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NCTC ID Accession Number 

NCTC11022 ERS718598 

NCTC9964 ERS747607 

NCTC9657 ERS812515 

NCTC4450 ERS846863 

NCTC5052 ERS739094 

NCTC12158 ERS659593 

NCTC9006 ERS718587 

NCTC9007 ERS715463 

NCTC9016 ERS718589 

NCTC9024 ERS702126 

NCTC8333 ERS764944 

NCTC8781 ERS744800 

NCTC6134 ERS806215 

NCTC7921 ERS744794 

NCTC9002 ERS764942 

NCTC9012 ERS718588 

NCTC9103 ERS747613 

NCTC10864 ERS715414 

NCTC11692 ERS659589 

NCTC12993 ERS473437 

NCTC11962 ERS846861 

Supplemental Table S1: Accession numbers of all the datasets used explicitly in the manuscript. The 
accession numbers of all 997 datasets is in the accompanying excel file. 
  



 
 

 
 
 
Supplemental Figure S1. Maximal Repeat Resolution. In the idealized case of error-free reads, we 
define the notion of Maximal Repeat Resolution as follows. (a) First we let G be the cyclic assembly graph 
corresponding to the perfect circular genome reconstruction. (b) Given a set of reads R, each repeat in 
the genome can be classified as bridged or unbridged. (c) The graph G’ is defined by collapsing the 
segments in G corresponding to repeats that are unbridged by R. (d) The graph G’’ is defined by 
resolving any loops that can only be traversed in a single way. We call G’’ the maximally resolved 
assembly graph. We point out that the final loop resolution step (from G’ to G’’) is based on a parsimony 
principle, but it could be potentially incorrect if the loop is supposed to be traversed multiple times. This 
behavior can be prevented on HINGE by setting the parameter MAX_PLASMID_LENGTH to a value 
larger than the genome length. We also point out that when reads have errors, the definition of maximal 
repeat resolution is not as clean, since one must instead consider approximate repeats, where the level of 
approximation should be determined as a function of the error rate. For the purpose of this paper, we 
assume that the matches found by the alignment tool correspond to repeats that are similar enough to 
justify their collapsing on the graph. However, as explained in the end of the Discussion section, one 
could in principle carefully analyze the divergence between reads that were matched by the aligner, in 
order to try to resolve the graph further.  
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Supplemental Figure S2. Comparison between the classical greedy assembly algorithm and the 
hinge-aided greedy algorithm. (a) shows a hypothetical scenario where there is an unbridged repeat on 
a genome, whose length is comparable to the read length. (b) shows the steps carried out by the 
classical greedy algorithm. Read 𝑢" first picks 𝑣$ as its successor and then 𝑢$ picks 𝑣"  as its successor, 
producing a mis-assembly.  (c) shows the steps carried out by the hinge-aided greedy algorithm. Here an 
in-hinge is placed on 𝑢" because it is the read starting before the repeat that extends farthest into the 
repeat. Similarly, an out-hinge is placed on 𝑣$ as it is the read ending outside the repeat starting earliest 
in the repeat. A greedy selection of matches then follows. First, 𝑢" picks 𝑣$ as its successor. The 
successor of 𝑢$ is the in-hinge at 𝑢". Notice that this is a larger match then the overlap between 𝑢$ and 
