate layouts of the environments. 
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Fig. S9. Correlation between grid period and environmental size in the PGChi-conf dataset 
under balanced environmental coverages. (A) The layouts of the backyard (BY) and Louvre (LV) 
environments with trajectories and single unit activity, indicated by red and black symbols, during 5 
virtual navigations. Environments are scaled differently. To balance the differential density of spatial 
coverages between the BY and LX, LV and OS environments, we reduced the navigation path in 
the BY environment to the 50% its original length (black lines overlaid on gray trajectories). This 
resulted in a reduction of single unit activity recorded as well (red symbols) relative to the total 
single unit activity (red and black symbols) without changing the average firing rate. (B) Correlation 
of grid distance with environment size under balanced spatial coverage for the two subjects shown 
separately (subject H and K at the left and right, respectively). The slopes of linear regressions 
(f(x)=.4108x-3.241 and f(x)=.4153x-4.218) did not change relative to the slopes obtained from the 
complete datasets (dotted gray line from Fig. 3, also Fig. S5 and S6). (C) Median grid sizes and 
quartiles in four different environments. The central notches are medians and boxes contain the 2nd 
and 3rd quartiles of data. (D) Daily average grid distances and SE of the mean for the two patient 
participants side by side. At the bottom, we illustrate the size differences between virtual 
environments on the same scale. 
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Fig. S10. Combination of simultaneously recorded SUA from the same electrode in the same 
environment completes grid-like firing-rate maps. (A) All maps were derived from the same 5 
min recording session during navigation in the Luxor environment. (B) The two-dimensional 
projection of four clusters of single unit activity (SUA) isolated from recordings across 4 
environments and their corresponding waveforms. Cluster separation was quantified by 
Mahalanobis distance d. (C-E) Incremental combination of SUA derived from SUA clusters 1, 2, 3, 4, 
respectively.  Panels in the first column represent the spatial map of SU activity. The second column 
depicts the corresponding spatial firing-rate maps from the combined SUA. The third column 
displays the corresponding spatial ACs. The hexagonal grid in the third column of (c-e) illustrates 
that the combined SUA nodes are consistent with a hexagonal tessellation pattern. Note the 
increasing coverage of space while the hexagonal tessellation of the autocorrelation alters the grid 
geometry in the ACs. Scales are in [m]. 
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Fig. S11. Independence of grid scaling from obstacles. (A) Maps were computed from a 
10 min recording session during navigation in the Luxor environment. (B,C) Three single unit 
activity (SUA) clusters and their corresponding waveforms are shown out of the four cells 
isolated from the same electrode (three of the same SUAs as on Fig. S5). Mahalanobis 
distances between pairs of single unit clusters are indicated (d). (D) The superimposed firing 
locations of the three putative neurons projected on the layout of the environment. Gray 
circles represent pillars in the space. (E) Spatial firing rate map of the combined activity of 3 
putative neurons on the full scale of firing rates and (F) when the firing rates are clipped to 
the upper third. The observation that grid density appears to be less than the density of 
obstacles suggests the independence of grid scaling from the obstacles in the environment. 
Scales are in [m]. 
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Fig. S12. Example cell #01. (A) Spike waveforms were classified into feature clusters. A 3D 
subspace of the multidimensional feature-space is shown. A cluster of spikes (red dots) was isolated 
against the noise (black cloud) by using superparamagnetic clustering (see Methods). This cluster 
captures single-unit activity of a putative neuron that is mapped in (D-F). Cluster separation was 
quantified by Mahalanobis distance d. (B) The corresponding waveforms of the SUA and noise 
clusters superimposed. (C) The SUA was recorded during a 5 min session in the Luxor environment. 
(D) The firing locations of the SUA projected on the layout of the environment. Cyan circles 
represent the spatial registration of SUA and the gray line is the path taken. (E) Spatial firing rate 
map of the SUA.  (F) Corresponding spatial autocorrelogram shows 60° rotational symmetry. Scales 
are in [m]. 
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Fig. S13. Example cell #02. The organization of the panels is the same as in example Cell#01. (A) 
Two putative neurons were discriminated (SUA1 and SUA2 as red and green dots, respectively) 
against the noise cluster (black dots). Cluster separation was quantified by Mahalanobis distance d. 
