SUPPLEMENTAL MATERIALS

EXO70C2 is a key regulatory factor for optimal tip growth of Arabidopsis pollen tubes

Lukáš Synek¹, Nemanja Vukašinović¹, Ivan Kulich², Michal Hála^{1,2}, Klára Aldorfová^{1,2}, Matyáš Fendrych¹, Viktor Žárský^{1,2}

- ¹ Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, Rozvojova 263, 16502 Prague 6, Czech Republic
- ² Department of Experimental Botany, Faculty of Science, Charles University, Vinicna 5, 12844 Prague 2, Czech Republic

Supplemental Figure 1. Expression of candidate pollen *EXO70* genes during pollen development in Arabidopsis.

Expression levels of putative pollen *EXO70* isoforms in unicellular, bicellular, tricellular and mature pollen, and germinated pollen tubes (4 hours) based on microarray data in the Arabidopsis eFP Browser (Winter et al., 2007). *EXO70H6* is undetectable using the ATH1 DNA chip (Affymetrix).

Supplemental Figure 2. EXO70C1 and EXO70C2 expression in Arabidopsis roots.

EXO70C1 (left) and *EXO70C2* (right) expression in root cell types based on microarray data as visualized by the Arabidopsis eFP Browser (Winter et al., 2007). Both genes show specific expression in trichoblast cells, and the *EXO70C2* expression obviously exceeds that of *EXO70C1*.

Supplemental Figure 3. Positions of insertions in *exo70* mutant lines and semi-quantitative RT-PCR analysis of gene expression of the affected *EXO70* isoforms.

A) Positions of T-DNA and transposon insertions in Arabidopsis mutants analyzed or referred to in this work. Exons are boxed, untranslated exons at the 5'UTR in light gray, introns in lines. In orange, the *exo70C2* insertion resulting in the transmission defect.

B) Expression levels of EXO70 genes in respective mutants as analyzed by semi-quantitative RT-PCR in samples prepared from flowers of wild-type (WT) or homozygous (HM) plants. The *ACT7* gene was used as a quantitative control.

Supplemental Figure 4. Propidium-iodide staining of protoplast-like structures emerging from the *exo70C2* pollen tube apex.

The absent propidium iodide signal around the protoplast-like structures suggests a very weak cell wall or limited amount of demethylated pectins is such a cell wall.

Supplemental Figure 5. Pollen tube lengths of complemented *exo70C2* lines non-segregating for the *pEXO70C2::EXO70C2:GFP* expression cassette.

Distribution of pollen tube lengths in samples of *in vitro* germinated pollen from homozygous *exo70C2* mutants in which the introduced *pEXO70C2::EXO70C2:GFP* was in a homozygous state resembles the distribution of WT pollen tube length (Figure 2A).

Supplemental Figure 6. Localization of *pEXO70C2::*GFP:EXO70C2 is identical to *pEXO70C2::*EXO70C2:GFP.

A) GFP:EXO70C2 in pollen grains of *exo70C2* homozygotes with the GFP expression cassette segregating. Scale bar = $20 \ \mu m$.

B) GFP:EXO70C2 in the cytoplasm of a pollen tube. Scale bar = 10 μ m.

C) GFP:EXO70C2 in a root. Gray dotted line marks the root tip. Scale bars = 100 μ m.

D) GFP:EXO70C2 is specifically expressed in trichoblast cells (maximum intensity projection of a confocal Z-stack). Scale bar = $20 \mu m$.

E) Top view at a 3D reconstruction calculated from the Z-stack in (D).

F) GFP:EXO70C2 is localized in the cytoplasm and excluded from the nucleus (marked by arrow) in trichoblasts. Cell walls stained with propidium iodide (in magenta). Scale bar = $10 \mu m$.

G) A detail of the GFP:EXO70C2 cytoplasmic localization in a root hair. Cell walls stained with propidium iodide (in magenta). Scale bar = $10 \mu m$.

