
Supplementary Note 1. Thin	film	magnetization	measurements	

Thin film magnetic characteristics were studied using polar Magneto-Optic Kerr Effect (MOKE) 

and SQUID Vibrating Sample Magnetometry (SQUID-VSM) measurements, both before and 

after the field-cooling process. Here, we show the data obtained for the Ta (1) / Pt (3) / Co (0.7) / 

Pt (0.3) / IrMn(6) / TaOx(1.5) stack (nominal thicknesses in nm) discussed in the main text. 

After deposition, MOKE measurements show a typical double-loop behavior (Supplementary 

Figure 1a). A random pattern of up- and downward out-of-plane (OOP) magnetization arises in 

the Co layer during deposition, and is transferred to the IrMn layer. This creates regions of 

positive and negative exchange bias (EB) as seen in the MOKE loop. A uniform OOP EB can be 

obtained by heating the sample to 225 °C while applying an OOP magnetic field larger than the 

coercive field. This is shown in Supplementary Figure 1b; a MOKE measurement taken after 

OOP field cooling at 0.2 T. 
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Supplementary Figure 1 | Thin film magnetization versus out-of-plane field. Out-of-plane component of the 
magnetization as a function of applied out-of-plane magnetic field, measured by polar MOKE in the (a) as-deposited 
and (b) out-of-plane field-cooled states. 

 



Creating an in-plane EB in samples with perpendicular magnetic anisotropy (PMA) is more 

difficult, as the intrinsic anisotropy field needs to be overcome to force the magnetization of the 

Co layer in the in-plane direction during field-cooling. We therefore applied a large in-plane 

field of 2.0 T while heating the sample to 225 °C and field-cooling over a period of 30 minutes. 

Afterwards, OOP MOKE measurements (Supplementary Figure 2a) show full remanence, a 

substantial coercivity ߤܪc ൎ 40	mT, and negligible EB in the out-of-plane direction. The 

squareness of the loop is clear evidence for a substantial perpendicular magnetic anisotropy. In-

plane SQUID-VSM measurements (Supplementary Figure 2b) show an in-plane EB of ߤܪEB ൎ

50	mT and a saturation magnetization ܯ௦ ൌ 1.2	ൈ10Amିଵ with ߤܪK ൎ 1	T, indicating an 

effective PMA of ܭeff ൎ 6.0 ൈ 10ହ	Jm‐3. A slight opening is visible in the SQUID-VSM cycle, 

probably caused by a slight misalignment between the sample surface and the measurement 

direction. 
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Supplementary Figure 2 | Hysteresis loops after in-plane field cooling. Thin film magnetization versus magnetic 
field measured by (a) polar MOKE along the out-of-plane axis and (b) SQUID-VSM along the in-plane direction. 
The sample shows fully remanent out-of-plane magnetization with a coercive field of 40 mT as well as an exchange 
bias field of 50 mT in the in-plane direction (see inset). 
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Supplementary Note 4. Magnetic	reversal	without	exchange	bias	

As discussed in the main text, gradual magnetization reversal is observed when sweeping the 

current density from high negative to high positive values and back, even in the presence of 

additional in-plane magnetic fields. We proposed that the local spin structure of the IrMn causes 

a distribution of effective local magnetic fields. To test this hypothesis, we created a Hall cross 

sample without an anti-ferromagnetic layer, composed of Ta (4) / Pt (3) / Co (1.2) / Ta (5), with 

nominal thicknesses in nm. In this sample switching is found to be abrupt (Supplementary Figure 

5), suggesting rapid domain wall propagation across the measured region. This is markedly 

different from the exchange-biased samples, where no evidence of coherent domain wall 

propagation was found. Even if slow domain wall propagation occurs, the steps must be far 

below the submicron range accessible in the Kerr microscope, in agreement with existing studies 

on similar bilayers1,2. We conclude that the gradual magnetization reversal is not related to 

domain wall motion (or device geometry in general) and results directly from the IrMn layer. 
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Supplementary Figure 5 | Hysteresis loop in a sample without exchange bias. Anomalous hall resistance RAHE of 
a Ta(4)/Pt(3)/Co(1.2)/Ta(5) microwire, recorded while sweeping the applied pulse current density from high 
negative values to high positive values and back under application of a -10 mT magnetic field along the current flow 
direction. Sudden magnetization reversal is observed at a critical current density below 0.3ൈ10ଵଶAmିଶ 

  



Su

Given th

importa

dimensi

tempera

calibrati

were ab

tempera

 

Supplem
by contro
from resis

 