(B) Corresponding waveforms. (C) Cells were recorded during a 5 min session in the Open 
environment. (D) The firing locations of putative neuron identified as SUA 2 projected on the layout 
of the environment. Green circles represent SUA2, gray line is the path taken. (E) Spatial firing rate 
map of the SUA.  (F) Corresponding spatial autocorrelogram shows 45° rotational symmetry. Scales 
are in [m]. 
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Fig. S14. Example cell #03. The organization of the panels is the same as in example Cell#01. (A) 
One putative neuron was discriminated (red markers: SUA) against the noise cluster (black markers: 
MUA). Cluster separation was quantified by Mahalanobis distance d. (B) Corresponding waveforms. 
(C) Cells were recorded during a 5 min session in the Louvre environment. (D) The firing locations of 
the SUA projected on the layout of the environment. Red circles represent SUA, gray line is the path 
traveled. Inset represent head direction tuning. (E) Spatial firing rate map of the SUA.  (F) 
Corresponding spatial autocorrelogram shows 29° rotational symmetry. Scales are in [m]. 
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Fig. S15. Example cell #04. The organization of the panels is the same as in example Cell#01. (A) 
One putative neuron was discriminated (red markers: SUA) against the noise cluster (black markers: 
MUA). Cluster separation was quantified by Mahalanobis distance d. (B) Corresponding waveforms. 
(C) Cells were recorded during a 5 min session in open environment (OS). (D) The firing locations of 
the SUA projected on the layout of the environment. Red circles represent SUA, gray line is the path 
traveled. (E) Spatial firing rate map of the SUA.  (F) Corresponding spatial autocorrelogram shows 
38° rotational symmetry. Scales are in [m]. 
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Fig. S16. Example cell #05. The organization of the panels is the same as in example Cell#01. (A) 
Waveform clustering displays a well-isolated SUA1 (red dots) and a homogeneous multiunit cluster 
(black cloud). Cluster separation was quantified by Mahalanobis distance d. (B) Corresponding 
waveforms superimposed. (C) The spatial maps of the neuronal activity were constructed during a 5 min 
spatial task in the Backyard environment. (D) The firing locations of the SUA1 projected on the layout of 
the environment. Red circles represent SUA1, gray line is the path taken. (E) Spatial firing rate map of 
the SUA and (F) the corresponding spatial autocorrelogram, displaying 14, 28, and 42° rotational 
symmetries. Scales are in [m]. 
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Fig. S17. Example cell #06. The organization of the panels is the same as in example Cell#01. (A) 
Waveform clustering discriminated three well-isolated single unit clusters (red, green and blue dots). 
Pairwise Mahalanobis distances between clusters are indicated by d values.  (B) Corresponding 
waveforms superimposed. (C) Spatial maps were derived from 5 min navigation in the Open 
environment. (D) The firing locations of the SUA2 projected on the layout of the environment. Red 
circles represent spikes of SUA2, gray line is the path taken. (E) Spatial firing rate map of the SUA2 
and (F) the corresponding spatial autocorrelogram, displaying 48° and 87° rotational symmetries. 
Scales are in [m]. 
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Fig. S18. Example cell #07. The organization of the panels is the same as in example Cell#01. (A) 
Waveform clustering discriminated three single unit clusters (red, green and magenta dots) that were 
isolated from one another as well as from the noise cluster (black cloud). Cluster separations 
between the central noise and individual clusters indicated by the Mahalanobis distances d. (B) 
Corresponding waveforms superimposed. (C) Spatial maps were derived from 5 min navigation in 
the Backyard environment. (D) The firing locations of the SUA1-2-3 projected on the layout of the 
environment. Red, green and magenta circles represent spikes of SUA1,2 and 3, respectively. Gray 
line is the path taken. (E) Spatial firing rate map of the combined SUA spikes and (F) the 
corresponding spatial autocorrelogram, displaying 43° and 80° rotational symmetries. Scales are in 
[m]. 
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Fig. S19. Example cell #08. The organization of the panels is the same as in example Cell#01. 
(A) One single unit cluster (red dots) was isolated from the noise cluster (black cloud). Cluster 
separation was quantified by Mahalanobis distance d. (B) Corresponding waveforms 
superimposed. (C) Spatial maps were derived from 5 min navigation in the Louvre environment. 
(D) The firing locations of the SUA projected on the layout of the environment. Red circles 
represent spikes of SUA. Gray line is the path taken. (E) Spatial firing rate map of the SUA spikes 
and (F) the corresponding spatial autocorrelogram, displaying 87° rotational symmetry. Scales are 
in [m]. 
