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1 Materials and Methods

We numerically integrated our population dynamics equations using custom code written in C. The order
of magnitude of the burst size b, carrying capacity K and growth rate f were taken from Childs et al.
(2012), the spacer loss rate κ was estimated from Jiang et al. (2013), and the spacer failure probability η
and acquisition probability α were variables that we scanned over. We took the death rate µ of infected
bacteria to be comparable to the growth rate f . To estimate the order of magnitude of the phage adsorption
rate g we used a simple argument based on diffusion. Because of the large difference in size, we approximate
phage particles with points and focus on a single bacterial cell, modeled as a perfectly absorbing sphere of
radius R. Fick’s second law, ċ = D∆c, can be used to calculate the concentration profile of phage around
the bacteria at stationarity, leading to c(r) = cp

(
1 − R

r

)
, where cp is the concentration of phage far away

from bacteria. Fick’s first law then gives us the flux at the sphere, whose integral gives the rate at which
phage are absorbed, 4πDcpR, where D is the diffusion coefficient. Using Einstein’s relation D = kBT

6πηrv
to

estimate the diffusion coefficient (with η the dynamic viscosity of the medium and rv the size of the virus),
we get that an estimate for g is

g =
2

3V

kbT

η

R

rv
, (1)

where V is the experimental volume, which only appears here because we defined g in terms of particle
numbers instead of concentrations. Using V ∼ 1µL, η = 8 × 10−4 Pa · s (for water at 30◦), T = 300 K,
R ∼ 1µm, rv ∼ 0.1µm, we get g ∼ 10−4 hour−1 . This is very close to experimental values observed in in
vitro experiments of bacteria and phage Weld et al. (2004).

2 Detailed dynamics and steady state with one type of spacer

2.1 Transient behavior

In addition to the numerical studies presented in the main text, some aspects of the dynamics of our model
can be described analytically. This allows us to get further insights into general features of the solutions and
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how these features depend on the parameters.
Let us analyze the initial trend in the bacterial population in the single protospacer model (eq. [1] in the

main text):

ṅ0 = f0

(
1− n

K

)
n0 + κn1 − gvn0 ,

ṅ1 = f1

(
1− n

K

)
n1 − κn1 − ηgvn1 + αµI0 ,

İ0 = gvn0 − µI0 ,
İ1 = ηgvn1 − µI1 ,
v̇ = b (1− α)µI0 + bµI1 − gv(n0 + n1) .

(2)

At the time of inoculation, the population is entirely wild type, so n1(0) = 0, and there are no infected
bacteria, I0(0) = 0, I1(0) = 0. The total bacterial population is n(0) ≡ n0(0) < K. The dynamics of n(t)
are governed by eq. [2] from the main text,

ṅ = f0(n0 + rn1)
(

1− n

K

)
− µ(1− α)I0 − µI1 , (3)

which implies that in this case ṅ(0) > 0, i.e., the bacteria always start off with growth. This is a result
of the latency between viral infection and death. However, we expect this growth to be short lived: after
a time of order µ−1, the infected cells should start dying and the bacterial population should go down. It
turns out that growth can sometimes last much longer than that, as shown below.

Suppose we have t � 1/µ and, for simplicity, assume n0(0) � K; from the system of equations (2) we
get

n0 = n0(0) +
[
f0 − gv(0)

]
n0(0) t+O(t2) ,

I0 = gv(0)n0(0) t+O(t2) .
(4)

Similarly n1 = O(t2) and I1 = O(t2), implying that

ṅ = f0n0(0)

{
1− t

[
gv(0)

(
1 +

µ(1− α)

f0

)
− f0

]}
+O(t2) . (5)

If gv(0) > f0 then growth ends in a time

tp =
1

gv(0)
(

1 + µ(1−α)
f0

)
− f0

<
f0

µ(1− α)gv(0)

<
1

µ(1− α)
≈ 1

µ
,

(6)

assuming that the acquisition probability α is small. Conversely, if

gv(0) <
f0

1 + µ(1− α)/f0
, (7)

the initial growth of the wild type bacteria continues past the initial latency time t = 1/µ. This prediction of
the model can be tested via optical density measurements. Of course, past this time, the approximations we
made above no longer hold; eventually the wild type population will decline, being overtaken by the virus,
and the bacteria will go through a bottleneck; see Fig. 3 of the main text. Recovery from this bottleneck is
due to CRISPR spacer acquisition.