Due to J

IrMn fil

were to 

vanish a

exchang

upplementa

he high curr

ance in our e

ions and com

ature using a

ion data to r

ble to quanti

ature may ri

mentary Figur
olled heating o
stance as a fun

Joule heatin

lms (450 K)

be sustaine

and reset up

ge bias at hi

ary Note 5. 

rent densitie

experiments

mposition to

a uniformly 

resistance m

fy the amou

se as high a

re 6 | Tempera
of a nanowire s
nction of pulse

ng, the temp

) and even a

d for extend

pon cooling.

gh current d

Joule	he

es, Joule hea

s. We measu

o the sample

heated Arg

measurement

unt of Joule 

as 650 K for

ature depend
similar to the o
e current dens

erature may

approach the

ded periods 

 This is not 

densities and

eating	and

ating and tem

ured the resi

e discussed 

gon flow (Su

ts performe

heating (Su

r the highest

dent resistance
one used in th
ity for the sam

y thus briefly

e Néel temp

of time, the

observed: o

d the exchan

d	temperat

mperature-r

istance of a 

in the main

upplementar

d during the

upplementar

t used curren

e data. (a) Re
he main experi
mple discussed

y exceed th

perature (690

e exchange b

our measure

nge bias is s

ture	

related effec

microwire (

 text) while

ry Figure 6a

e pulsed cur

ry Figure 6b

nt densities.

esistance versu
iments and (b)
d in the main t

e blocking t

0 K)3. If suc

bias of our s

ements show

still (equally

cts could be 

(identical in

 ramping th

a). Comparin

rrent experim

b) and found

.  

us temperature
) temperature c
text. 

temperature

ch a tempera

samples wou

w clear evide

y) present af

of great 

n 

he 

ng this 

ments, we 

d that the 

 

e measured 
computed 

e of thin 

ature 

uld 

ence of 

fter 



recording the full phase diagrams. Crucially, although elevated temperature influences the 

magnetization reversal process, the used current pulses (typically 50 s) are too short to 

irreversibly affect the exchange bias. Anti-ferromagnetic re-ordering is a thermally activated 

process that scales logarithmically in time. The relevant time-scale  is given by4: 

 
1
߬
ൌ ߥ exp െ

bܧ
݇Bܶ

൨ 
(1) 

with the attempt frequency0 = 109 s-1, Eb the energy barrier for anti-ferromagnetic grain 

reversal, kB Boltzmann’s constant and T the temperature. We know that our samples are stable 

for at least several weeks at room temperature, so that ߬	~	10	s at ܶ ൌ 300	K, yielding  

bܧ ൎ 34.5 ൈ ݇ ܶ. At a temperature of 650 K, we find ߬	~	10	ms (see Supplementary Figure 7), 

which is three orders of magnitude larger than the current pulse duration. 

Still, we cannot exclude that briefly approaching the Néel temperature has an instantaneous, 

reversible effect on the exchange bias. One could speculate, for instance, that this would reduce 

the effective exchange bias due to a reduction of the anti-ferromagnetic ordering within grains, 

as illustrated in Supplementary Figure 8. This would contribute towards our findings that the 

effective exchange bias measured in our switching experiments (roughly 5 mT) is lower than the 

50 mT value we measured in thin films at room temperature. However, to our knowledge, such 

an effect has never been reported on before.  
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Supplementary Note 7. Stack	optimization	

The composition of the material stack used in our experiments is the result of careful 

optimization of all layer thicknesses. Relevant results are presented here, to provide an overview 

of the effect of each layer thickness.  

Deposition starts with a Ta seed layer, which is commonly used to improve film quality5 and was 

found to significantly increase the PMA in our samples. The thickness of this buffer layer was 

minimized to reduce current shunting effects. This reduces the PMA, but we found that a 1 nm 

Ta seed layer suffices for our measurements. 

The Pt thickness of 3 nm maximizes the spin-Hall effect (SHE); see Supplementary Note 8. 

The Co layer was chosen as thin as possible, to maximize both the PMA and the susceptibility to 

spin currents injected from the interface. MOKE measurements were performed on a sample 

with a variable Co thickness, which was subjected to the in-plane field cooling process. As 

shown in Supplementary Figure 12, a thickness of 0.7 nm yields the largest coercivity and full 

remanence (M(0)/Ms), indicating that a substantial PMA is obtained for this Co thickness. 
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Supplementary Figure 12 | Magnetic characteristics as a function of Co thickness. The exchange bias HEB, 
coercive field Hc, and remanence are shown as a function of cobalt thickness in a Ta (3) / Pt (3) / Co (0-2) / Pt (0.3) / 
IrMn (6) / Pt (3) wedge sample, measured using polar MOKE in the out-of-plane direction after annealing in the in-
plane direction at 225°C in a 2T magnetic field for 30 minutes. 



