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1 Supplemental Methods 

1.1 Acquiring and mapping data 

All datasets described in this paper were obtained from public sources and 

can be found in Supplemental Table 1. 

1.1.1 Mapping 5C data 

Data was downloaded from the Gene Expression Omnibus (GEO) website 

[1] and split into paired-end fastq files using Fastq-Dump v2.1.18 from the SRA 

toolkit. Read ends were mapping independently to probe sequences, also 

obtained from GEO, using Bowtie v0.12.7 [2] and the mapping settings               

“--phred33-quals --tryhard -m1 -5 3 -3 2 -v 2”. For each dataset, replicates were 

combined after mapping. 

1.1.2 Mapping HiC data 

HiC data were obtained from GEO and split using Fastq-Dump v2.3.5. 

Read ends were mapped independently to either the mouse genome, build 9, or 

the human genome, build 19, using Bowtie v0.12.7 and the mapping settings      

“--tryhard --phred33-quals -m 1 -v 2”. Reads were initially trimmed from the 3’ end 

to 50 base pairs (bp). After each round of mapping, reads that failed to align were 

trimmed again from the 3’ end, either 4 or 5 bp depending on if the read’s initial 

length was less than 40 bp or not, respectively. Alignment was repeated until all 

reads aligned or were shorter than 21 bp. For each dataset, replicates were 

combined after mapping. 

1.2 HiFive data normalization 
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All data processing and normalization using HiFive was performed using 

version 1.1.3. 

1.2.1 5C filtering 

5C read data were imported directly from the BAM alignment files and 

reads that either had a single mapped end or mapped to same-orientation probes 

were discarded. For each dataset, HiFive’s iterative filtering was performed using 

a cutoff of 20 interactions per fragment and a minimum interaction size of 50 

kilobases (Kb). The iterative filtering was accomplished as follows. For each valid 

(not removed from analysis) fragment, the number of non-zero interaction 

pairings longer than the size cutoff was found. Fragments with fewer interactions 

than the cutoff were removed. This was repeated until all fragment met the 

minimum interaction criterion. 

1.2.2 5C distance dependence function estimation 

The distance dependence estimation function for each 5C dataset was 

found using a power-law relationship [3], with parameter values derived from a 

linear regression between the log-transformed interaction sizes and the log-

transformed observed reads for each valid (unfiltered) non-zero fragment pairing 

(Supplemental Fig. 5). So for an interaction between forward fragment i and 

reverse fragment j in region n, the expected distance dependent signal is defined 

as: 

 D(i, j) = γ ln(dij )+ µglobal + µn   (1) 
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with the global and regional mean log-transformed interaction signals µglobal and 

µn, respectively, and the slope parameter from the linear regression γ. The value 

µglobal is the mean value of all valid log-transformed counts across the set of all 

regions N (2). 

 µglobal =
ln(cij )

j∈n

cij>0

∑
i∈n
∑

n∈N
∑

1
j∈n

cij>0

∑
i∈n
∑

n∈N
∑

  (2) 

The value µn is used to rescale correction parameters to have a mean correction 

of zero (3).  

 µn =
( fi+ f j )

j∈n
∑

i∈n
∑

1
j∈n
∑

i∈n
∑   (3) 

This parameter has a value of zero until normalization is performed using either 

the Express or Probability algorithms, at which time it is calculated and the 

fragment correction parameters are adjusted (4).  

 fi
' = fi −

µn

2
  (4) 

1.2.3 5C normalization - Probability 

5C data normalized using HiFive’s Probability algorithm were modeled 

using a lognormal distribution. Each region’s correction values were learned 

independently. Prior to learning, correction values were initialized as the square 

root of the mean difference of log-transformed non-zero interaction values and 

distance-dependence signals (5). 
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 fi =
ln(cij )− D(i, j)⎡⎣ ⎤⎦

j∈n

cij>0

∑
i∈n
∑

2
j∈n

cij>0

∑
i∈n
∑

   (5) 

Correction values were found using backtracking line gradient descent. Learning 

continued for a maximum of 1000 iterations and terminated early if the maximum 

correction parameter gradient fell below 5e-4. The expected value for each log-

transformed interaction was calculated as the sum of its predicted distance-

dependent signal, the correction value for the first fragment, and the correction 

value for the second fragment (6).  

