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1 Germplasm and DNA isolation

1.1 Germplasm

A single seed descent line of Triticum aestivum Chinese Spring (called CS42) was used for DNA extraction. The provenance of the line
has been traced to original Sears material.

1.2 DNA isolation

High molecular weight wheat DNA was isolated from leaf material of 2–3 week old CS42 plants that had been kept in the dark for 48
hours to reduce starch levels. Leaf material (60–80g) was frozen in liquid N2 and ground to a fine powder in a mortar and pestle. Ground
leaf tissue was transferred into ice-cold SEB buffer + mercaptoethanol (ME), using a ratio of 15ml SEB+ME per gram of leaf material.
The leaf tissue and buffer was gently mixed for 20 seconds every 2 minutes for 10–15 minutes on ice, and then filtered twice through two
layers of Miracloth with gentle squeezing. 1/20 volume of SEB+ME+ 10% v/v Triton X100 was added and mixed for 20 seconds every
2 minutes for a total of 10 minutes. The mixture was centrifuged at 600× g for 20 minutes at 4◦C in 250ml polypropylene centrifuge
bottles. The supernatant was removed gently with a pipette, and 1ml SEB+ME added to each pellet to gently resuspend it. SEB+ME was
added to a total of 20ml and the crude nuclei were centrifuged again. This step was repeated twice, and washed nuclei were resuspended
in a total of 7.5ml SEB+ME. 20% w/v SDS was added to final concentration of 2% w/v, and the mixture inverted gently to lyse the
nuclei. The lysed nuclei were heated at 60◦C for 10 minutes in a waterbath, cooled to room temperature, and 5M sodium perchlorate
added to a final concentration of 1M to further disrupt protein-nucleic acid interactions. The lysate was centrifuged at 500× g for 20
minutes at 10◦C to pellet starch grains, and the supernatant transferred to a new 15ml tube using a cut-off 1ml pipette tip to minimise
shearing DNA. The nucleic acid solution was extracted with an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) and gently
rocked (18 cycles/ minutes for 15 minutes. The mixture was centrigued at 3000× g for 10 minutes in a swinging bucket rotor, the
supernatant transferred to a new tube, and re-extracted. The final aqueous phase was dialysed in TE pH 7.0 at 4◦C overnight. RNase T1
and RNAse A were added to the dialysate to 50U/ml and 50µg/ml respectively, gently mixed by inversion, and incubated at 37◦C for
45–60 minutes. Proteinase K was added to a final concentration of 150µg/ml and incubated for a further 45–60 minutes. The DNA was
then extracted twice with phenol/chloroform/iso-amyl alcohol, and DNA was precipitated from the final aqueous phase by the addition
of 1/10 volume of 3M sodium acetate (pH 5.2) and 2.5 volumes of ethanol. DNA was precipitated by centrifugation at 5000× g for
30 minutes at 4◦C. The pellet was rinsed in 1ml of 70% ethanol, air dried for 1 hour, and resuspended in TE buffer. Final yields were
50–100µg DNA per 100g of leaf material.

Buffers

TKE
Tris (0.1M) 6.055g
KCI (1M) 37.275g
EDTA (0.1M) 18.61g
MBG water to 500ml

Store at 4◦C. Do not adjust pH.

SEB
Sucrose 171.2g
PEG 800 1.2g
Carbamic acid 1.3g
Spermine 0.35g (Place at 37◦C if forms a solid block)
Spermidine 1g
TKE 100ml
MBG water 1000ml

Adjust to pH 9.5 with concentrated HCl if needed.