2.2 Steady state solutions and stability analysis

Coexistence solution: v 6= 0 and n 6= 0. The steady state solutions for the system in eq. (2) are obtained
by setting all the derivatives to zero. Solving the equations for the number of infected bacteria and plugging
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these into the equation for the viral dynamics, we get

I0 =
g

µ
vn0 ,

I1 =
gη

µ
vn1 ,

n1 =
b(1− α)− 1

1− bη
n0 ,

(8)

where we assumed v 6= 0.
Since Ii, ni, and v are population numbers, they must be non-negative. From eq. (8) above, this requires

that bη < 1 and bα < b − 11. If these conditions are not met, the co-existence solution is not feasible, and
we get either ni = Ii = 0 or v = 0.

The remaining steady state values can be obtained after some tedious but straightforward algebra:

n = K(1−Fr) ,

Fr =
κ

f0

b(1− α)− 1

(1− bη)

(
b− 1 + (r − 1)

b(1− α)− 1

1− α− η

) ,

gv = f0Fr + κ
b(1− α)− 1

1− bη
,

n0

n
=

µ(1− bη)

bµ(1− α− η) +

(
f0Fr + κ

b(1− α)− 1

1− bη

)
(1− η − ηbα)

,

n1

n
=

µ(b(1− α)− 1)

bµ(1− α− η) +

(
f0Fr + κ

b(1− α)− 1

1− bη

)
(1− η − ηbα)

,

(9)

where we see that the virus concentration at steady state is proportional to the rate of spacer loss (κ). Here
the notation Fr is used to emphasize the fact that we allow for different growth rates for wild type and
spacer enhanced bacteria.

Compared to the expression from eq. [3] in the main text, the fraction of unused capacity (F) changes
when the wild type and spacer enhanced growth rates are unequal. The magnitude of the change obeys

Fr
F

=
1

1 + γ
b(1− α)− 1

(b− 1)(1− α− η)

= 1− γ b(1− α)− 1

(b− 1)(1− α− η)
+O(γ2) , (10)

where γ = r − 1.
The positivity of n0 and n1 also implies that Fr < 1. This translates into a more stringent condition on

the failure probability of the spacer (η). For bacteria to be able to resist infection and for the co-existence
solution to be feasible, we need η < ηc, where the critical failure probability is

ηc =
1

b

(
1− κ

f0

b(1− α)− 1

b− 1

)
+ γ

κ

f0

b(1− α)− 1

(b− 1)(b− 1 + κ/f0)
− γ2 κ

f0

b
(
b(1− α)− 1

)
(b− 1 + κ/f0)3

+O(γ3) . (11)

This gives the next couple of terms in the expansion in eq. [4] in the main text. We write this as an expansion
in γ = r − 1 because experiments suggest that differences between the growth rates of wild type and spacer
enhanced bacteria are small.

1In principle the opposite conditions could also hold, bη > 1 and bα > b − 1, implying α > (b − 1)/b. However, in realistic
conditions, b is large (of order 100 or 1000), and so (b− 1)/b ≈ 1, while α is typically much smaller than 1.
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Fig A: Time-dependence of the population of wild type bacteria, both growing (n0) and infected (I0), the
fraction of carrying capacity occupied by bacteria (n/K), and the viral population (v) for various choices of
acquisition probability (α; left panel) and rate of spacer loss (κ; right panel). Both axes are on a log-scale
because the dynamic range varies significantly between the early and late periods. Other parameters are
chosen similar to the main text: the growth rates of spacer enhanced and wild type bacteria are equal (r = 1),
the phage adsorption rate is given by g/f0 = 10−5, the death rate of infected bacteria is given by µ/f0 = 1,
the burst factor is b = 100, and the spacer failure probability η = 0. The initial population is all wild type
n = n0 = 1000 and maximum capacity K = 105, and the initial multiplicity of infection (MOI; v/n) is 10
such that v(0) = 104. In the left panel, the rate of spacer loss is kept fixed at κ/f0 = 0.001. In the right
panel, the acquisition probability is kept fixed at α = 0.003. We see that the oscillations in the wild type
bacteria and viral populations are more strongly damped for large spacer loss rates.

