Supplementary Table S2. List of articles referring to the role of plant linker histones.

Development			
General	Arabidopsis	Downregulation of all three Arabidopsis H1 variants (RNAi) leads to pleiotropic developmental defects at the vegetative and	(Wierzbicki and Jerzmanowski 2005)
Malania	T.1	reproductive stages and impaired DNA methylation profiles	, ,
Meiosis	Tobacco	A 4-fold reduction of H1A and H1B levels impairs male meiosis	(Prymakowska-Bosak,
		and pollen development.	Przewloka et al. 1999)
Endosperm	Maize	H1/DNA ratio levels decrease during endoreduplication in maize	(Zhao and Grafi 2000)
development		endosperm in parallel to massive expression of storage genes	(Zhao and Gran 2000)
Cell fate	Arabidopsis	H1.1 and H1.2 somatic variants are evicted in male and female	(She, Grimanelli et al. 2013)
		meiotic precursors cells, transiently restored at meiosis and	(She and Baroux 2015)
		undetectable again in the functional megaspore.	(She and Baroux 2015)
Differentiation	Maize	H1 variants' ratios are dynamically regulated along the division	(Alatzas, Srebreva et al. 2008)
		and differentiation zones of maize root. Notably, the H1 ⁰ variant	(
		increases in differentiation while H1A/H1B decrease	
Seed biology	Maize	GWAS association with seed composition traits identified H1 loci	(Cook, McMullen et al. 2012)
		with starch, protein and oil content	, , , , , , , , , , , , , , , , , , , ,
	Maize	Onset of grain filling is associated with a change in properties of	(Kalamajka, Finnie et al. 2010)
		linker histone variants in maize kernels	
	Rapeseed	Osmopriming (exogenous control of seed imbibition) and seed	(Soeda, Konings et al. 2005)
		germination correlate with decreased levels of H1 mRNAs in	
		Brassica oleracea	
Fruit ripening	Banana	Fruit ripening and ethylene treatment increases the MaHIS1 H1	(Wang, Kuang et al. 2012)
		variant (homologous to the Arabidopsis H1.1 variant) in Musa	
		acuminate	<u> </u>
Biotic/abiotic str	1		Γ
Drought	Tomato	H1-S variant is up-regulated under water deficit conditions.	(Scippa, Griffiths et al. 2000)
		Antisense-mediated downregulation suggests a role of H1-S in	(Scippa, Di Michele et al. 2004)
D 1/	A 1'1 '	plant water status regulation and stomatal functions.	
Drought	Arabidopsis	The stress-inducible H1.3 variant is distinct from H1.1 and H1.2	(Ascenzi and Gantt 1997)
		by is short C-terminal tail, few amino acid substitution in the binding domain and very high mobility. H1.3 is induced by	(Ascenzi and Gantt 1999)
		combined light and water deficit and functions in stress responses	(Rutowicz, Puzio et al. 2015)
		and stomatal functions.	(,
Drought	Cotton	Identification by mass spectrometry of a stress-inducible H1	(Trivedi Benien et al. 2012)
Diought	Cotton	variant in a drought tolerant cultivar (Vagad). This variant is	(Trivedi, Ranjan et al. 2012)
		absent from the drought sensitive cultivar RAHS-14.	
Various biotic	Banana	Chilling or exogenous application of methyljasmonate, H2O2 or	(Wang, Kuang et al. 2012)
and abiotic	Dununu	ABA induced MaHIS1 (homologous to <i>At</i> H1.1) mRNA levels	(wang, Kuang et al. 2012)
stresses		transiently. Exposure to the fungal pathogen <i>Colletotrichum</i>	
		musae induced a prolonged increase in MaHIS1 mRNA levels.	
Epigenetic regul	lation	· · ·	•
DNA	Arabidopsis	RNAi downregulation of the three H1 variants led to local	(Wierzbicki and Jerzmanowski
methylation	-	fluctuations in DNA methylation patterns in both CG and non-	2005)
		CG contexts .	,
DNA	Arabidopsis	Loss-of-function of the three main H1 variants causes	(Zemach, Kim et al. 2013)
methylation		hypermethylation at heterochromatic transposons and partially	
		rescues the hypomethylation phenotype of DECREASED IN	
		DNA METHYLATION1 (ddm1) mutants	
Imprinting	Arabidopsis	H1 variants interacts with the DNA glycosylase DEMETER	(Rea, Zheng et al. 2012)
		(yeast two hybrid and GST pulldown assays). H1 depletion	
		reduces maternal expression of DME target genes (<i>MEA</i> , <i>FWA</i> ,	
TT: /	A 1 · · ·	<i>FIS2</i>) in correlation with increased DNA methylation levels.	
Histone	Arabidopsis	H1 directly interacts with the Histone Deacetylase Complex 1	(Perrella, Carr et al. 2016)
deacetylation		HDC1.	
Transcriptional			
Lignin	Eucalyptus	H1.3 interacts with the transcription factor MYB1 and	(Soler, Plasencia et al. 2016)
biosynthesis		contributes to transcriptional repression of genes involved in lignin biosynthesis.	
		nginn biosynthesis.	