 Eij = D(i, j)+ fi + f j   (6) 

Because counts were discrete, the cost C function was not strictly calculated as 

originating from a lognormal distribution but instead was found as follows: 

 C = −
[1− I(cij )]ln φ

ln(cij )− Eij

σ
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

I(cij )ln Φ
ln(cij + 0.5)− Eij

σ
⎛
⎝⎜

⎞
⎠⎟
− Φ

ln(cij − 0.5)− Eij

σ
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ij

cij>0

∑   (7) 

where 𝛷 is the cumulative probability function for the standard normal 

distribution, 𝜙 is the probability density function for the standard normal 

distribution, and σ is the standard deviation prior to normalization (8). 

 σ =
ln(cij )−γ ln(dij )− µglobal⎡⎣ ⎤⎦

2

j∈n

cij>0

∑
i∈n
∑

n∈N
∑

1
j∈n

cij>0

∑
i∈n
∑

n∈N
∑⎛

⎝⎜
⎞

⎠⎟
−1

  (8) 
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I is an indicator function (9). 

I(cij ) =
1 Φ

ln(cij + 0.5)− Eij

σ
⎛
⎝⎜

⎞
⎠⎟
− Φ

ln(cij − 0.5)− Eij

σ
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ≥ 2.3E − 308

0 otherwise

⎧

⎨
⎪

⎩
⎪

  (9) 

This indicator function is necessary to deal with the limited precision of floating-

point values and the inability to resolve small differences in the standard normal 

CDF function for large values of c. For each iteration t, the learning rate r was set 

to 0.01 and then decreased by 50% until the Armijo value (10) fell below zero, 

indicating a sufficiently advantageous update of the correction parameters or 

twenty updates were performed on the learning rate. 

 Armijo = Ct −Ct−1 + r (∇fi )
2 + (∇f j )

2

j∈n
∑

i∈n
∑⎛

⎝⎜
⎞

⎠⎟n∈N
∑    (10) 

1.2.4 5C normalization - Express 

5C data normalized using HiFive’s Express and ExpressKR algorithms 

were corrected using a matrix balancing approach. Each region was handled 

independently (intra-regional interactions only). For ExpressKR learning, 

estimated distance dependent signals were calculated for all non-zero 

interactions. For the standard Express algorithm, corrections were iteratively 

calculated as follows for fragment i with valid non-zero interactions Ai (11). 

Learning was run for 1000 iterations. 

 fi
' = fi +

ln(cij )− Eij⎡⎣ ⎤⎦
i, j

cij∈Ai

∑

2
i, j

cij∈Ai

∑
  (11) 
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The ExpressKR algorithm used the matrix balancing algorithm described 

by Knight and Ruiz [4]. All non-zero counts were log-transformed prior to learning 

and the estimated distance dependent signal was subtracted from each. In order 

to achieve convergence, a pseudo-count of one was added to the matrix diagonal 

after log-transforming values. Learning was run until the residual fell below 1e-12. 

Subsequent to learning correction values using either algorithm, values 

were adjusted so that the mean correction adjustment across all valid forward-

reverse combinations for a region was zero (4). 

1.2.5 5C normalization - Binning 

5C data normalized using HiFive’s Binning algorithm were corrected using 

an adaptation of Yaffe and Tanay’s approach [5]. Each region was handled 

independently (intra-regional interactions only). The model used two features, 

fragment length and GC content. GC content was calculated as the percentage of 

guanine and cytosine in sequence-specific probe and spacer sequences of each 

primer. Both model features were partitioned into five intervals such that each 

interval contained an equal number of fragments regardless of probe orientation. 

Log-transformed reads were modeled as arising from a normal distribution with a 

mean for each interaction equal to the sum of the bin corrections P 

corresponding the fragment pair with the forward and reverse fragments falling in 

feature intervals a and b, respectively, for each feature k across the total set of 

features K and the estimated distance dependent signal (12). 

 Eij = D(i, j)+ Pkab
k∈K
∑   (12) 
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Seed values for feature corrections were calculated as the mean of the log-

transformed reads minus distance-dependence predictions for each feature bin 

divided by the number of observations in the bin (13). 

 Pkab =
ln(cij )− D(i, j)⎡⎣ ⎤⎦

j∈b

cij>0

∑
i∈a
∑

1
j∈b

cij>0

∑
i∈a
∑

  (13) 

Learning was accomplished iteratively with each feature correction values being 

optimized independently for each iteration. Learning continued for a maximum of 

1000 iterations and was stopped early if the log-likelihood changed by less than 

1.0 for a given iteration. Optimization of correction values was done using the 

Broyden-Fletcher-Goldfarb-Shanno algorithm. 

