Comparison of binding potentials and test-retest percent difference values

BP_{P-HYBRID}

$BP_{P-HYBRID} = V_T (LEGA) - V_{ND} (HYDECA)$ (S7 Equation)

where V_T (LEGA) is the tracer total distribution volume (V_T) obtained in each region using Likelihood Estimation in Graphical Analysis (LEGA) [1], and V_{ND} (HYDECA) is the tracer nondisplaceable binding (V_{ND}) estimated by HYDECA. The estimate of V_{ND} obtained by HYDECA in a subject is always lower than the corresponding tracer V_T in the non-ideal reference region ($V_{T-RR,LEGA}$). Therefore, as shown in **S3** and **S4 Figs**, BP_{P-HYBRID} values based on HYDECA V_{ND} are by definition always higher than BP_{P-RR,LEGA} = V_T (LEGA) – $V_{T-RR,LEGA}$ values based on V_T . RR,LEGA.

As shown in the scatter plot on the top right of **S3 Fig** (which reports the distance between test-retest percent difference values obtained using BP_{P-HYBRID} and values obtained using BP_{P-RR,LEGA}, versus the corresponding distance between BP_{P-HYBRID} and BP_{P-RR,LEGA}), for [¹¹C]DASB only in 57% (HYDECA with β_{opt-S} and γ_{opt-S}) and 58% (HYDECA with β_{opt-B} and γ_{opt-B}) of the cases the corresponding percent difference values based on HYDECA are lower (better reproducibility) than values based on V_{T-RR,LEGA}. As reported in **Figure 6** in the manuscript, in the dorsal caudate (DCA) only PD_{BPP} values based on HYDECA with β_{opt-B} , γ_{opt-B} are on average lower than PD_{BPP} values based on V_{T-RR,LEGA}, even though BP_{P-HYBRID} values are always higher.

For [¹¹C]CUMI-101 (**S4 Fig**), only in 79% (HYDECA with β_{opt-S} , γ_{opt-S}) and 63% (HYDECA with β_{opt-B} , γ_{opt-B}) of the cases the corresponding PD_{BPP} values based on HYDECA are lower (better reproducibility) than the PD_{BPP} values based on V_{T-RR,LEGA}.

BP_{P-END}

Differently from BP_{P-HYBRID}, BP_{P-END} (please see definition in **S1 Text** or original publications [2, 3]) estimates based on HYDECA are not systematically higher than corresponding BP_{P-RR,LEGA} values based on V_{T-RR,LEGA}, as shown in the middle panels of **S3** and **S4 Figs**. For [¹¹C]DASB (**S3 Fig**), only in the 64% (HYDECA with β_{opt-S} , γ_{opt-S}) and 66% (HYDECA with β_{opt-B} , γ_{opt-B}) of the cases BP_{P-END} values are higher than BP_{P-RR,LEGA} values, and only in the 47% (HYDECA with β_{opt-S} , γ_{opt-S}) and 52% (HYDECA with β_{opt-B} , γ_{opt-B}) of these cases the corresponding PD_{BPP} values based on HYDECA are lower (better reproducibility) than values based on V_{T-RR,LEGA}.

For [¹¹C]CUMI-101 (**S4 Fig**), only in the 79% (HYDECA with β_{opt-S} , γ_{opt-S}) and 67% (HYDECA with β_{opt-B} , γ_{opt-B}) of the cases BP_{P-END} values are higher than values based on V_T. _{RR,LEGA}, and only in the 79% (HYDECA with β_{opt-S} , γ_{opt-S}) and 81% (HYDECA with β_{opt-B} , γ_{opt-B}) of these cases the corresponding PD_{BPP} values based on HYDECA are lower than values based on V_{T-RR,LEGA}.

BP_{P-NP2}

As with BP_{P-END}, BP_{P-NP2} estimates (please see definition in **S1 Text** or original publications [2, 3]) based on HYDECA are not always higher than corresponding BP_{P-RR,LEGA} values based on $V_{T-RR,LEGA}$, as shown in the bottom panels of **S3** and **S4 Figs**.

For [¹¹C]DASB (**S3 Fig**), in the 94% (HYDECA with β_{opt-S} , γ_{opt-S}) and 98% (HYDECA with β_{opt-B} , γ_{opt-B}) of the cases BP_{P-NP2} values are higher than BP_{P-RR,LEGA} values; however, only in 43% (HYDECA with β_{opt-S} , γ_{opt-S}) and 52% (HYDECA with β_{opt-B} , γ_{opt-B}) of these cases, the corresponding PD_{BPP} values based on HYDECA are lower (better reproducibility) than values based on V_{T-RR,LEGA}.

For [¹¹C]CUMI-101 (S4 Fig), in all cases BP_{P-NP2} values are higher than BP_{P-RR,LEGA} values; however, only in 58% (HYDECA with β_{opt-S} , γ_{opt-S}) and 50% (HYDECA with β_{opt-B} , γ_{opt-B})

of these cases, the corresponding PD_{BPP} values based on HYDECA are lower than values based on $V_{T-RR,LEGA}$.

All together these observations suggest that the fact that BP_P estimates can be lower when based on $V_{T-RR,LEGA}$ does not necessarily lead to higher PD_{BPP} values, and that the worse test-retest reproducibility of the estimates based on $V_{T-RR,LEGA}$ is not due only to the magnitude of estimated V_{ND} .

1. Ogden RT. Estimation of kinetic parameters in graphical analysis of PET imaging data. Statistics in medicine. 2003;22(22):3557-68. Epub 2003/11/06. doi: 10.1002/sim.1562. PubMed PMID: 14601019.

2. Zanderigo F, Parsey RV, Todd Ogden R. Model-free quantification of dynamic PET data using nonparametric deconvolution. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2015;35(8):1368-79. doi: 10.1038/jcbfm.2015.65. PubMed PMID: 25873427; PubMed Central PMCID: PMC4528013.

3. Jiang CR, Aston JA, Wang JL. A Functional Approach to Deconvolve Dynamic Neuroimaging Data. J Am Stat Assoc. 2016;111(513):1-13. doi: 10.1080/01621459.2015.1060241. PubMed PMID: 27226673; PubMed Central PMCID: PMCPMC4867865.