Enhances TF	Rice/wheat	H1 facilitates binding of the transcription factor EmBP-1 to the	(Schultz, Spiker et al. 1996)		
binding		ABA-responsive gene <i>Em</i> .			
Regulates stress-	Arabidopsis	H1.3 contributes to induce stress-response associated factors	(Rutowicz, Puzio et al. 2015)		
responsive genes		under combined light and drought stress	· · · · · · · · · · · · · · · · · · ·		
Structural function					
Chromatin	Pea	Lower chromatin condensation in callus cells compared to root	(Bers, Singh et al. 1992)		
condensation		cells correlate with varying levels of histone H1 variants	(,		
	Tobacco	Overexpression of an Arabidopsis H1 variants in tobacco induces	(ŚLUSARCZYK,		
		strong heterochromatinization	PRYMAKOWSKA-BOSAK et		
			al. 1999)		
	Pea, Maize,	The proportion of extracted H1 correlates with the level of	Oleszweska, 1988		
	Bean	genomic repeats and the degree of chromatin condensation			
		(transmission electron microscopy)			
Other cellular fu	nctions				
Microtubule	Tobacco	In tobacco BY-2 cells, H1B functions as a microtubule-	(Hotta, Haraguchi et al. 2007)		
organization		organizing factor on the nuclear surface showing DNA independent functions. Probably interacting with tubulin.	(Nakayama, Ishii et al. 2008)		
			(Kaczanowski and		
			Jerzmanowski 2001)		
			JULZINANOWSKI 2001)		

References

- Alatzas, A., L. Srebreva, et al. (2008). "Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment." Biol Res **41**(2): 205-215.
- Ascenzi, R. and J. S. Gantt (1997). "A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants." Plant Mol Biol **34**(4): 629-641.
- Ascenzi, R. and J. S. Gantt (1999). "Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana." <u>Plant Mol Biol</u> 41(2): 159-169.
- Ascenzi, R. and J. S. Gantt (1999). "Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana." <u>Chromosoma</u> 108(6): 345-355.
- Bers, E. P., N. P. Singh, et al. (1992). "Nucleosomal structure and histone H1 subfractional composition of pea (Pisum sativum) root nodules, radicles and callus chromatin." <u>Plant Mol Biol</u> 20(6): 1089-1096.
- Cook, J. P., M. D. McMullen, et al. (2012). "Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels." <u>Plant Physiol</u> **158**(2): 824-834.
- Hotta, T., T. Haraguchi, et al. (2007). "A novel function of plant histone H1: microtubule nucleation and continuous plus end association." Cell Struct Funct **32**(2): 79-87.
- Kaczanowski, S. and A. Jerzmanowski (2001). "Evolutionary correlation between linker histones and microtubular structures." J Mol Evol **53**(1): 19-30.
- Kalamajka, R., C. Finnie, et al. (2010). "Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels." Planta 231(5): 1127-1135.
- Nakayama, T., T. Ishii, et al. (2008). "Radial microtubule organization by histone H1 on nuclei of cultured tobacco BY-2 cells." J Biol Chem 283(24): 16632-16640.
- Perrella, G., C. Carr, et al. (2016). "The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants." <u>Plant Physiol</u> 171(1): 62-70.
- Prymakowska-Bosak, M., M. R. Przewloka, et al. (1999). "Linker histones play a role in male meiosis and the development of pollen grains in tobacco." <u>Plant Cell</u> 11(12): 2317-2329.
- Rea, M., W. Zheng, et al. (2012). "Histone H1 affects gene imprinting and DNA methylation in Arabidopsis." Plant J 71(5): 776-786.
- Rutowicz, K., M. Puzio, et al. (2015). "A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis." <u>Plant Physiol</u> **169**(3): 2080-2101.
- Schultz, T. F., S. Spiker, et al. (1996). "Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1." J Biol Chem 271(42): 25742-25745.

- Scippa, G. S., M. Di Michele, et al. (2004). "The histone-like protein H1-S and the response of tomato leaves to water deficit." <u>J Exp Bot</u> 55(394): 99-109.
- Scippa, G. S., A. Griffiths, et al. (2000). "The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress." Planta 211(2): 173-181.
- She, W. and C. Baroux (2015). "Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis." Front Plant Sci **6**: 294.
- She, W., D. Grimanelli, et al. (2013). "Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants." <u>Development</u> 140(19): 4008-4019.
- ŚLUSARCZYK, J., M. PRYMAKOWSKA-BOSAK, et al. (1999). "Ultrastructural Organization of Leaves of Transgenic Tobacco Overexpressing Histone H1 from Arabidopsis thaliana." <u>Annals of Botany</u> 84(3): 329-335.
- Soeda, Y., M. C. Konings, et al. (2005). "Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level." <u>Plant Physiol</u> **137**(1): 354-368.
- Soler, M., A. Plasencia, et al. (2016). "The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation." <u>New Phytol</u>.
- Trivedi, I., A. Ranjan, et al. (2012). "The histone H1 variant accumulates in response to water stress in the drought tolerant genotype of Gossypium herbaceum L." Protein J 31(6): 477-486.
- Wang, J. N., J. F. Kuang, et al. (2012). "Expression profiles of a banana fruit linker histone H1 gene MaHIS1 and its interaction with a WRKY transcription factor." <u>Plant Cell Rep</u> 31(8): 1485-1494.
- Wierzbicki, A. T. and A. Jerzmanowski (2005). "Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation." <u>Genetics</u> 169(2): 997-1008.
- Zemach, A., M. Y. Kim, et al. (2013). "The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1containing heterochromatin." <u>Cell</u> 153(1): 193-205.
- Zhao, J. and G. Grafi (2000). "The high mobility group I/Y protein is hypophosphorylated in endoreduplicating maize endosperm cells and is involved in alleviating histone H1-mediated transcriptional repression." J Biol Chem 275(35): 27494-27499.