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1 Synthetic benchmarks

For benchmarking experiments we constructed several synthetic data sets using the simulation software
SimSeq (https://github.com/jstjohn/SimSeq). We simulated 2x250 bp paired-end reads, with
a fragment size of 450 bp and the MiSeq error profile provided with the software. For each benchmark,
we selected several viral genomes from the NCBI nucleotide database. We simulated sequencing reads
from each of these strains and varied the relative abundance per strain by varying the number of reads
simulated. The original strains and relative abundance rates used for each benchmark are listed below.
All benchmarks and original strains can be found as Supplemental Data 1, or downloaded from https:
//bitbucket.org/jbaaijens/savage-benchmarks.

1.1 Human immunodeficiency virus

We simulated three data sets based on five human immunodeficiency virus (HIV) strains. For each of
these benchmarks we used the same five HIV strains, based on the gold standard benchmark presented in
(Di Giallonardo et al., 2014): HIV89.6, HIVHXB2, HIVJR-CSF, HIVNL4-3, and HIVYU2. The corresponding se-
quences were downloaded from https://github.com/cbg-ethz/5-virus-mix/data/5VM.
fasta. Pairwise divergence between these strains ranges from 1% to 6%.

The first 5-strain HIV benchmark has a read coverage of 20 000x, with relative abundance rates of 18%,
26%, 23%, 28%, and 5%, respectively, for each of the strains listed above. In addition, we simulated a
5-strain HIV mix identical to the previous one, only with shorter reads (2x150 bp).

Finally, we simulated an small 5-strain HIV mix for training purposes. This data set has only 600x
coverage and the strains are homogeneously distributed, i.e., each strain has a relative frequency of 20%.

As a reference genome for the HIV benchmarking experiments, we used the HXB2 reference sequence
(accession K03455).

1.2 Hepatitis C virus

We simulated a 20 000x data set based on ten hepatitis C virus (HCV) strains, subtype 1a. These genomes
were downloaded from the NCBI nucleotide database with the following accession numbers and simulated
at varying relative frequencies: EU155339 (12%), EU155344 (5%), EU234065 (8%), EU255965 (12%),
EU255973 (10%), EU255980 (5%), EU255981 (13%), EU255982 (10%), EU255983 (6%), and EU255989
(19%). Pairwise divergence between these strains ranges from 6% to 9%.

As a reference genome for the HCV benchmarking experiments, we used the HCV genotype 1 reference
genome (accession NC 004102).

1.3 Zika virus

We simulated two data sets based on Zika virus (ZIKV) strains, each with a coverage of 20 000x. The first
data set contains only 3 strains, all of African lineage: one from Uganda (accession HQ234498), one from
Nigeria (accession HQ234500), and one from Senegal (accession HQ234501). Pairwise divergence between
these three strains varies between 3% and 10%. For the first data set we used relative abundance rates of
24%, 16%, and 60%, respectively.

The second data set 12 new strains, in addition to the 3 strains listed above. For each of the 3 original
strains, we generated 4 new strains by randomly introducing point mutations at a rate of 1%, 1%, 2%, and
2%, respectively. This resulted in a total of 15 African lineage ZIKV strains, with a pairwise divergence
between 1% and 12%. We simulated reads for each of the 3 original strains at a relative abundance rate of
2%, and for the 4 derivatives of each original strain we used relative abundance rates of 4%, 6%, 8%, and
13.3%, respectively.
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As a reference genome for the ZIKV benchmarking experiments, we used the African lineage reference
genome (accession NC 012532).

2 Overlap score computation

The overlap score represents the probability that the DNA fragments underlying two sequencing reads are
identical on their overlap. By making use of the base calling quality scores, also known as Phred scores,
mismatches that are unlikely to be the result of a sequencing error are penalized.

Let RA, RB be two single-end reads sequencing reads and let i be the position i on RA at which the
overlap with RB starts. Furthermore, for any position k of the overlap, let qA[k] and qB[k] be the respective
probabilities thatRA[k] andRB[k] were sequenced incorrectly. We assume that if a base was called wrongly,
then each of the remaining bases is equally likely. Let QA[k][X] be the probability that the underlying DNA
sequence of RA equals base X at position k, for X ∈ {A,C, T,G}, then

QA[k][X] =

{
1− qA[k] if X = RA[k]

qA[k]/3 otherwise.
(1)

Using QA[k], the probability that the true sequences underlying RA and RB agree for each position k of
their overlap equals

P (A,B) =
∏
k∈[L]

∑
X∈{A,C,T,G}

QA[k][X] ·QB[k][X], (2)

where L := |RB| − i is the length of the overlap. Since P (A,B) depends on the length of the overlap L,
we define the overlap score of RA and RB as L

√
P (A,B).

The overlap graph that we construct contains exactly one vertex for every read (single- or paired end).
There is an edge between a pair of vertices if the overlap of the corresponding reads scores higher than a
given threshold δ. In case of an overlap involving a paired end read, we compute the overlap score separately
for each of the read ends, and we draw an edge if and only if both overlaps score sufficiently high.