Another interesting limit to consider is when the burst size b is very large, which is the case for typical
viruses. When b→∞, the product between the burst size and the critical failure probability simplifies to

bηc = 1− κ(1− α)

f1
+O(b−1) . (12)

This means that, apart from being inversely proportional to the burst factor, the critical failure rate at large
b only depends on the rate of spacer loss (κ), the acquisition probability (α), and the growth rate of the
spacer enhanced bacteria (f1). In particular, it does not depend on the wild type growth rate.

A numerical study shows that when the coexistence solution exists (η < ηc), it is also stable for a wide
range of parameters. Altering the spacer acquisition probability (α), the rate of spacer loss (κ), or the failure
probability (η) in a wide range does not preclude the coexistence state, although it can lead to significant
changes in the population dynamics (see Fig. A and Fig. B). Interestingly, the dynamics of the total number
of bacteria (n) is almost insensitive to the rate of spacer loss (κ). The viral population, and therefore also
the population of infected bacteria, are much more strongly affected by changes in the rate of spacer loss.
Frequent loss of spacers leads to a stronger damping and shorter period for the oscillations in the viral
population, while less frequent loss greatly enhances the amplitude of these oscillations.

The ability to acquire spacers has a large effect on the early dynamics of the bacterial population, while
not greatly affecting the viral dynamics. Lower acquisition probabilities lead to a tighter bottleneck for the
bacteria, as they require a longer time to gain the CRISPR immunity that they need to fight viral infection.

The spacer failure probability (η) does not affect the total bacterial population too much, but has a large
effect on the steady state population of phage and wild type bacteria, as well as on the transient dynamics
leading to the steady state. More effective spacers lead to larger numbers of wild type bacteria and fewer
viruses, shorter transients, and more oscillatory dynamics. In contrast, bacteria with less effective spacers
(larger η) can take a long time to reach steady state, don’t seem to exhibit oscillations, and lead to fewer
wild type bacteria and more viruses.
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Fig B: Time-dependence of the population of wild type bacteria, both growing (n0) and infected (I0), the
fraction of carrying capacity occupied by bacteria (n/K), and the viral population (v) for various choices of
the spacer failure probability (η). Both axes have a log scale to better reveal the dynamical range. Other
parameters are chosen similar to the main text: the growth rates of spacer enhanced and wild type bacteria
are equal (r = 1), the phage adsorption rate is given by g/f0 = 10−5, the death rate of infected bacteria
is given by µ/f0 = 1, the burst factor b = 100, the rate of spacer loss is κ/f0 = 0.002 and acquisition
probability α = 0.003. The initial population is all wild type, n(0) = n0(0) = 103 and the initial multiplicity
of infection (MOI; v/n) is 10 that means v(0) = 104.

When stochastic effects are taken into consideration, random fluctuations could lead to extinction of
either bacteria or phage when these go through bottlenecks. Thus, smaller acquisition probabilities lead to
higher chances of bacterial extinction, while smaller rates of spacer loss would be dangerous for the phage’s
survival. Very effective spacers also increase the oscillations in the viral dynamics, while also lowering the
steady state viral population, so they too can contribute to viral extinction.