𝑣". Similarly, 𝑣" picks the out-hinge at 𝑣$ as its predecessor. Thus the hinge-aided greedy algorithm leads 
to the proper collapsing of the unbridged repeat into a single segment. 
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Supplemental Figure S3. We considered a simulated read dataset from a randomly generated genome 
of length 750 kbp, with planted repeats of lengths 12 kbp (in red) and 15 kbp (in yellow). The reads 
generated with the DAZZ-DB simulator bridged both repeats allowing perfect assembly to be obtained as 
shown in (a). We then cut reads that were longer than 10 kbp down to length 10 kbp. Now both repeats 
are unbridged and the graph obtained is as shown in (b). Since the red and yellow repeats were 
interleaved, the resulting graph allows two traversals, and cannot be resolved uniquely. (c) In another 
experiment, we truncated reads of length more than 14 kbp. As a result, only the long repeat (in yellow) 
was unbridged, and the maximally resolved assembly graph that only collapses the unbridged repeat was 
obtained. As this graph only allows one possible traversal, it can be resolved by HINGE (not shown here) 
yielding perfect assembly.  
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Supplemental Figure S4. (a) We generated a 2 Mbp genome with the nested repeat pattern shown 
above, formed by a triple repeat of length 20 kbp, and two “flanking repeats”, one of length 15 kbp and 
one of length 12 kbp. We then generated ten thousand reads using the DAZZ-DB simulator. (b) HINGE 
produces a graph that correctly captures this repeat structure. (c) Notice that the HINGE graph admits an 
alternative traversal that is also consistent with the reads. 
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Supplemental Figure S5. (a) We generated a 4 Mbp genome with three tandem repeats of length 100 
kbp. The length was chosen so that the loop on the graph would be large enough to be visible. We then 
generated reads using the DAZZ-DB simulator at a 50x coverage. (b) HINGE produces a graph where all 
three copies of the tandem repeat are represented in a single loop. This loop is not resolved by HINGE 
since its length is below the default value of MAX_PLASMID_LENGTH. Notice that the graph does not 
capture the number of copies of the tandem repeat. A post-processing coverage depth analysis can be 
used to determine the multiplicity of the loop. We note that the reads colored in black and circled in (c) 
are reads that appear at the junction of two copies of the tandem repeat. 
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Supplemental Figure S6. (a) We generated a 5 Mbp genome with the repeat pattern AB, AC, BC, BA, 
where A, B and C are 20 kbp long. We then generated reads using the DAZZ-DB simulator at a 50x 
coverage. (b) HINGE produces a graph that correctly captures this repeat structure. (c) Zooming into the 
location of the repeats in the graph, we see that the segments AB, AC, BC and BA are correctly captured 
by the graph. The colored segments correspond to the repeats in (a), and the grey nodes connecting the 
colored segments correspond to reads that lie between two of the segments A, B and C. 
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Genome	 #Chromosomal	
Contigs	