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Fig.  S20. Example cell #09. The organization of the panels is the same as in example Cell#01. 
(A) The waveform clustering shows two well-isolated single unit clusters (red and black cloud of 
dots). Cluster separation was quantified by Mahalanobis distance d. (B) Corresponding 
waveforms superimposed. (C) The spatial activity of cells was tracked during a 5 min memory 
driven navigation task in the Louvre environment. (D) The firing locations of the SUA2 projected 
on the layout of the environment. Red circles represent SUA2, gray line is the path taken. (E) 
Spatial firing rate map of the SUA and (F) the corresponding spatial autocorrelogram, displaying 
45° rotational symmetry. Scales are in [m]. 
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Fig. S21. Example cell #10. The organization of the panels is the same as in example Cell#01. 
(A) Same cell clusters as shown in Fig. S17: Example cell #9. The waveform clustering shows two 
well-isolated single unit clusters (red and black cloud of dots). Cluster separation was quantified 
by Mahalanobis distance d. (B) Corresponding waveforms superimposed. (C) The spatial maps of 
the neuronal activity were constructed during a 5 min spatial task in the Louvre environment. (D) 
The firing locations of the SUA1 projected on the layout of the environment. Red circles represent 
SUA1, gray line is the path taken. (E) Spatial firing rate map of the SUA and (F) the corresponding 
spatial autocorrelogram, displaying 57° rotational symmetry. Scales are in [m]. 
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Fig. S22. Example cell #11. The organization of the panels is the same as in example Cell#01. (A) 
A single unit cluster (red dots) isolated from the noise cluster (black cloud of dots) is shown. Cluster 
separation was quantified by Mahalanobis distance d. (B) Corresponding waveforms superimposed. 
(C) The SUA1 neuronal activity was recorded during a 5 min session in the Backyard environment. 
(D) The firing locations of the SUA projected on the layout of the environment. Red circles represent 
SUA, gray line is the path taken. (E) Spatial firing rate map of the SUA. (F) Corresponding spatial 
autocorrelogram shows 42° rotational symmetry. Scales are in [m]. 
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Fig. S23. Example cell #12. The organization of the panels is the same as in example Cell#01. (A) 
The waveform clustering shows the isolation of a single unit cluster (red) from the background 
multiunit noise cloud (black dots).  Cluster separation was quantified by Mahalanobis distance d. (B) 
Corresponding waveforms superimposed. (C) The spatial maps on (d-f) were derived from neuronal 
activity recorded during a 5 min spatial task in the Backyard environment. (D) The firing locations of 
the SUA projected on the layout of the environment. Red circles represent SUA, gray line is the path 
taken. (E) Spatial firing rate map of the SUA.  (F) Corresponding spatial autocorrelogram shows 48° 
rotational symmetry. Scales are in [m]. 
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Fig. S24. Example cell #13. The organization of the panels is the same as in example Cell#01. 
(A) The spike waveform clustering revealed a single unit (red dots) separated from multiunit 
activity and noise (black cloud of dots). Cluster separation was quantified by Mahalanobis distance 
d.  (B) Corresponding waveforms superimposed. (C) The illustrated cell was followed during a 5 
min session in the Louvre environment. (D) The firing locations of the SUA projected on the layout 
of the environment. Red filled circles represent SUA, gray line is the path taken. (E) Spatial firing 
rate map of the single putative neuron.  (F) Corresponding spatial autocorrelogram with the 
cardinal angles of the grid spokes. Rotation symmetry is ~60°. Scales are in [m]. 
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Fig. S25. Example cell #14. The organization of the panels is similar to the example 
Cell#01 except panel (D) featuring the directional tuning of the single unit activity. (A) The 
spike waveform clustering revealed a single unit (red dots) separated from multiunit activity 
and noise (black cloud of dots). (B) Corresponding waveforms superimposed. (C) 
Screenshot of the navigation game of the backyard (BY) environment. (D) The directional 
tuning of the cell. (E) Spatial firing rate map of the single putative neuron.  (F) Corresponding 
spatial autocorrelogram with the cardinal angles of the grid spokes. Rotation symmetry is 
~90°. Scales are in [m]. 