Virus extinction v = 0. When the virus goes extinct (v = 0), the steady state populations of wild type
and spacer enhanced bacteria can depend on the initial conditions. We can gain some intuition into this
case by considering a model in which the virus has already gone extinct; thus, v = 0 and I0 = I1 = 0. In
this case, the system of equations simplifies to

ṅ0 = f0

(
1− n

K

)
n0 + κn1 ,

ṅ1 = f1

(
1− n

K

)
n1 − κn1 ,

(13)

If we assume that the wild type and spacer enhanced growth rates are equal (f1 = f0), the solution can be
found analytically:

n(t) =
Kn(t0) ef0(t−t0)

K − n(t0)
(
1− ef0(t−t0)

) ,
n1(t)

n(t)
=
n1(t0)

n(t0)
e−κ(t−t0) ,

n0(t)

n(t)
= 1− n1(t)

n(t)
,

(14)

where t0 is the initial time and n(t0) and n1(t0) are the initial total population of bacteria and the initial
population of spacer enhanced bacteria, respectively. In the long term limit the bacterial population reaches
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Fig C: Dynamics of the fraction of spacer enhanced bacteria in absence of virus. The plots show the numerical
solution of the system of equations given in (13) when K = 105 and spacer enhanced and wild type growth
rates are different (r = f1/f0 6= 1). The initial values n1(0) = n0(0) = 50, n(0) = 100 and κ = .01. For
comparison, we show the analytical solution reported in eq. (14) for the special case r = 1 (black line). The
long-term decay of the spacer-enhanced population relative to wild type is simply due to spacer loss in the
absence of virus. In the inset we emphasize the exponential decays for longer time scales by using a log scale.

the carrying capacity, n(t) → K. If there is spacer loss (κ 6= 0), the spacer enhanced bacteria eventually
disappear, so the steady state in this case is n0 = n = K, n1 = 0, independently of initial conditions. If there
is no spacer loss (κ = 0), the fraction of bacteria that are spacer enhanced stays constant as the bacteria
grow to capacity.

We can use this result to understand what happens in the more general case when the viral population
starts off non-zero but eventually dies out (v → 0). In this case we need to compute the viral extinction time
t0 = teff such that v(teff) ∼ 0. The arguments above suggest that viral extinction can only happen if there
is no spacer loss – this is because even an exponentially small number of viruses will be able to multiply if
presented with wild-type bacteria. Assuming the spacer loss rate is zero, the fraction of the total bacterial
population that contains spacers will stay approximately constant from the time of viral extinction.

We can also investigate what happens when the spacer enhanced growth rate differs from that of the
wild type, but this requires numerical simulations (Fig. C). Just like in the case when the growth rates are
equal, the population of spacer-enhanced bacteria n1(t) decays exponentially to zero at large times.

In summary, when bacteria can lose spacers and the failure probability is lower than the critical value
from eq. (11), virus and bacteria co-exist in a steady state after the initial transient dynamics.

3 Extensions of the model

In realistic situations, bacteria and viruses undergo decay even in the absence of any external threats. We
can incorporate this into our model by adding decay terms into the system of equations (2):

ṅ0 = f0

(
1− n

K

)
n0 + κn1 − gvn0 − sn0 ,

ṅ1 = f1

(
1− n

K

)
n1 − κn1 − ηgvn1 + αµI0 − sn1 ,

İ0 = gvn0 − (µ+ s)I0 ,

İ1 = ηgvn1 − (µ+ s)I1 ,

v̇ = b (1− α)µI0 + bµI1 − gv(n0 + n1)− s′v .

(15)

Here s is the decay rate for bacteria, assumed to be the same regardless whether they are infected or not
and whether they are spacer enhanced or wildtype, while s′ is the decay rate for phage.
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The formalism above can also be used to model a rather different phenomenon: the dynamics of a mixture
of bacteria and phage in the case where the experimental preparation includes serial dilutions or chemostats.
In these cases, the bacterial culture is either periodically or continuously removed and added to fresh sterile
medium. This leads to a continual renewal of nutrients that allows the bacterial population to keep growing.
If natural decay is negligible compared to dilution, we can set s′ = s in eqs. (15).

To simplify the analysis, we look at two cases: viral decay without bacterial decay, and dilution. The
general case can be treated similarly.

3.1 Viral decay

We start with the case in which viruses decay at a rate s′, but there is no bacterial decay (s = 0). We
look for steady state solutions for eqs. (15), with the added simplification of ignoring spacer loss, κ = 0.
We will generally assume that the growth rates of spacer enhanced and wild type bacteria are similar, in
accordance with experiments. We will thus write f1 = f0(1 + γ) and perform an expansion in γ. These
approximations greatly simplify the analytical manipulations without changing the qualitative picture for
moderate variations in parameters, as we checked numerically.