Total	length	(bp)	 N50	 Identity	(%)	

NCTC10081	 1	 4,877,359	 -	 99.63	
NCTC10538	 1	 4,823,233	 -	 99.60	
NCTC11358	 1	 5,469,178	 -	 98.67	
NCTC11637	 1	 1,697,088	 -	 99.53	
NCTC11696	 1	 6,003,688	 -	 99.55	
NCTC12066	 1	 1,753,803	 -	 99.65	
NCTC7102	 1	 4,956,981	 -	 99.80	
NCTC8198	 1	 1,927,056	 -	 99.57	
NCTC9035	 1	 5,031,051	 -	 99.10	

NCTC9171	 1	 5,176,202	 -	 99.74	
E.	coli	K12	(PacBio)	 1	 4,674,870	 -	 99.9	
E.	coli	K12	(Oxford	Nanopore	R9)	 1	 4,642,358	 -	 95.24	

E.	coli	K12	(Oxford	Nanopore	R9)	 1	 4,642,358	 -	
97.26	

(after	Racon)	
S.	cerevisiae	W303	(PacBio)	 22	 12,401,587	 789,778	 98.95	

 
 
Supplemental Table S2: Validation of HINGE on several datasets. For NCTC datasets, we randomly 
picked 10 datasets for which HINGE and the NCTC pipeline obtained a finished assembly, and the 
identity was computed with respect to the reference provided by NCTC (built using HGAP, circulator, and 
manual tuning). The PacBio E. coli dataset used is at http://files.pacb.com/datasets/secondary-
analysis/ecoli-k12-P4C2-20KSS/ecoliK12.tar.gz and the reference used to quantify sequence integrity is 
provided at http://files.pacb.com/datasets/secondary-analysis/ecoli-k12-P4C2-
20KSS/ecoliK12_polished_assembly.fasta. The Oxford Nanopore R9 E. coli dataset is the standard 
dataset provided at http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_ 
lambda_MinKNOW_0.51.1.62.all.fasta and the reference used is at http://www.ncbi.nlm.nih.gov/nuccore/ 
545778205?report=fasta. The S. cerevisiae  dataset used is provided at https://gist.github.com/pb-
jchin/6359919 and the reference is at http://datasets.pacb.com.s3.amazonaws.com/2013/Yeast/ 
HGAP_Assembly/polished_assembly.fasta. For the Oxford Nanopore E. coli dataset, we additionally ran 
Racon on the finished assembly. The number of contigs for S. cerevisiae corresponds to the contigs that 
comprise 99% of the assembly length. In the two E. coli datasets, we have no mis-assemblies with 
respect to the reference. In all the NCTC datasets, HINGE and the NCTC pipeline also agree about the 
structure of the sequence. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
Supplemental Figure S7. Hinge was run on the Oxford Nanopore R9 E. coli K-12 MG1655 dataset taken 
from http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62 
.all.fasta. The assembly obtained was compared to the reference obtained from http://www.ncbi.nlm. 
nih.gov/nuccore/545778205?report=fasta. (a) We colored the HINGE graph according to the position that 
the read aligns to in the reference. We note that a lack of sharp color gradients shows the structural 
integrity of the assembly. Connected components that were smaller than ten nodes (which might 
correspond to small plasmids or bacterial phages were deleted). (b) A dot-plot comparing HINGE 
assembly and the reference shows that the assembly agrees with the reference on most of the contig. 
  
 
 
 
  

Re
fe
re
nc
e

HINGE	 contig

a b



 
 
 
 

 
 
 
Supplemental Figure S8. HINGE was run on a Saccharomyces	cerevisiae	W303	PacBio	dataset.		
(a)	We	colored	the	HINGE	graph	according	to	the	chromosome	where	each	read	maps	to	(using	the	Falcon	
assembly	as	reference).	We	notice	that	in	the	HINGE	graph	most	of	the	chromosomes	correspond	to	single	paths.	
Some	of	these	paths	are	connected	at	their	ends,	due	to	the	repetitive	nature	of	the	telomeres.	(b)	Dotplot	
comparing	the	HINGE	and	Falcon	assemblies.	Every	row	corresponds	to	a	distinct	Falcon	contig	and	every	column	
corresponds	to	a	distinct	HINGE	contig.	The	diagonal	lines	represent	the	alignments	between	the	two	assemblies	
and	show	that	most	of	the	resulting	contigs	are	the	same.	Some	exceptions	are	HINGE’s	contigs	I	and	IV	(which	
are	merged	in	Falcon’s	assembly),	and	HINGE’s	contigs	II,	III,	and	V	(each	of	which	is	broken	into	two	contigs	by	
Falcon).			(c)	Comparison	of	the	two	assemblies	under	standard	metrics.	The	number	of	contigs	corresponds	to	the	
number	of	contigs	comprising	99%	of	the	total	assembly	length.	 
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Falcon 24 12,370,681 777,787 - 137	
HINGE 22 12,401,587 789,778 98.95 Overlap 39.5

Layout 2
Consensus 0.33
Total 41.9

I II III IV V



 
 

Supplemental Figure S9. Selected examples from the NCTC database where HINGE collapses 
unbridged repeats. In some cases, such as NCTC5052 and NCTC12158, the repeat admits only one 
traversal and is resolved in the loop resolution step (not shown here). However, if the graph shows an 
unbridged inverted repeat (such as in NCTC9006, NCTC9007, NCTC9964, and NCTC9016), or a pair of 
interleaved repeats (NCTC8781 and NCTC4450), or a more complex repeat pattern (NCTC8333 which 
has a triple repeat and a pair of interleaved repeats), multiple traversals may be possible, and HINGE 
produces a graph with the collapsed repeats.  

