

Fig. S1. Changes in fatty acid composition of minor fatty acids in seed lipid during seed development of WT and PLD_{ζ} . (A) Arachidic acid (20:0). (B) Eicosadienoic acid (20:2). (C) Eicosatrienoic acid (20:3). (D) Docosanoic acid (22:0). (E) Erucic acid (22:1) (SD, n=3). Significant differences (*T* test, *P* <0.05) between PLD_{ζ} and WT are denoted with an asterisk.

Fig. S2. Total radioactivity incorporation into fatty acids of seed lipids during [¹⁴C]acetate labeling of WT (A) and PLD_{ζ} (B) developing seeds (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min).

Fig. S3. Incorporation of $[{}^{14}C]$ acetate in to fatty acids of PE/PG, PA, PI and MGDG in WT (A) and PLD_{ζ} (B) developing embryos (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min).

Fig. S4. Regiochemistry of $[{}^{14}C]$ acetate labeling in fatty acids incorporated into TAG. Radioactive TAG was digested with *Rhizomucor miehei* lipase as described in Materials and Methods. Products of lipase digestion of $[{}^{14}C]$ TAG were measured and percentage of each product over total was calculated. (A) WT. (B) PLD_{ζ} (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min).

29 30 F 31 P 32 33

Fig. S5. Total radioactivity incorporation into fatty acids of seed lipids during [¹⁴C]glycerol labeling of WT (A) and PLD_{ζ} (B) developing seeds (SD, n=3, time points: 5, 10, 20, 30, 60, 180).

Fig. S6. Accumulation of total labeled PC, DAG and TAG in WT (A) and PLD_{ζ} (B) developing embryos from [¹⁴C]glycerol labeling (SD, n=3, time points: 5, 10, 20, 30, 60, 180). The early labeling time frame is redrawn in (C, D) for WT and PLD_{ζ} respectively.

Fig. S7. Accumulation of labeled PE/PG, PA/PI and MGDG in WT (A) and PLD_{ζ} (B) developing embryos from [¹⁴C]glycerol labeling (SD, n=3, time points: 5, 10, 20, 30, 60, 180).

48 49 **Fig. S8.** Incorporation of $[^{14}C]$ -glycerol into acyl chains of glycerolipids during labeling of WT and PLD_{ζ} 50 developing embryos. (A) $[^{14}C]$ -glycerol into acyl chains of TAG, DAG and PC in WT embryos. (B) $[^{14}C]$ -glycerol 51 into acyl chains of TAG, DAG and PC in PLD_{ζ} embryos (SD, n=3, time points: 5, 10, 20, 30, 60, 180). The early 52 labeling time frame is redrawn in (C, D) for WT and PLD_{ζ} respectively.

54

Table S1. Initial labeling of glycerol backbone. 5 and 10 minute time points from $[^{14}C]$ -glycerol incorporation into the backbone of lipids were linearly regressed to obtain the initial rate of labeling (i.e. slope) and the ratio of slopes, PC/TAG was calculated to evaluate the relative use of *de novo* DAG for PC and TAG (n=3). 56 57 58

	DAG	PC	TAG	PC/TAG
WT	124.5 ± 64.20	141.3 ± 29.45	36.50 ± 4.482	3.9
OE	235.6 ± 32.33	119.8 ± 35.55	28.13 ± 11.89	4.3