There are three types of steady state solutions: 1) a coexistence scenario where spacer enhanced bacteria,
wild type bacteria, and virus coexist; 2) a monoclonal-bacteria scenario where wild type bacteria go extinct
leaving only spacer enhanced; and 3) an infection-free scenario where viruses go extinct.

1. The coexistence scenario.

The steady state solutions expanded to first order in γ = (f1 − f0)/f0 are

n0 =
s′(1− η)

g(b− 1)(1− α− η)
+

s′α(1− bη)

g(b− 1)2(1− α− η)2
γ +O(γ2) ,

n1 =
−s′α

g(b− 1)(1− α− η)
+

s′α
(
b(1− α)− 1

)
g(b− 1)2(1− α− η)2

γ +O(γ2) ,

v =
f0µ(1− α− η)

(
(b− 1)gK − s′

)
g
[
(b− 1)gKµ(1− α− η) + f0s′(1− αη − η)

] +O(γ) .

(16)

Typically, acquisition and failure probabilities are not large, so that we can expect α + η < 1. This
implies that when the difference in growth rate, γ, is small, n1 in the solution above is formally negative.
Physically, this means that the coexistence scenario is not feasible in the biologically-plausible region
of parameters.

2. The monoclonal-bacteria scenario.

This scenario is characterized by the absence of wild type

n0 = 0 , n1 =
s′

g(bη − 1)
, v =

f1µ
[
gK(bη − 1)− s′

]
gη
[
gKµ(bη − 1) + f1s′

] . (17)

This solution exists only when the failure rate is high η > 1/b, because n1 must be positive. This regime
is opposite to the one we considered in the main text, where we showed that the bacterial population
can survive only when the failure probability η is small enough to compensate for the infection bursting
factor, η < 1/b. The non-zero viral decay rate acts in favor of the bacteria, giving them a chance to
survive even when the failure probability is high. If spacers can be lost (i.e. κ 6= 0), then some of
the surviving spacer-enhanced bacteria will revert to wild type, thus maintaining a diverse population.
This confirms from a different perspective that spacer loss plays a key role in establishing coexistence
of the virus with both the spacer-enhanced and the wild-type bacteria.

3. The infection-free scenario.

In this case, the viral infection is completely cleared, and we get

n0 = K − n1 , n1 = K
b(1− α)− 1

b(1− α− η)
− s′

bg(1− α− η)
, v → 0 . (18)
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This is the case where the bacterial population is able to cope with the infection and grows up to
maximum capacity. The main difference with respect to the absence of viral decay rate, s′ = 0, is that
wild type reaches a higher value proportional to the rate s′.

3.2 The dilution regime

In the case of either serial dilutions or chemostat conditions, if we ignore natural decay for bacteria and
phage, the system dilutes both populations at the same rate, s′ = s. As above, we start by neglecting spacer
loss, κ = 0, and consider conditions in which spacer enhanced and wild type bacteria have almost equal
growth rates, so that we can expand in γ = (f1 − f0)/f0.

We first consider the dynamics in the limit in which the infected bacteria are killed instantaneously,
µ→∞. In this case, the system of equations simplifies to

ṅ0 = f0

(
1− n

K

)
n0 − gvn0 − sn0 ,

ṅ1 = f1

(
1− n

K

)
n1 − ηgvn1 + αgvn0 − sn1 ,

v̇ = b (1− α) gvn0 + bgvηn1 − gv(n0 + n1)− sv .

(19)

If we consider the case in which infected bacteria do not instantaneously die, the steady state solutions
change quantitatively, but not qualitatively.2

As before, we can identify three classes of steady state solutions.

1. The coexistence scenario.

Here we get that

n1

n
= − α

1− α− η
+

αf0((b− 1)gK − s)[
f0

(
(b− 1)gK − s

)
− (b− 1)gKs

]
(1− α− η)2

γ +O(γ2) . (20)

As above, we expect that γ � 1 and that α + η < 1 – under these conditions the positivity of n1

implies that the coexistence solution is not feasible.