  

NCTC9016�(E. coli)

NCTC9007�(E. coli)

NCTC12158�(K. planticola)

NCTC9006�(E. coli)

NCTC5052�(K. pneumoniae)

NCTC8781�(E. coli)

NCTC9964�(E. coli)

shorter contigs

three longest contigs

NCTC�pipeline

NCTC8333�(E. coli)NCTC4450�(E. coli)



 

 
 
 
Supplemental Figure S10. Selected examples from the NCTC database where HINGE returns finished 
assemblies while the NCTC pipeline returns fragmented assemblies. In several of these cases, a repeat 
that is fundamentally resolvable causes the NCTC pipeline to fragment its assembly. HINGE, on the other 
hand, identifies the bridging of the repeat, and allows the contigs to be correctly connected.  
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Supplemental Figure S11. Timing analysis of HINGE: Running time of HINGE, FALCON, and Miniasm 
on (a) the standard E. coli dataset of http://www.cbcb.umd.edu/software/PBcR/MHAP/, and (b) NCTC 
datasets NCTC9153, NCTC11962, NCTC11022. We observe that the overall runtimes of Miniasm, 
HINGE and FALCON are each separated by roughly one order of magnitude.  The majority of HINGE 
runtime is consumed by the alignment step (DAligner).  Miniasm, on the other hand, employs a fast 
overlapping tool (Minimap), but does not have a consensus step.  The Overlap-Layout-Consensus steps 
in FALCON are not easily separated, so timing information is not broken down into individual steps. We 
note that HINGE and FALCON both use DAligner for getting alignments and hence HINGE is not faster 
than FALCON because it uses a faster alignment tool. 
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Supplemental Figure S12. HINGE assembly graphs for the NCTC datasets considered in Figure 2, 
colored according to the contigs produced by FALCON. In both examples, FALCON produces contigs 
that are similar to those produced by the NCTC pipeline (based on HGAP and Circlator).  Specifically, on 
the NCTC11022 dataset (Escherichia coli), FALCON returns two contigs due to an incorrect resolution of 
an unbridged repeat, while HINGE produces a single large chromosomal contig of length 5 Mbp. The 
nodes in the HINGE graph are colored according to the position the corresponding reads align to in the 
FALCON-produced contigs. Running FALCON on the NCTC9657 dataset (Klebsiella pneumoniae) 
returns four large contigs, whereas HINGE's output graph has one large connected component. The large 
component corresponds to a circular chromosome with an unbridged triple repeat and an unbridged 
repeat, and is a combination of the three large contigs returned by FALCON. FALCON’s second contig 
implicitly resolves a triple repeat that is fundamentally unresolvable given the reads (see Supplemental 
Figure S12), hence creating a potential mis-assembly that cannot be detected from the read data. In 
contrast, HINGE identifies this repeat as unresolvable, and outputs the indicated graph to prevent a mis-
assembly. 
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Supplemental Figure S13. HINGE assembly graphs for the same NCTC datasets considered in 
Supplemental Figure S3, colored according to the contigs produced by FALCON. We notice that the 
same issues with the output of the NCTC pipeline (based on the HGAP assembler) are observed here. 
While the assembly graph representation of HINGE allows unbridged repeats to be collapsed, the contigs 
produced by FALCON instead must break the assembly at these repeats. In addition, we notice that in 
NCTC4450, NCTC5052, NCTC9006, and NCTC12158, FALCON unnecessarily breaks the assembly at 
points that do not correspond to unbridged repeats. 
 

NCTC9016�(E. coli)

NCTC9007�(E. coli)

NCTC12158�(K. planticola)

NCTC9006�(E. coli)

NCTC5052�(K. pneumoniae)

NCTC8781�(E. coli)

shorter contigs

three longest contigs

Falcon�contigs

NCTC8333�(E. coli)NCTC4450�(E. coli)

NCTC9964�(E. coli)



 

 
 
 
Supplemental Figure S14. We ran FALCON on the nine NCTC datasets considered in Supplemental 
Figure S4. In six of them (not displayed here), FALCON also achieves a finished single-contig assembly 
that agrees with the HINGE assembly graph. The HINGE assembly graphs for the three remaining ones 
are shown here, colored according to the contigs produced by FALCON. 