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Fig. S26. Example cell #15. The organization of the panels is similar to Fig. S11 except panel 
(D) featuring the directional tuning of the single unit activity. (A) The spike waveform cluster 
revealed a single unit (red dots) separated from multiunit activity (black cloud of dots). (B) 
Corresponding waveforms of the single unit and multi-unit activity superimposed. (C) Spikes 
overlaid on the trajectory of navigation in the LV environment. (D) The directional tuning of the 
cell. (E) Spatial firing rate map of the single unit activity.  (F) Corresponding spatial 
autocorrelogram with the cardinal angles of the grid spokes. Rotation symmetry is 87°. Scales 
are in [m]. 
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Fig. S27. Example cell #16. The organization of the panels is the same as that of Fig. S25. (A) 
The spike waveform clusters of single unit (red dots) separated from multiunit activity (black 
cloud of dots). (B) Corresponding waveforms of the single unit and multi-unit activity 
superimposed. (C) Spikes (red filled symbols) overlaid on the trajectory of navigation in the LV 
environment. (D) The heading directional tuning of the cell. (E) Spatial firing rate map of the 
single unit activity.  (F) Corresponding spatial autocorrelogram with the cardinal angles of the grid 
spokes. Rotation symmetry is 87°. Scales are in [m]. 
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Fig. S28. Example cell #17. The organization of the panels is the same as that of Fig. S24. 
(A) The spike waveform clustering revealed a single unit (red dots) separated from multiunit 
activity and noise (black cloud of dots). (B) Corresponding waveforms superimposed. (C) The 
trajectories of 5 min virtual navigation in the backyard (BY) environment. The firing locations of 
the SUA projected on the layout of the environment. Red filled symbols represent SUA, gray 
line is the path taken. (D) The directional tuning of the cell. (E) Spatial firing rate map of the 
single putative neuron.  (F) Corresponding spatial autocorrelogram with the cardinal angles of 
the grid spokes. Rotation symmetry is ~87°. Scales are in [m]. 
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Fig. S29. Examples for scaling of grid distance by environment size. (a-c) Three 
representative neurons are shown to illustrate the scaling effect on grid sizes in response to 
exposure to four different environments. The upper rows represent firing rate maps color 
coded, lower lows heat-maps represent the autocorrelograms computed from the firing rate 
maps, also color coded (red indicate high autocorrelations). Panels from left to right 
correspond with the four environments: backyard (BY), Luxor (LX), Louvre (LV) and open 
environment (OS). The size and aspect rations of the maps proportional to the size of the 
virtual environments. Red bars under each main panel represent the average grid distance 
computed from the autocorrelograms relative to a 10 m black reference bar adjacent to 
them. Grid distances are also indicated numerically.  
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Fig. S30. Variation of gridness and firing rate in the SPC dataset across environments. (A) 
Gridness decreases with the size of environment. The environments are listed from the smallest 
(BY=backyard) to the largest (OS=open space). Gridness significantly differs between BY and LV 
and LX and OS but not between LV and LX (NsubjH=384, NsubjK=229 segments). (B) The correlation 
between gridness and the shortest dimension of the environment. Filled symbols represent mean 
gridness over all days and recordings from the given subject. Both subjects’ data displayed 
significant (p<0.0001) negative correlations between gridness and environment size. Dashed lines 
represent the linear regression model. (C) The average firing rate of cells from recordings during 
navigation in each of the four environments (complete dataset, NsubjH=389, NsubjK=435 segments). 
Dots represent outlier data points.  
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Fig. S31. Variation of gridness across environments in the PGC dataset. (A) Gridness scores 
grouped according to environments. The environments are arranged according to increasing sizes 
from the smallest BY (backyard) to the largest OS (open space). Gridness scores were unaffected 
by the environments. Data were combined from the two subjects (Ncells=73 Nsegments=292). (B) 
Gridness scores as a function of the environment size. Open circles represent mean gridness 
combined from all days and recordings from both given subjects. Single ‘+’ symbols represent the 
gridness of a cell recorded in a session within one environment. No significant correlation was 
observed between gridness and environment size (NS= no significant difference; Ncells=73; 
Nsegments=292). Solid line represents the linear regression model. 
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Fig. S32. Polar histograms of grid orientations from the population of SPC neurons from the two 
subjects. Average grid orientations per sessions combined across days from subject K (left) and subject 
H (right). Colors correspond to different environments. Note the clusters of angles near 30º, 45º, and 60º.  
(nK=376 and nH=311, Supplemental Table 7.1).  