2. The monoclonal-bacteria scenario.

Here wild type bacteria are absent:

n0 = 0 ,

n = n1 =
s

g(bη − 1)
,

gvη = f1

(
1− s

gK(bη − 1)

)
− s .

(21)

This solution is feasible when η > 1/b, a regime where failure rate is high, opposite to the situation
considered in the main text. The virus only survives because the spacer fails with a relatively high
probability. However, if the dilution is large (s > gK(bη − 1)) there will be no viruses left at steady
state because growth of virus in the bacteria is more than compensated for by loss due to dilution.
Again in this regime adding spacer loss will keep wild type bacteria alive, allowing for coexistence of
the two species of bacteria and the virus.

3. Low infection scenario.

The only scenario in which virus and both types of bacteria co-exist without spacer loss is one where
the spacer-enhanced and wild-type bacteria grow at different rates (γ 6= 0). The steady state solutions

2For example, consider the condition on the failure probably bη = 1 that defines the boundary of the region where steady
state solutions exist. If the infected bacteria survive for a period of time before dying, it turns out that this condition will be
replaced by bη = w where w = µ+s

µ
. The dimensionless parameter w effectively rescales the time of phage release from infected

cells.
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at leading order in γ are

n1

n
= x

(0)
1 + γx

(1)
1 +O(γ2) ,

n0 = n− n1 ,

n = K

(
1− s

f0

)
+ γx

(1)
1

bgK2(1− α− η)(f0 − s)2

f2
0 s

+O(γ2) ,

v = −
s
[
gK(f0 − s)

(
b(1− α)− 1

)
− f0s

]
g(1− α− η)

[
gK(b− 1)(f0 − s)− f0s

]γ +O(γ2) ,

(22)

where the two expansion coefficients for the fraction of spacer enhanced bacteria are

x
(0)
1 =

b(1− α)− 1

b(1− α− η)
− f0s

bgK(f0 − s)(1− α− η)
,

x
(1)
1 = f0s

2 gK(f0 − s)
(
b(1− α)− 1

)
− f0s

bgK
[
gK(b− 1)(f0 − s)− f0s

]
(1− α− η)2(f0 − s)2

.

(23)

The number of viruses is proportional to the relative difference in growth rates, γ, so it is different
from zero only when spacer enhanced and wild type bacteria grow at different rates.

In order to analyze the parameters where the solution is feasible, we further expand in the dilution
parameter s, and get

x
(0)
1 =

b(1− α)− 1

b(1− α− η)
− s

bgK(1− α− η)
+O(s2) , x

(1)
1 = O(s2) . (24)

This means that for small dilution, the total bacterial population is not resource-limited, but there is
a correction due to dilution. The coexistence between bacteria and virus is controlled by the relative
difference in growth rate, γ, and the dilution, s:

n ≈ K
(

1− s

f0
+ γs

b(1− α)− 1

f0(b− 1)(1− α− η)

)
,

n1 ≈ K
b(1− α)− 1

b(1− α− η)
− s

gK
(
b(1− α)− 1

)
+ f0

f0bg(1− α− η)
+ γsK

(
b(1− α)− 1

)2
bf0(b− 1)(1− α− η)2

,

v ≈ −γs b(1− α)− 1

g(b− 1)(1− α− η)
.

(25)

For this solution to be feasible, we need v > 0. If the spacer enhanced bacteria have a higher growth
rate than the wild type, γ > 0, this can only happen if α > 1 − 1/b, implying an unrealistically high
(close to unity) acquisition probability. The more realistic scenario occurs when the spacer enhanced
bacteria grow slower than the wild type, γ < 0. In this case, coexistence between both bacterial species
and phage can be observed, but the amount of phage is small, since it is proportional to the product
of the relative difference in growth rates and the dilution rate, both of which are typically small.