1.2.6 HiC filtering 

Reads from aligned HiC data were loaded directly from BAM files, 

discarding reads that had a single mapped end. Reads were then assigned to 

fragment ends (fends) based on mapping within a fragment’s boundaries and the 

orientation of alignment. Reads that mapped outside the first or last restriction 

enzyme (RE) cut site were discarded. Read end pairs that had a total distance 

sum between alignment coordinates and their respective downstream RE cut site 

(insert size) that was less than 500 bp were discarded. For cases with multiple 

reads mapping to the same pairs of coordinates, only one read was kept. In 

addition, reads that originated from the same fragment or that originated from 
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adjacent fragments and had opposite orientations were also discarded 

(Supplemental Fig. 4). 

For each dataset, HiC fends were filtered using HiFive’s iterative filtering 

using a cutoff of 10 interactions per fragment and an interaction size minimum of 

500 Kb. For each valid (not removed from analysis) fend, the number of non-zero 

interactions greater than 500 Kb in size with other valid fends was counted. 

Fends with fewer interactions than the cutoff were removed. This was repeated 

until all fends met the minimum interaction criterion. The one exception was data 

for the human GM12878 MboI dataset normalized with HiFive’s probability 

algorithm had an upper range limit of 10 megabases (Mb) on interaction sizes in 

addition to the lower limit for fend filtering. This was done to ensure all fends 

would have sufficient numbers of interactions for normalization since the same 

size limit was also employed then. 

1.2.7 HiC distance dependence function estimation 

HiC distance dependence estimation functions were calculated for each 

dataset using a piecewise linear approximation (Supplemental Fig. 6). Each 

genome’s range was partitioned into 100 bins with the smallest bin covering 

interactions ranging from 0 to 1000 bp. The 99 remaining bins covered the range 

from 1001 bp to the largest possible interaction size (last fend midpoint minus the 

first fend midpoint of chromosome 1). This range was partitioned such that the 

log-transformed distance intervals each bin covered was equal with upper and 

lower limits for bin n denoted by Un and Ln, respectively. For every possible valid 
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fend combination between fends i and j, defined as set A, the log-transformation 

of the distance dij, and the observed count cij (set to one if greater than zero for 

the binary version of the function). The estimated distance dependence signal is 

calculated as falling on the line intersecting the nearest two bins as determined 

by interaction distance (14-16). 

 Xn =
ln(dij )

i, j

Ln≤dij<Un

∑

1
i, j

Ln≤dij<Un

∑
  (14) 

 Yn = ln
cij

i, j

Ln≤dij<Un

∑

1
i, j

Ln≤dij<Un

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (15) 

 D(i, j) = Yn+1 −Yn
Xn+1 − Xn

ln(dij )+Yn − Xn
Yn+1 −Yn
Xn+1 − Xn

+ ln(µm )   (16) 

where µm is the chromosome mean correction adjustment which is used to give 

each intra-chromosomal Express and Probability algorithm correction pairing 

(excluding self-interactions) a mean value of 1 for chromosome m and correction 

parameter fi (17). 

 µm =
fi

i∈m
∑⎛⎝⎜

⎞
⎠⎟

2

− fi( )2
i∈m
∑

1
i∈m
∑ − fi( )−1

i∈m
∑⎛⎝⎜

⎞
⎠⎟

  (17) 

The Binning algorithm corrections do not require this adjustment because they 

are calculated globally so µm is given a value of one.  

1.2.8 HiC normalization - Probability 
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HiC data normalized using HiFive’s Probability algorithm were modeled 

using a binomial distribution. The Poisson distribution is also available within 

HiFive as a distribution model but was not used due to poorer performance (see 

Supplemental Methods: HiC probability model performance). Each 

chromosome’s correction values were learned independently and only 

interactions with an interaction distance greater than 500 Kb were used in 

calculations. This value was selected to eliminate the majority of domain 

structures while retaining enough reads for accurate normalization. For the 

human GM12878 MboI data, an upper distance limit of 10 Mb was used in order 

to fit within memory requirements (1 terabyte), since every interaction within the 

distance boundaries is used throughout model learning. Prior to normalization the 

estimated binary distance-dependent signal for each valid interaction (neither 

fend had been filtered out) was calculated and used as a prior for the 

interaction’s probability of observation. The expected value for each interaction 

was calculated as the product of the exponent of the estimated distance 

dependence signal and both fend correction values (18). 