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Fig. S33. Direction tuning of neurons across from the PGChi-conf dataset across 
environments. (Data from subject H.) (A) Direction tuning of a neuron from the pPGC dataset 
during navigation in the BY environment. (B-E) Circular histograms represent the distributions of 
the mean preferred direction of neurons sorted according to environments and combined over 
days. The arrows in color represent the mean resultant vectors. The relative length of the arrow 
proportional to the strength of direction tuning and inversely proportional to the dispersion of 
directions around the mean. (F) The boxplots represent the mean resultant vectors on the scale of 
0 to 1. The differences in mean directions between environments were not significant (ANOVA 
F(3,81)=0.1616, P(n=85)= .9219). 
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Fig. S34. Effect of spatial binning on grid parameters. A randomly chosen cell was tested by 
applying different bin sizes from .7 x .7 m to 2.0 x 2.0 m for spatial averaging of firing rates (A-D) 
Featured are the spatial autocorrelograms (left) and corresponding firing rate maps (right), 
according to four different bin sizes. While firing rate maps and autocorrelograms graphically 
change with different bin sizes, the quantitative descriptions of autocorrelograms retain similar 
values of grid distance (5.3 - 6.2 m), grid orientation (44 - 50º) and grid rotational symmetry (39 - 
52º). The exact grid parameters are listed above the panels. 
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Fig. S35. Examples of single unit activity with spatially periodic activity (SPC). The figure 
illustrates the firing rate maps of randomly selected examples from the SPC dataset. Each of 
these examples passed the test of significant spatial periodicity, however may not be included in 
the PGC category. The examples are organized in columns according to environments. Each 
heat-map represent the firing rate of single unit activity associated with individual neurons. 
Firing rates were computed based on 5 min navigation trials in each environment. Color-scale is 
normalized to the range of the neuron’s firing rate.  
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Fig. S36. Example for high spatial coherence and low cross-validation of spatial 
firing. (A) The spatial mapping of a low-firing-rate single unit activity (0.033 spike*s-1) 
recorded in the BY and LX environments. Note that the single spikes were elicited highly 
regularly at vertices of a grid-like metric. (C, D) Cross-validation of the firing rate maps of 
this neuron by grouping the spikes to two equal and non-overlapping intervals according to 
the gray-black scheme above the left and right panels resulted in non-overlapping firing rate 
maps. Despite the regular spacing of the firing pattern of the neuron during both intervals, 
the two firing rate maps display no correlation (nspikes=23, r=-0.0632, p>0.05).  
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Fig. S37. Two-fold cross-validation and stationarity analysis for testing stability of grids. The 
two types of stability assessment methods are compared on a putative grid cell example. (A) 
Trajectory of the avatar in the LV environment during a 5 min navigation session (left panel) and the 
corresponding firing rate map of a putative grid cell (right panel). (Green arrow: start of path; red 
arrowhead: end of path; circles: spaceships). (B) The two-fold cross-validation of firing rate maps is 
shown by splitting data into two equal time intervals symbolized by the half-gray and half-black bar. 
Panels are arranged as in (A). Panels in gray and black frames represent the trajectory and firing 
rate map during the first 2.5 minutes and second 2.5 minutes of navigation, respectively. (C) The 
firing rates in corresponding spatial bins during the first and second intervals are plotted as filled 
symbols with their (xij) and (yij) coordinates, respectively. The Pearson’s correlation coefficient is 
indicated by r. (D) Stationarity analysis: the same single unit activity as featured in (A) was 
temporally sorted and grouped according to even and odd numbered spikes. After grouping, we 
computed firing rate maps (right panels) separately from the even group (gray) and the odd group 
(black). Trajectories represent the corresponding path segments. (E) Same representation as in 
(C), except firing rates in corresponding bins were calculated from odd and even numbered spikes 
in (D) and plotted as xij and yij, respectively. Firing rates were compensated by the 50% 
subsampling of spikes to match original firing rates. Pearson’s r is indicated. While both cross-
validation and stationarity analysis resulted in highly significant correlations (p< .00001), the former 
in this example resulted in a modest correlation relative to the high correlation of stationarity. The 
explanation for this discrepancy is in the trajectories. The trajectories of the first and the second half 
are less overlapping than those of associated with odd and even spikes. See Fig. S5F,G for the 
population-level cross-validation and stationarity analysis. 
 