GENOTYPING			
gene	primer	sequence	purpose
EXO70A2	A2-wt2	GAACAAGCACATAGGTTTGGATTATATTCAAC	genotyping of GABI 824D06
	A2-ins2	CCAAATCCAGAATCACATTTCAATTTCAACAG	genotyping of GABI 824D06
EX070C1	C1_G100-wt2	TGAATCAGATTGTTCCACCGCAGGAAT	genotyping of GABI 100A02
	C1_G100-ins3	TTTCGTCATCTTCTAGATCGTTCCAGAG	_ genotyping of GABI_100A02 (+ LB3 primer)
	C1-G334_wt2	CGGATTTCGAAATCGGTTATGAGATTG	genotyping of GABI _334D05
	C1-G334_ins2	GTGATGGGTCTCTGTACAGTCTC	genotyping of GABI _334D06
EX070C2	C2-Rik-WT1	ATAGCACCGAGGAGAAAGGAG	genotyping of RATM16-1469
	C2-Rik-ins1	GTCCTTGTATTCGCACGAGTA	genotyping of RATM16-1469
	C2-Rik-WT2	GATTGAATACCCTGGTTACCCTG	genotyping of RATM16-1469 with
	C2-Rik-ins3	TGAGAAAATCAGGAAAAAGTGTTGTTGC	genotyping of RATM16-1469 with
	C2-S767-LP	CGGCTACACACACACAAAC	genotyping of
	C2-S767-RP	TCCTTGTCGTTCTTCTCCATG	genotyping of
EXO70F1	F1-wt	CCGCTCTGCAATCTCCTTCAAATC	genotyping of SALK 036927
	F1-ins	TTTCGCTGTCTTTGTTCCACTCAAAC	genotyping of SALK 036927
ЕХО70Н3	H3_G651-wt3	CTTGTCTCTTAAGGTGATAGTTTCCG	_ genotyping of GABI_651C10
	H3_G651-ins1	GAGACACGTGTACGGAAAAGATGAG	genotyping of GABI_651C10
EXO70H5	H5P-wt	GTATCCAACACAACAAGCATACACTACC	genotyping of SALK_007810
	H5P-ins	CGGATTCCGGATCAAGATTCCGTC	genotyping of SALK_007810
ЕХО70Н6	H6-SALK-wt	TTCACAGATGGGCTCGAGACTGTT	genotyping of SALK_016535
	H6-SALK-ins	CAACAATAGCATCAGAATTCCCTCCT	genotyping of SALK_016535
Rikken lines	Ds5-2a	TCCGTTCCGTTTTCGTTTTTTAC	genotyping of Rikken lines
SALK lines	LBb1.3e	GATTTTGCCGATTTCGGAACCA	genotyping of SALK lines
GABI lines	GABI_08760	GGGCTACACTGAATTGGTAGCTC	genotyping of GABI lines

Supplemental Table 1. List of primers used in this study.

LB3	TAGCATCTGAATTTCATAACCAATCTCGATACA	genotyping of
	C	GABI_100A02

RT-PCR sequence gene primer purpose AGCTGCGGTGTTGGAACAGA EXO70A2 A2-RT-LP RT-PCR A2 RT-RP CTC GAC TGA ACC GTG AGA CAC T RT-PCR EX070C1 C1-RT-5k CTGCGGTGGAACAATCTGATTCAG RT-PCR C1-RT-3k TCCCTGAATCAAGATGTTGCTTATAC **RT-PCR** EX070C2 C2-Rik-ins1 GTCCTTGTATTCGCACGAGTA **RT-PCR** C2-RT-RP TTTGAAACAAGATTGTGAGTTTGAGA **RT-PCR** EXO70H3 H3-RT-LP ACGGATGTTAACAAGACCATCGAC **RT-PCR** H3 G651-wt3 CTTGTCTCTTAAGGTGATAGTTTCCG **RT-PCR** EXO70H5 H5-RT-5k ATGATGCTACTATTTAAACCGTCTTTA RT-PCR H5-RT-3k CATGCAATTCTTGTGGTTACAGTA **RT-PCR** EXO70H6 H6-RT-5k TAAGGTCGGGCCGCAACAGCAA **RT-PCR** GCCGCTGCTACTGAAGTAATCCT H6-RT-3k **RT-PCR** ACT7 ACT7 L CAAACTCACCACCACGAACCA **RT-PCR** ACT7_R GCCGATGGTGAGGATATTCAGC **RT-PCR** amiRNA primer gene sequence purpose EX070C1 C1A I miR-s GATGTATGACATACAAGACTCTGTCTCTCTTT amiRNAxC1 GTATTCC amiRNAxC1 C1A II miR-a GACAGAGTCTTGTATGTCATACATCAAAGAGA ATCAATGA C1A_III_miR*s GACAAAGTCTTGTATCTCATACTTCACAGGTC amiRNAxC1 GTGATATG C1A IV miR*a GAAGTATGAGATACAAGACTTTGTCTACATAT amiRNAxC1 ATATTCCT EX070C2 C2A I miR-s GATATGCGGAATTCGTGTTCCAATCTCTTTT amiRNAxC2 GTATTCC C2A II miR-a GATTGGAACACGAATTCCGCATATCAAAGAGA amiRNAxC2 ATCAATGA C2A_III_miR*s GATTAGAACACGAATACCGCATTTCACAGGTC amiRNAxC2 GTGATATG C2A IV miR*a GAAATGCGGTATTCGTGTTCTAATCTACATAT amiRNAxC2 ATATTCCT pLAT52:: EXO70C1/2_ CCCCCGGGAGCTTCGACATACTCGACTC cloning to pBAR1 amiRNAxC1/C2 Lat52 Xmal EXO70C1/2_ TGCTCTAGAGCGATGCCTTAAATAAAGATAA cloning to pBAR1 Lat52_Xbal amiRNA-primerA CTGCAAGGCGATTAAGTTGGGTAAC amiRNA cassette amiRNA detection GCGGATAACAATTTCACACAGGAAACAG amiRNA cassette amiRNA-primerB