Add 2ml Mercaptoethanol (BME) to the SEB just before use.
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2 Sequencing library preparation

2.1 Amplification-free paired-end library construction protocol

A total of 600ng of DNA was sheared in a 60µl volume on a Covaris S2 (Covaris, Massachusetts, USA) for 1 cycle of 40 seconds with a
duty cycle of 5%, cycles per burst of 200 and intensity of 3. The fragmented molecules were then end repaired in 100µl volume using the
NEB End Repair Module (NEB, Hitchin, UK) incubating the reaction at 22◦C for 30 minutes. Post incubation 58µl beads of CleanPCR
beads (GC Biotech, Alphen aan den Rijn, The Netherlands) were added using a positive displacement pipette to ensure accuracy and
the DNA precipitated onto the beads. They were then washed twice with 70% ethanol and the end repaired molecules eluted in 25µl
Nuclease free water (Qiagen, Manchester, UK). End repaired molecules were then A tailed in 30µl volume using in the NEB A tailing
module (NEB) incubating the reaction at 37◦C for 30 minutes. To the A tailed library molecules 1µl of an appropriate Illumina TruSeq
Index adapter (Illumina, San Diego, USA) was added and mixed then 31µl of Blunt/ TA ligase (NEB) added and incubated at 22◦C
for 10 minutes. Post incubation 5µl of stop ligation was added and then the reaction incubated at room temperature for 5 minutes.
Following this incubation 67µl beads of CleanPCR beads (GC Biotech, Alphen aan den Rijn, The Netherlands) were added and the
DNA precipitated onto the beads. They were then washed twice with 70% ethanol and the library molecules eluted in 100µl nuclease
free water. Two further CleanPCR bead based purifications were undertaken to remove any adapter dimer molecules that may have
formed during the adapter ligation step. The first with 0.9× volume beads, the second with 0.6× and the final library eluted in 25µl
Resuspension Buffer (Illumina).

Library QC was performed by running a 1µl aliquot on a High Sensitivity BioAnalyser chip (Agilent, Stockport, UK) and the DNA
concentration measured using the High Sensitivity Qubit (Thermo Fisher, Cambridge, UK). To determine the number of viable library
molecules the library was subjected to quantification by the Kappa qPCR Illumina quantification kit (Kapa Biosystems, London, UK)
and a test lane run at 10pM on a MiSeq (Illumina) with 2×300bp reads to allow the library to be characterised prior to generation of the
60× coverage required on the Hiseq2500s (Illumina) with a 2×250bp read metric.

2.2 Tight, Amplification-free, Large insert Libraries (TALL) paired-end library construction protocol

A total of 3µg of DNA was sheared in a 60µl volume on a Covaris S2 (Covaris, Massachusetts, USA) for 1 cycle of 40 seconds with a
duty cycle of 5%, cycles per burst of 200 and intensity of 3. The fragmented DNA was then subjected to size selection on a Blue Pippin
(Sage Science, Beverly, USA). The 40µl in each of collection wells was replaced with fresh buffer and the separation and elution current
checked prior to loading the sample. To 30µl of the end repaired molecules 10µl of R2 marker solution was added and then loaded onto
a 1.5% Cassette. The Blue Pippin was configured to collect fragments at 800bp using the tight settings. Post size selection, the 40µl
from the collection well was recovered and the size isolated estimated on High Sensitivity BioAnalyser Chip and DNA concentration
determined using a Qubit HS Assay.

The size selected molecules were then end repaired in 100µl volume using the NEB End Repair Module (NEB, Hitchin, UK)
incubating the reaction at 22◦C for 30 minutes. Post incubation 100µl beads of CleanPCR beads (GC Biotech, Alphen aan den Rijn, The
Netherlands) were added and the DNA precipitated onto the beads. They were then washed twice with 70% ethanol and the end repaired
molecules eluted in 25µl Nuclease free water (Qiagen, Manchester, UK).

End repaired molecules were then A tailed in 30µl volume using in the NEB A tailing module (NEB) incubating the reaction at 37◦C
for 30 minutes. To the A tailed library molecules 1µl of an appropriate Illumina TruSeq Index adapter (Illumina, San Diego, USA) was
added and mixed then 31µl of Blunt/ TA ligase (NEB) added and incubated at 22◦C for 10 minutes. Post incubation 5µl of stop ligation
was added and then the reaction incubated at room temperature for 5 minutes. Following this incubation 67µl beads of CleanPCR beads
(GC Biotech, Alphen aan den Rijn, The Netherlands) were added and the DNA precipitated onto the beads. They were then washed twice
with 70% ethanol and the library molecules eluted in 100µl nuclease free water. Two further 1× CleanPCR bead based purifications
were undertaken to remove any adapter dimer molecules that may have formed during the adapter ligation step and the final library
eluted in 25µl Resuspension Buffer (Illumina).