 
  

two longest contigs

Falcon�contigs

NCTC12993�(K. cryocrescens)NCTC10361�(E. coli)NCTC6134�(S. aureus)



 
 
 
Supplemental Figure S15. Resolvability of various repeats patterns: (a) Assembly graph obtained 
when a (non-inverted) repeat that is not interleaved with any other repeat is unbridged. This repeat can 
be resolved, as there is only one possible traversal of the graph. (b) Assembly graph obtained when there 
is an unbridged inverted repeat. In this case, there are two possible traversals, and the repeat should not 
be resolved. (c) Assembly graph corresponding to an unbridged triple repeat, and the two traversals 
consistent with the data. (d) Assembly graph corresponding to a pair of unbridged interleaved repeats, 
and the two traversals consistent with the data. 
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Supplemental Figure S16. Detailed analysis of NCTC11022. (a) shows a dot plot of the regions of the 
two contigs returned by the NCTC pipeline that is collapsed by HINGE as an unbridged repeat. It shows 
that there is a repeat of length 20 kbp between the contigs. (b) shows the pile-o-gram obtained by 
aligning all reads to the longer contig returned by the NCTC pipeline. We note that there is no read that 
bridges the repeat. 
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Supplemental Figure S17. Detailed analysis of NCTC9024. (a) We show the pile-o-gram obtained by 
aligning reads of length more than 3 kbp to contig 1 returned by the NCTC pipeline. The coverage depth 
shows that there is triple repeat of 20 kbp on this segment, and no read bridges it. (b) We show a dot plot 
(obtained with Nucmer) comparing the assemblies produced by the NCTC pipeline and by FALCON. We 
notice that they attempt to resolve the 20 kbp repeat in distinct ways, leading to large structural 
differences. (c) shows the three distinct traversals of the graph produced by HINGE. Contig 1 of the 
NCTC pipeline only agrees with traversal c1. Contig 1 of FALCON only agrees with traversal c2. Neither 
NCTC’s contig 1 nor FALCON’s contig 1 agrees with traversal c3. 
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Supplemental Figure S18. Detailed analysis of NCTC9657. (a) shows the assembly graph returned by 
HINGE in the case of NCTC9657. The alignment of reads of length more than 10 kbp in the region 
HINGE declares as triple repeat is shown below. Based on the coverage profile, we note that this indeed 
is a triple repeat. (b) shows the dot plot examining the pair of plasmids more closely. It shows that the two 
plasmids share a repeat of length 22 kbp. HINGE merges this repeat, as it is unbridged. 
 
 
  



 

 
 
Supplemental Figure S19. Pile-o-gram analysis and repeat annotation: In order to perform the hinge 
placement, first we annotate starts/ends of repeats on reads by looking for sharp increases/decreases in 
the number of matches. Then with annotated repeats, we declare a repeat boundary as a hinge if the 
internal matches starting/ending there do not all end on another repeat boundary. (a) shows a normal 
read with no such sharp change. No repeat is detected here. (b) shows a case where we detect first that 
a repeat ends on the read. We then note that the matches ending in at the repeat margins start mostly at 
the start of the read (and not a heap in the interior of the read) and place and declare that the read does 
not bridge the repeat that it covers. (c) shows a similar case where we detect the start of a repeat. (d) 
shows a case where we annotate a repeat start and a repeat end, but note that all reads starting at the 
repeat start end in a repeat end (and vice-versa). Hence we declare that this is a bridging read. Both the 
locations however are marked as bridged repeat boundaries. (e) shows a pile-o-gram resulting from a 
repeat occurring within another repeat. In this case, we first annotate a repeat start and a repeat end. 
Then we note that all the reads ending at the repeat end start in a heap at the repeat start. However, the 
alignments starting at the repeat start do not all end in a heap. Thus we place an unbridged start-repeat 
annotation. The annotation of the repeat end is marked as bridged. (f) shows the pile-o-gram of a 
chimeric read.  
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Supplemental Figure S20. Examples of pile-o-grams on real data. (a) shows a pile-o-gram of a read 
with two repeat annotations. Both these are marked as bridged, as almost all internal matches starting at 
the repeat start end in a pile around the repeat end. (b) shows a read with a repeat start annotated. As 
the internal matches starting here extend to the end of the read, we do not mark this as bridged. 
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