CLONING	
-	

gene/construct	primer	sequence	purpose
pEXO70C1::	C1-5prom-Sall	ATGTCGACCTTCTTTCTGCTGTCAAAATAAC	cloning to
EXO70C1			pENTR3C
	C1-3end-NS-Notl	AAGCGGCCGCTCTCTTGCGTGCCATAGA	cloning to
			pENTR3C
pEXO70C2:: EXO70C2	C2-5prom-Bglll	TTAGATCTGCATTGATCCATTATTCCATC	cloning to
			pENTR3C
	C2-3end-NS-Notl	AAGCGGCCGCGATGTTCTTCGCCTGGCGG	cloning to
			pENTR3C

detection

EXO70C2	C2-5k-Xbal	AATCTAGAATGGAGAAGAACGACAAGG	cloning to pBAR1- GFP
	C2-3k-Xbal	AATCTAGACTATGTTCTTCGCCTGGC	cloning to pBAR1- GFP
GFP:EXO70C2	C2+GFP-5end	CGTAAATAATAAGAAACCATGAGTAAAGGAG AAGA	amplification
	C2-3end+B2	AGAAAGCTGGGTCTATGTTCTTCGCCT	amplification
pEXO70C2	C2prom+B1-5end	AAAAAGCAGGCTGCATTGATCCATTATTCC	amplification
	C2prom+GFP- 3end	TTCTCCTTTACTCATGGTTTCTTATTATTACG	amplification
pEXO70C2:: GFP:EXO70C2	C2prom+B1-5end	AAAAAGCAGGCTGCATTGATCCATTATTCC	cloning to pDONR201
	C2-3end+B2	AGAAAGCTGGGTCTATGTTCTTCGCCT	cloning to pDONR201
EXO70C2	C2-BD_FL_NdeI	CATATGGAGAAGAACGACAAGGACCC	cloning to pGBKT7 and
	C2-BD_stop_Smal	CCCGGGCTATGTTCTTCGCCTGGCGGTGG	pGADT7 cloning to pGBKT7 and pGADT7
EXO70A2	A2_Bam_fw	TTGAATTCATGGGGGTGGCTCAAGCAATGGA AG	cloning to pGBKT7
	A2_Sal_rv	TTTGTCGACTTATCTCTTTGGCTCACTCCATGT C	cloning to pGBKT7
SEC15a	SEC15a_Bam_fw	TTGGATCCGAATGATGGAGGCCAAACCAA	cloning to pGADT7
	SEC15a_Sal_rv	TTTGTCGACTCAGTTAAATTCCTTGAGTCTC	cloning to pGADT7
EXO70A1	EXO70A1- EcoRI fw	ACTGAATTCGCCATGGCTGTTGATAGC	cloning to pENTR3C
	EXO70A1-Not_rv	TTGCGGCCGCCCCGGCGTGGTTCATT	cloning to pENTR3C

The following files are available on-line:

Supplemental File 1. Interactive model of genetic segregation.

Supplemental Movie 1. Growth dynamics of *exo70C2* and WT pollen tubes stained with calcofluor white.

Calcofluor white signal (left) inversely correlates with the growth rate (Rainbow LUT: red -the strongest signal, blue the weakest signal, quantification in the graph). Red arrows in the bright field channel (right) highlight pollen tube bursts, which are also highlighted by blue arrowheads in the graph below.

Supplemental Movie 2. Growth dynamics of *exo70C2* and WT pollen tubes stained with calcofluor white.

The growth rate of the *exo70C2* pollen tube greatly exceeds the WT rate. At the rate maxima, apical calcofluor signal of *exo70C2* mutant is decreased by 75% with respect to the WT signal (Rainbow LUT: red -the strongest signal, blue the weakest signal, quantification in the graph). Arrow in the bright field channel (right) highlights pollen tube burst followed by a stop of the tube growth.

Supplemental Movie 3. Multiple exo70C2 pollen tube bursts and recovery.

Red arrowheads point to cytoplasmic extrusions and highlight time points of each pollen tube burst followed by recovery.