 Eij = e
D(i, j ) fi f j   (18) 

Correction values were found using backtracking line gradient descent. Learning 

was continued for a maximum of 1000 iterations and terminated early if the 

maximum absolute correction parameter gradient fell below 5e-4. For each 

iteration t, the learning rate r was set to 1.0 and the Armijo value was calculated 

(19). 
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 Armijo = Ct −Ct−1 + r (∇fi )
2

i∈A
∑   (19) 

If the Armijo value was greater than zero, the learning rate was in half and the 

new cost and Armijo value was calculated.  

After learning correction values for a chromosome, µm was calculated and 

the square root of this mean was divided from the correction values, centering 

them such that the mean correction equaled one (20). 

 fi
' = fi

µm

  (20) 

1.2.9 HiC normalization - Express 

HiC data normalized using HiFive’s Express and ExpressKR algorithms 

were corrected using a matrix-balancing approach. Each chromosome was 

handled independently (intra-chromosomal interactions only) and only 

interactions with an interaction distance greater than 500 Kb were used for 

calculations. Prior to learning correction values, estimated distance dependent 

signals were calculated for all non-zero interactions except for the data marked 

“ExpressKR” in Figure 4 and Supplemental Figure 13, which were given the 

estimated signal of one. For the standard Express algorithm, corrections were 

iteratively updated (21) over 1000 iterations and terminated early if the maximum 

absolute adjustment value fell below 5e-6. 

 fi
' = fi

cij
Eijj∈Ai

∑
1

j∈Ai
∑   (21) 
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The ExpressKR algorithm used the matrix balancing algorithm described 

by Knight and Ruiz [4]. Because this approach requires a complete and 

symmetric matrix, values falling below the distance cutoff were given the value of 

zero. Learning was run until the residual fell below 1e-12. For the sample labeled 

“ExpressKR w/distance” in Figure 4 and Supplemental Figure 13, the estimated 

distance dependence signal was divided from the counts prior to learning. 

For both Express approaches, after learning correction values for a 

chromosome µm was calculated and the square root of this mean was divided 

from the correction values (20). 

1.2.10 HiC normalization - Binning 

HiC data normalized using HiFive’s Binning algorithm were corrected 

using an adaptation of Yaffe and Tanay’s approach [5]. Each chromosome was 

handled independently (intra-chromosomal interactions only) and only 

interactions with an interaction distance greater than 500 Kb were used for 

calculations. Interactions were counted as binary values (one for a non-zero 

count, zero otherwise) rather than counts. The model used three features: fend 

length, GC content, and mappability. GC content was calculated as the 

percentage of guanine and cytosine in the 200 bp adjacent to the RE cut site and 

overlapping the fend. Mappability was defined as the percentage of uniquely 

mapping 30 bp fragments, starting every 10 bp, contained in the 500 bp adjacent 

to the RE cut site and overlapping the fend. Fend length and GC content were 

partitioned into 20 non-overlapping intervals such that each interval contained an 
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equal number of fends. Mappability was partitioned into 10 non-overlapping 

intervals spanning equal mappability ranges. The prior probability Pprior was 

calculated as the mean number of observations across all bins (22). 

 Pprior =
1

i, j∈A

cij>0

∑
1

i, j∈A
∑   (22) 

Seed values for each feature correction P for feature k, bins a and b were 

calculated as the mean number of observations in that bin combination divided 

by the prior probability (23). 

 Pkab =
cij

j∈b

cij∈A

∑
i∈a
∑

pprior 1
j∈b

cij∈A

∑
i∈a
∑

  (23) 

Mappability corrections were not optimized after seed values were calculated. 

Reads were modeled as arising from a binomial distribution with an expected 

value for an observation defined as the product of the prior probability and each 

feature correction of the total set of features K with bins a and b corresponding to 

the observation fends (24). 

 Eij = Pprior Pkab
k∈K
∏   (24) 

Learning was accomplished iteratively with each feature’s correction values being 

optimized independently for each iteration. Learning was carried out for a 

maximum of 1000 iterations and was stopped early if the log-likelihood changed 
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by less than 1.0 for a given iteration. Optimization of correction values was 

performed using the Broyden-Fletcher-Goldfarb-Shanno algorithm. 