The thickness of the IrMn layer is crucial to obtain a large and stable EB. We created a sample 

with a variable IrMn thickness, and annealed it at 225°C in a 0.2 T out-of-plane magnetic field 

for 30 minutes. This allows us to measure the EB and coercivity as a function of IrMn thickness 

using polar MOKE, which we found to be a good measure for the properties of an in-plane 

annealed sample. As shown in Supplementary Figure 13, the highest EB is obtained for an IrMn 

thickness of 6 nm. Note that the coercivity peak and negligible EB indicate that the EB is 

unstable for reduced thicknesses. The reduction in EB observed at higher thicknesses can 

probably be attributed to changes in microstructure or domain structure in the IrMn6. 
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Supplementary Figure 13 | Coercivity and exchange bias versus IrMn thickness. Graphs of the exchange bias 
HEB and coercive field Hc as a function of IrMn thickness in a Ta (3) / Pt (4) / Co (1.5) / IrMn (0-15) / Pt (2) wedge 
sample, measured along the out-of-plane direction after annealing in the out-of-plane direction at 225°C in a 0.2 T 
magnetic field for 30 minutes. The sample shows close to 100% remanence across the entire IrMn thickness range. 
 

A 0.3 nm Pt dusting layer was inserted between the Co and IrMn layers to increase the PMA of 

the Co layer. Interestingly, this dusting layer was found to significantly reduce the chance of 

device breakdown at high current densities. Note that this thin layer is not expected to contribute 

significantly to the net spin current due to scattering, as discussed in Supplementary Note 8. 

Finally, the stack is capped with a 1.5 nm Ta layer which is allowed to oxidize naturally, 

producing a protective yet transparent and non-conductive capping layer. 	



Supplementary Note 8. Spin	current	considerations	

Owing to the spin-Hall effect, a vertical spin current density Js can be generated from a planar 

charge current Je in materials with a nonzero bulk spin-Hall angle ߠSH ≡ sܬ ⁄eܬ . For our thin Pt 

films, we use the reported7 value of ߠSH= 0.07. Note that extensive debate exists on this subject, 

which is beyond the scope of this publication. For ultrathin films, the thickness of the metallic 

layer affects the net spin current. Spin accumulations are created at the interfaces with adjacent 

layers, causing spin diffusion that reduces the net spin current significantly if the film thickness 

is of the order of the spin-diffusion length sf. Following the approach of Liu et al.7, we take  

sf = 1.4 nm for Pt and model the net spin current as 

sܬ  ൌ SHሺ1ߠeܬ െ sech
ௗ

ఒsf
ሻ,   

(2) 

where d is the Pt layer thickness. From this perspective, a thicker Pt layer is beneficial as it 

improves the net spin current. However, this also increases the total electric current Ie required to 

produce a certain current density Je, which increases Joule heating and thus the risk of device 

breakdown. To solve this trade-off, we compute the spin current Js as a function of Pt thickness d 

while constraining Je to maintain a constant total current Ie. The result of this computation is 

shown in Supplementary Figure 14. Current shunting through other metallic layers in the stack is 

taken into account, using a basic calculation where the stack is regarded as a parallel resistor 

network with appropriate resistances based on bulk conductivities. The optimum value for the Pt 

thickness is thus determined to be between 3 and 4 nm. 
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Supplementary Figure 14 | Spin current density as a function of Pt thickness. The spin current density is 
computed for constant total current Ie. Spin diffusion and current shunting effects are taken into account using 
simple models. The optimum Pt thickness is found to be between 3 and 4 nm. 

 

In our calculations, we only take into account the spin current generated from the thick Pt layer. 

This is justified, as contributions from the other layers are negligible. By the diffusion 

mechanism here, the contribution from the 0.3 nm Pt dusting layer is about thirty times smaller 

than the contribution from the 3 nm Pt layer. The Ta seed layer is also very thin, and its local 

conductivity will be significantly reduced due to elastic scattering at the substrate interface. 

Finally, although IrMn may exhibit a spin-Hall angle comparable to Pt8, its conductivity is more 

than an order of magnitude lower. Therefore, its contribution to the total current density and total 

spin current is negligible compared to the Pt. 