3 Contig formation and error correction

When merging two or more reads, we determine the resulting consensus sequence and quality scores as de-
scribed in (Töpfer et al., 2014). Let C be the consensus sequence to be determined from a cliqueR1, . . . , Rt

and assume that R1 is the leftmost read. Then there exist edges R1 → R2, . . . , R1 → Rt and correspond-
ing to these edges we have positions pos2, . . . ,post, where posi indicates the position on R1 where the
overlap with read Ri starts. To simplify expressions, we define pos1 = 0. Then the consensus nucleotide
at position k is determined by a weighted position-wise majority vote:

C[k] = argmax
x∈{A,C,T,G}

t∑
i=1

QRi [k − posi][X]. (3)

The consensus quality score calculation at each position of the read employs similar techniques as the
overlap score computations described above. First, the probability pagree that all reads in the clique agree on
this position is computed:

pagree =
∑

X∈{A,C,T,G}

t∏
i=1

QRi [k − posi][X]. (4)
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Next, we compute the probability pcorrect that the reads in the clique actually agree that the consensus base
C[k] is correct:

pcorrect =
t∏

i=1

QRi [k − posi][C[k]]. (5)

If this probability pcorrect is less than 0.999, i.e., the Phred quality score of the base would be less than 30, we
substitute an ‘N’ nucleotide instead of the consensus base. Finally, we define the new quality score QC [k]
as the probability that base C[k] is incorrect, given that R1, . . . , Rt agree on position k:

QC [k] = 1− pcorrect

pagree
. (6)

Note that the higher the number of reads supporting a given contig position, the higher one expects the
quality of the resulting consensus base call to be. Consequently, the extremities of the contigs, which in
general have less support than the center of the read, will be of lower quality. Therefore, the algorithm
allows running the first iteration in error correction mode. In this case, the extremities of the contig are
removed, such that all remaining nucleotides are supported by at least a specified number of sub-reads.
When applying error correction, all reads that are not part of any contig are removed, since those were not
corrected.

4 Command lines used for benchmarking

Read trimming and merging: CutAdapt (Martin, 2011), PEAR (Zhang et al., 2014)
Generic assembly tools: SGA (Simpson and Durbin, 2012), SOAPdenovo2 (Luo et al., 2012), SPAdes
(Bankevich et al., 2012), metaSPAdes (Nurk et al., 2016)
Specialized assembly tools: ShoRAH (Zagordi et al., 2011) and PredictHaplo (Prabhakaran et al., 2014),
MLEHaplo (Malhotra et al., 2016b)
Ad-hoc reference construction: VICUNA (Yang et al., 2012)
Others: BWA-MEM (Li, 2013), MultiRes (Malhotra et al., 2016a), metaQUAST (Mikheenko et al., 2016)

BWA-MEM version 0.7.15-r1140
bwa mem reference.fasta reads.fastq

MLEHaplo downloaded from https://github.com/raunaq-m/MLEHaplo at June 21, 2016
perl -Mlocal::lib MLEHaplo.pl
-fas input.fasta
-out contigs.mlehaplo.fasta
-k 55
-MR input.multires.k55.txt
-IS 450
-M 15
-GL 9500

MultiRes downloaded from https://github.com/raunaq-m/MultiRes at June 21, 2016
perl MultiRes.pl -fq input.fastq -k 55 -out input.multires.k55.txt

PEAR version 0.9.6
pear -f forward.fastq -r reverse.fastq -o pear
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PredictHaplo version 0.4
PredictHaplo-Paired config.txt

PredictHaplo was run using default settings; the corresponding config file can be downloaded from
https://bitbucket.org/jbaaijens/savage-benchmarks and as Supplemental Code.

SAVAGE: version 0.2.1
snakemake -s savage/Snakefile

The SAVAGE Snakefile is included in the SAVAGE package, publicly available for download from
https://bitbucket.org/jbaaijens/savage. The config files used for each benchmark
are available at https://bitbucket.org/jbaaijens/savage-benchmarks and as Sup-
plemental Code.

SGA: version 0.10.13
sga_default.sh forward.fastq reverse.fastq
The SGA pipeline script is available as Supplemental Code and also at https://bitbucket.
org/jbaaijens/savage-benchmarks. We experimented with the parameter settings for SGA
a lot, but obtained best results using overlap based error correction and default settings for all subpro-
cesses.

ShoRAH: version 0.8.2
python shorah.py -b paired.sorted.bam -f reference.fasta

SOAPdenovo2: version 2.04
SOAPdenovo-127mer all -s soap_config.txt -o graph.k127 -p 16 -K 127
-B 0.01
We tried several k-mer sizes (55, 77, 99, 111, and 127) but obtained best results for k = 127 on all data
sets. All other parameters were set to default values. The corresponding config file can be downloaded
from https://bitbucket.org/jbaaijens/savage-benchmarks and as Supplemental
Code.

SPAdes: version 3.8.1
python spades.py -o results/ -1 forward.fastq -2 reverse.fastq
We also experimented with SPAdes in “careful” mode (--careful), but overall we obtained best
results in default mode.

metaSPAdes: version 3.8.1
python metaspades.py -o results/ -1 forward.fastq -2 reverse.fastq

VICUNA: version 1.3
vicuna-omp-v1.0 config.txt

VICUNA was run using default settings; the corresponding config file can be downloaded from
https://bitbucket.org/jbaaijens/savage-benchmarks and as Supplemental Code.

QUAST: version 4.3
python customized_metaquast.py -m 500 -R ground_truth.fasta contigs.fasta
The customized metaquast script is available at
https://bitbucket.org/jbaaijens/savage-benchmarks and as Supplemental Code.
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5 Supplemental Code

The source code of our SAVAGE implementation, as well as all scripts and config files used for experiments,
can be found as Supplemental Code.
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