For samples normalized for the pseudo-counts analysis, the specified 

number of counts was added to each bin, observed and possible, for each 

combination of ranges corresponding to that bin. For example, the bin for fend 

length interval one by fend length interval two had two times the pseudo count 

added, one for interactions in which the first fend fell in interval one and the 

second fend fell in interval two, and the second pseudo-count for interactions in 

which the first fend fell in interval two and the send fend fell in interval one. 

1.3 Other method data normalizations 
1.3.1 HiCPipe HiC normalization 

Normalization of HiC data using HiCPipe v0.9 was carried out as 

described in Yaffe and Tanay [5]. To match HiFive’s range, fends were only 

included within the range of each chromosome’s first and last RE cut site. Read 

data were exported from HiFive for each dataset so all filtering based on read 

mapping and valid fend combinations were applied but fend coverage filtering 

was not performed on these data for HiCPipe normalization. Fends were instead 

filtered by mappability, marking fends with less than 50% mappability as invalid. 

Normalization was performed using a three-feature model, fragment length, GC 

content, and mappability. GC content and mappability were defined as described 

in 1.2.10 HiC normalization - binning. The model used 20 bin ranges for fragment 

length and GC content, each partitioned to include equal numbers of valid 



 17 

interactions. Mappability was partitioned into five bin ranges, each spanning a 

mappability range of 10%, from 50% to 100%. Fragment length and GC content 

corrections were optimized while mappability corrections were held constant. 

1.3.2 HiCNorm HiC normalization 

HiC normalization was performed using HiCNorm as described by Hu et 

al. [6] with the following changes. Code was adapted to python and implemented 

using the GLM generalized linear model function from the package ‘statsmodels’ 

instead of R. This was done for speed and memory considerations and was 

confirmed to give identical results. Data and features were as described in 1.3.1 

HiCPipe HiC normalization. 

HiCNorm normalization for speed and memory usage used the original 

HiCNorm code rather than our adapted code. The only exception was for the 

binning of data, as there are no provided scripts for performing these operations. 

This was done in R to alleviate the need to load data from text files. 

1.3.3 HiCLib HiC normalization 

HiC data were normalized using the latest available version of HiCLib 

(obtained from the development repository on 04-20-15 [7]). Data were loaded 

directly from BAM mapped read files and filtered for PCR duplicates, a 500 bp 

insert size, and removing the lowest 0.5% of fends ranked by numbers of 

interactions. Data were normalized for 20 iterations. 

1.3.4 Matrix-balancing HiC normalization 
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HiC data was normalized using a matrix balancing approach similar to that 

described by Rao et al. [8]. Data were loaded from HiFive, so all filtering 

described under1.2.6 HiC filtering was applied prior to normalization. 

Normalization was done on a per chromosome basis at fend level resolution 

using a python adaptation of the algorithm described by Knight and Ruiz [4]. Data 

were processed as binary observations rather than counts. 

1.4 Data analysis 

1.4.1 HiC probability model performance 

In order to determine which probability model gave better results, we 

performed analysis on the mouse ESC datasets using a Poisson distribution as 

the underlying probability model in addition to the binomial model described 

above. Other than the cost and gradient equations, all other aspects of the 

analysis were identical to that described for the binomial probability 

normalization. Model performance was assessed using inter-dataset correlations 

(see Supplemental Methods: HiC dataset correlations). 

Supplemental Figure 7 shows the dataset correlation differences between 

models, demonstrating an advantage of the binomial model across most 

interaction size ranges and bin sizes. The only cases where the Poisson 

distribution showed better correlation between datasets were mid-range 

interaction sizes for the 250 Kb and 1 Mb binned data and for the overall inter-

chromosomal correlation for 1 Mb binned data. The gains in these cases were 

small compared to the improvements seen using the binomial model across all 
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other cases. Of particularly strong contrast was the effect that model choice had 

on data binned in smaller bins. 

These results were particularly surprising to us, as the binomial model 

requires binary data rather than integers. Because HiC data are integer counts of 

observed reads, the Poisson distribution seems a good fit, but the noise or 

substructure appear to confound finding appropriate normalization corrections. In 

addition, counts data appear to converge with the binary representation of the 

data at longer ranges (Supplemental Fig. 6). 