 	



Supplementary Note 9. Simulation	details	

As discussed in the main text, following the approach of our earlier work9, magnetization 

dynamics are simulated by solving the Landau–Lifshitz–Gilbert (LLG) equation10: 

 
ۻ߲
ݐ߲

ൌ െߛμሺۻ ൈ ۶effሻ 
ߙ
௦ܯ

൬ۻ ൈ
ۻ߲
ݐ߲
൰ 

ܿୗୌ
௦ܯ
ଶ ሺۻ ൈ ોෝୗୌ ൈ  ሻۻ

(3) 

with M the free layer magnetization, γ the electron gyromagnetic ratio, 0 the vacuum 

permeability, Heff the effective magnetic field, α the Gilbert damping coefficient, and ܯୱ ≡  |ۻ|

the saturation magnetization. The spin-Hall torque coefficient is given by ܿୗୌ ൌ /ߛୗୌħߠୗୌܬ

ሺ2݁݀ሻ, JSHE the spin-Hall effect current density running underneath the free layer, ߠୗୌ the spin-

Hall angle, ħ the reduced Planck constant, e the elementary charge, and ݀ the free magnetic layer 

thickness. The Oersted field generated by JSHE is approximated by that of an infinite surface 

current, whereas current shunting effects are neglected. Joule heating can be included by 

assuming that heat proportional to ܫSHE
ଶ  is absorbed while Newtonian cooling to the environment 

(at 300 K) takes place. Appropriate coefficients are used to produce temperature profiles 

matching experiments, i.e. an equilibrium temperature of 650 K for ܬSHE ൌ 8 ൈ 10ଵଵ Am-2, 

which is reached within a few nanoseconds. 

The effective magnetic field Heff comprises six contributions: the applied magnetic field Happl, 

the exchange bias field HEB, the effective anisotropy field ۶ୟ୬୧ ൌ   theܭ ො, withܢୱሻܯߤ/ሺܭ2

uniaxial anisotropy energy density, the demagnetizing field HD which is approximated for an 

infinite thin film, an Oersted field HOe generated by the current running through the spin-Hall 

injector, and a Langevin thermal field HT. This thermal field is an isotropic Gaussian white-noise 

vector with variance ߪଶ ൌ ܶ݇ߙ2 ሺߤܯୱܸ߬ሻ⁄  with kB the Boltzmann constant, T the absolute 

temperature, V the free layer volume, and τ the simulation time step. This particular stochastic 



contribution can be shown to yield appropriate thermal fluctuations11. 

Supplementary Equation (3 is solved numerically using an implicit midpoint rule scheme12. The 

SHE current pulse lasts for 10 ns, after which the simulation is continued for another 10 ns to 

allow for cooling. The magnetization is considered switched if the final magnetization vector M 

has a z-component opposite in sign to the starting condition. 

We set ܭ ൌ 4.33 ൈ 10ହ	Jmିଷ to yield a thermal stability of Δ ≡ ܸ/ሺ݇ܶሻୣܭ ൌ 60 at room 

temperature, for a bit size of 100 nm x 100 nm x 0.7 nm. Here, ୣܭ ൌ 3.55 ൈ 10ସ	Jmିଷ is the 

effective anisotropy after correcting for the demagnetization field. This value is significantly 

lower than the experimentally determined value (see Supplementary Note 1) to account for 

micro-magnetic effects such as domain formation, improving the correspondence between 

simulations and experiments. Other notable parameters include ߙ ൌ ୱܯ ,0.2 ൌ 1.0 ൈ 10	Amିଵ 

for Co7, and ߠୗୌ ൌ 0.07	for Pt7. 

As mentioned in the main text, the local structure of the anti-ferromagnetic material can be 

approximated in simulations. Two modifications can be implemented, as discussed in the main 

text and elucidated below. The averaged effect of these local variations is computed by 

averaging over 256 simulations, each with different local exchange bias parameters. 

First, the exchange bias direction can locally vary from the field-cooling direction. To simulate 

this, we draw the exchange bias direction from a uniform random distribution over the surface of 

a sphere. We then collapse this distribution between െߨ 4⁄ ൏ ߠ ൏ ߨ 4⁄  and െߨ 4⁄ ൏ ߰ ൏ ߨ 4⁄ , 

where θ and ψ are the azimuthal and elevation angle with respect to the ܡො direction, respectively. 

The resulting distribution is constrained to 45° offset angles from the ܡො direction, as illustrated in 
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Supplementary Figure 16: exchange bias magnitude distribution.  The probability (arbitrary units) of a certain 
exchange bias magnitude is computed by drawing from a χ-distribution with three degrees of freedom. 

 

Finally, note that our choice of distributions for the exchange bias direction and magnitude 

should be considered an Ansatz based upon our experimental data. Our model suffices to explain 

the important trends observed in our experiments (see Supplementary Note 6), but the agreement 

is not perfect. This is particularly visible in the imperfect reproduction of the shape of the high-

probability switching region along the exchange bias direction (c.f. Figure 4a and Figure 4c, 

main text). Further research may result in a more accurate description of the local exchange bias 

parameters. 
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