Notice that the solutions we have found are not fundamentally new. Rather, they represent small
corrections to the solutions we found without dilution. In the main text we found that coexistence
of the phage with both bacterial species was enabled by spacer loss which then also implied that
the bacterial population did not reach capacity. Here we see that dilution provides an alternative
mechanism (other than spacer loss) for these effects, but only if spacer-enhanced and wild-type bacteria
grow at different rates (γ 6= 0). Since this rate difference is measured to be small, and since dilution in
typical experiments is an order of magnitude smaller than growth rate, we can conclude that the latter
scenario for coexistence leads to small viral populations. Stochastic effects are then likely to lead to
extinction of the virus. The spacer-loss mechanism discussed in the main text can lead to more robust
viral populations at co-existence.
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4 Detailed steady state solution for multiple spacers

In the main text, we showed the steady state values for the case of multiple spacers only when all the growth
rates were the same. Here we generalize the dynamics from eq. [6] in the main text to the case where each
spacer (i) has a different growth rate fi,

ṅ0 = f0

(
1− n

K

)
n0 + κ

N∑
i=1

ni − gvn0 ,

ṅi = fi

(
1− n

K

)
ni − κni − ηigvni + αiµI0 ,

İ0 = gvn0 − µI0 ,
İi = ηigvni − µIi ,

v̇ = b
(

1−
N∑
i=1

αi

)
µI0 + bµ

N∑
i=1

Ii − gv
(
n0 +

N∑
i=1

ni

)
.

(26)

Setting the time derivatives to zero, we obtain

I0 =
g

µ
vn0 ,

Ii =
gηi
µ
vni ,∑

i ni
n0

=
b(1− α)− 1

1− bη̄
,

(27)

where the average failure probability (η̄) is defined as in the main text, η̄ =
∑
ηini/

∑
ni (eq. [8]). Similar

to the case of a single spacer, we see that the ratio between the total number of spacer enhanced bacteria
and the number of wild type bacteria is independent of the growth rates (fi).

By introducing the growth rate ratio (ri = fi/f0) and the average growth rate ratio

r =

∑N
i=1 rini∑N
i=1 ni

. (28)

we can now obtain the fraction of unused capacity (Fr = 1− n/K):

Fr =
κ

f0

b(1− α)− 1

(1− bη̄)

(
b− 1 + (r − 1)

b(1− α)− 1

1− α− η̄

) , (29)

which generalizes eq. [8] in the main text. The remaining steady state values are given by:

n = K(1−Fr) ,

gv = f0Fr + κ
b(1− α)− 1

1− bη̄
,

n0

n
=

µ(1− bη̄)

bµ(1− α− η̄) +

(
f0Fr + κ

b(1− α)− 1

1− bη̄

)
(1− η̄ − bη̄α)

,

ni
n0

= αi
f0Fr + κ b(1−α)−1

1−bη̄

κ

(
1 + ηi

b(1− α)− 1

1− bη̄

)
− f0Fr(ri − ηi)

.

(30)

Just as in the case when the growth rates are all equal (eq. [9] in the main text), the distribution of spacers
shows a linear dependence on the acquisition probability αi.
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Fig D: Distribution of spacers as a function of failure probability (ηi) and acquisition probability (αi). The
plot was obtained using eqs. (30) for a set of 100 spacers with failure probability below the critical value
η < ηc and acquisition probabilities chosen uniformly in two different regimes. Panel a) First regime of
small overall acquisition probability α =

∑
αi ≈ 0.1. As explained in the main text, this leads to a very

homogenous population where the best spacers are more abundant. There is a strong dependence on the
failure probability, which can be seen by the presence of closely spaced almost vertical contour lines. Panel
b) Second regime of large overall acquisition probability, α ≈ 0.4. This tends to reduce the importance of
differences in failure probability as shown by contour lines spaced far apart that bend horizontally.

Fig. D shows how the fraction of the bacterial population containing a specific spacer (ni/n) depends on
that spacer’s failure probability (ηi) and acquisition probability (αi). This is shown for the case when all
the growth rates are equal (ri = 1). Compare this to Fig. 4 in the main text, which gives a different way of
looking at these results.
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