1.4.2 5C-HiC data correlations 

The Pearson correlation between 5C data and HiC data for each 5C 

dataset was obtained across all regions for all log-transformed, non-zero, 

fragment-corrected 5C counts. The 5C data were compared to HiC data that was 

binned across both datasets (HindIII and NcoI) using the fragment partitions in 

the 5C datasets and dynamically binned using unbinned data combined from 

both datasets for bin expansion. Dynamic binning is a feature of HiFive whereby 

a minimum number of observed reads is required to consider a bin valid. Each 

bin is expanded in all directions, stopping each time the boundary encompasses 

new data from a set of expansion data (usually unbinned or binned at a finer 

scale). Each time an expansion bin is encountered the expanding bin is updated 

with the expansion bin’s observation and expected values and checked to see if it 

meets the minimum count criterion. If so, expansion is halted. This allows bins in 

read-rich areas to retain higher resolution while bins in lower density regions of 
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reads are less subject to stochastic noise because more data points are 

contributing to their enrichment value. 

1.4.3 HiC dataset correlations 

Pearson correlations were found between normalized HiC datasets cut 

with different restriction enzymes. Data were binned at four resolutions, 10 Kb, 50 

Kb, 250 Kb, and 1 Mb, for cis interactions and two resolutions, 250 Kb and 1 Mb, 

for trans interactions. For each binning size, overall correlations were found for 

log-transformed non-zero count normalized bin enrichments. Cis interactions 

were found for chromosomes 1-19 and X for mouse data and chromosomes 1-22 

and X for human data. Trans interaction correlations were found only for inter-

chromosomal interactions. In addition, correlations were calculated for interaction 

size ranges. The first range always spanned from 0 to five times the size of the 

resolution. The remaining nine bin ranges were partitioned into non-overlapping 

spans evenly covering log-distances up to 197.2 Mb for mouse and 249.3 Mb for 

human. 

1.4.4 HiC normalization runtime comparison 

An abbreviated dataset consisting of only interactions for which one end 

mapped to chromosome 1 from the mouse NcoI dataset was created, along with 

a corresponding RE cut site bed file and fend feature file. Each stage of analysis 

for each method was run separately and timing was accomplished using the 

‘time’ Linux command to obtain wall-clock runtimes. Each run was repeated five 
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times and the median value was used for the analysis. All analyses were run on a 

single 2.294 GHz Quad-Core AMD Opteron Processor running Debian v3.2.4-1.  

1.4.5 HiC normalization memory usage comparison 

Memory usage was tested exactly as described under 1.4.3 HiC 

normalization runtime comparison except using the maximum resident set size 

value (Supplemental Fig. 13). This analysis should be viewed with some 

skepticism. It is unclear how things such as memory garbage collection and 

transfer to the swap disk affect the reported RAM usage, so while these numbers 

may be relatively proportional, it is unclear how accurate some or all of the values 

are. Thus we urge caution in interpreting the memory usage data. That being 

said, it appears that HiCPipe is the most memory efficient, followed by HiFive (all 

but the probability algorithm) and then HiCLib. HiFive’s probability algorithm 

appeared to use about an order of magnitude more RAM than other methods, 

although this is unsurprising given the modeling of all interactions. The most 

memory-intensive was HiCNorm, using twice as much RAM at its peak than 

HiFive probability. 
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3 Supplemental Table and Figures 

Supplemental Table 1 – Sources of 5C and HiC datasets. 
Sample Rep Species Cell Type Data 

Type 
Reference GEO ID 

male ES E14 1 Mouse male mES 5C Nora et al. [9] GSM873934 
male ES E14 2 Mouse male mES 5C Nora et al. [9] GSM873935 

ES 1 Mouse V6.5 mES 5C Phillips-Cremins 
et al. [10] 

GSM883649 

ES 2 Mouse V6.5 mES 5C Phillips-Cremins 
et al. [10] 

GSM883650 

ES HindIII 1 Mouse J1 mES HiC Dixon et al. [11] GSM862720 
ES HindIII 2 Mouse J1 mES HiC Dixon et al. [11] GSM862721 
ES NcoI 1 Mouse J1 mES HiC Dixon et al. [11] GSM862722 
HindIII 1 Human GM12878 HiC Selvaraj et al. [12] GSM1181867 
HindIII 2 Human GM12878 HiC Selvaraj et al. [12] GSM1181868 
MboI 1 Human GM12878 HiC Rao et al. [8] GSM1551550 – 

GSM1551567 
MboI 2 Human GM12878 HiC Rao et al. [8] GSM1551568 – 

GSM1551578 
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Supplemental Figure 1 - Proximity-mediated ligation assays. 
A survey of strategies for assaying chromatin interactions. 
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Supplemental Figure 2 – 5C filtering scheme. 
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Supplemental Figure 3 – HiC filtering scheme. 
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Supplemental Figure 4 – HiC read pairings. 
Schematic illustrating the arrangements leading to HiC read pairs and their 
inclusion or exclusion from HiFive analysis. 
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Supplemental Figure 5 – 5C distance function. 
All non-zero interaction counts for mouse ES cells, replicate one before and after 
fragment corrections are applied. Interactions were binned in a 200 by 200 grid 
for display. The red line shows the best-fit linear regression of interaction log-
transformed counts as a function of inter-fragment log-transformed distances. 
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Supplemental Figure 6 – HiC distance function. 
The piecewise linear approximation of the distance dependence relationship 
between HiC counts and interaction distances. The function calculated with 
numbers of reads shown in black while the function calculated using a binary 
indicator of observed/unobserved is shown in red. The graph to the right shows 
individual line segment approximations in alternating colors corresponding to the 
red box. 
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Supplemental Figure 7 – HiC probability algorithm model comparison. 
Differences in inter-dataset correlations between data normalized using a 
Poisson distribution for modeling noise and data normalized using a binomial 
distribution for modeling noise. a) Correlations across mutually-exclusive 
interaction size ranges for data binned at four different resolutions. b) Correlation 
differences for entire set of intra- (cis) or inter-chromosomal (trans) interactions. 
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Supplemental Figure 8 – HiC algorithm distance cutoff comparison. 
Differences in inter-dataset correlations between data normalized using all 
interaction size ranges and data normalized using only interactions larger than 
500 Kb. a) Correlations across mutually-exclusive interaction size ranges for data 
binned at four different resolutions. b) Correlation differences for entire set of 
intra- (cis) or inter-chromosomal (trans) interactions. 
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Supplemental Figure 9 – 5C algorithm distance cutoff comparison. 
Differences in correlation of 5C-HiC data between 5C data normalized using all 
interaction sizes and data normalized using only interactions greater than 50 Kb. 
  
  

0

0.005

0.01

0.015

r 0
K
�

r 5
0
K

Phillips

0

0.005

0.01

0.015

r 0
K
�

r 5
0
K

Nora

Probability

Express

Binning

ExpressKR

a

b



 34 

 

Supplemental Figure 10 – 5C-HiCPipe analysis performance. 
HiFive normalization of 5C data and its correlation to corresponding HiC data 
normalized using HiCPipe. a) Correlation of 5C data (intra-regional only) with the 
same cell type and bin-coordinates in HiC data for two different datasets and 
using each of HiFive’s algorithms. b) Heatmaps for a select region from each 
dataset, un-normalized, normalized using HiFive’s probability algorithm, and the 
corresponding HiC data, normalized using HiCPipe and dynamically binned.  
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Supplemental Figure 11 - Effects of pseudo-counts. 
Mouse data were normalized using HiFive-Express with 0, 1, 3, or 6 pseudo-
counts added to each fend-feature bin in the binning model prior to normalization. 
Results for HiCPipe are also shown for comparison. a) Interactions were broken 
down into ten groups of non-overlapping cis interaction ranges for four resolution 
levels. b) Overall cis interaction correlations for each pseudo-count level are 
shown across all bin size ranges. c) Overall trans interaction correlations for the 
larger two bin sizes. Trans interactions were not considered for bins smaller than 
250 Kb. 
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Supplemental Figure 12 - Effects of distance dependence on normalization. 
Data analyzed using HiFive-express either with or without the estimated 
distance-dependence signal removed prior to normalization. Interactions 
normalized using raw counts are shown in black while interactions that were 
adjusted for the predicted distance-dependent signal prior to normalization are 
shown in red. a) Correlation of datasets across all interaction ranges for different 
binning resolutions including interactions from intra (cis) or inter-chromosomal 
(trans) interactions. b) Correlations between mouse HiC datasets produced using 
two different restriction enzyme, binned at four resolutions and subdivided into a 
series of ten interaction size ranges. 
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Supplemental Figure 13 - Maximum RAM usage by HiC analysis methods. 
Each stage of processing, from loading data to creating a final heatmap, was 
profiled to determine peak RAM usage. Values may not reflect actual utilization 
but rather cumulative allocation. Note that because of two extreme values, the 
graph includes multiple splits. 
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