Library QC was performed by running a 1µl aliquot on a High Sensitivity BioAnalyser chip (Agilent, Stockport, UK) and the DNA
concentration measured using the High Sensitivity Qubit (Thermo Fisher, Cambridge, UK). To determine the number of viable library
molecules the library was subjected to quantification by the Kappa qPCR Illumina quantification kit (Kapa Biosystems, London, UK)
and then sequenced on the Hiseq2500s (Illumina) with a 2×150bp read metric.

2.3 Long mate-pair library construction protocol

For the Tagmentation reactions 3µg and 6µg of Genomic DNA was prepared in 308µl and then 80µl 5× Tagment Buffer Mate Pair
(Illumina) added followed by 12µl Mate Pair Tagmentation Enzyme (Illumina) and the reaction gently vortexed to mix. This was then
incubated for 30 minutes at 55◦C, 100µl of Neutralize Tagment Buffer (Illumina) added and then incubated at room temperature for 5
minutes. A 1× volume bead clean-up was performed with CleanPCR beads and the DNA eluted in 165µl of Nuclease free Water. A 1µl
aliquot was run on a BioAnalyser 1200 chip and DNA concentration determined using a Qubit HS Assay.

Strand Displacement was performed by combining 162µl of tagmented DNA, 20µl 10× Strand Displacement Buffer (Illumina), 8µl
dNTPs (Illumina) and 10µl Strand Displacement Polymerase (Illumina). This was then incubated at room temperature for 30 minutes. A
0.75× volume bead clean-up was performed with CleanPCR beads and the DNA eluted in 16µl of Nuclease free Water and the eluted
DNA from the 3µg and 6µg reactions pooled. A 1µl aliquot was diluted 1:6 and run on a BioAnalyser 1200 chip and DNA concentration
determined using a Qubit HS Assay.
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Size selection was performed on a Sage Science ELF (Sage Science, Beverly, USA). The 30µl in each of collection wells was replaced
with fresh buffer and the collection and elution current checked prior to loading the sample. To 30µl of the pooled Strand Displaced
reaction 10µl of loading solution was added and then loaded onto a 0.75% Cassette which was configured to separate the sample for 3
hours 30 minutes and then eluting each fraction for 35 minutes. Post size selection, the 30µl from each of the 12 collection wells was
recovered and the DNA concentration determined using a Qubit HS Assay.

Circularisation was performed by combining 30µl of size fractionated DNA, 12.5µl of 10× circularisation buffer (Illumina), 3µl
Circularisation Enzyme (Illumina) and 85µl nuclease free water. These were then incubated at 30◦C overnight. Linear DNA was digested
by adding 3.75µl Exonuclease (Illumina) and incubating at 37◦C for 30 minutes followed by 70◦C for 30 minutes to denature the enzyme
and 5µl of stop ligation (Illumina) added. During exonuclease treatment 240µl of M280 Dynabeads (Thermo Fisher) were prepared by
washing twice with 600µl Bead Bind Buffer (Illumina) before resuspending in 1560µl Bead Bind Buffer. Circularised DNA was then
sheared in a 130µl volume on a Covaris S2 for 2 cycles of 37secs with a duty cycle of 10%, cycles per burst of 200 and intensity of 4.

To 130µl fragmented DNA 130µl of washed M280 beads was added, mixed and then placed on a lab rotator at room temperature for
20 minutes. Library molecules bound to M280 beads were then washed four times with 200µl Bead Washer Buffer (Illumina) and twice
with 200µl Resuspension Buffer (Illumina).

A master mix containing 1105µl nuclease free water, 130µl 10× End Repair Reaction Buffer (NEB, Hitchin, UK) and 65µl end repair
enzyme mix (NEB) was prepared and 100µl added to each tube, mixed with the beads and incubated at room temperature for 30 minutes.
End repaired library molecules bound to M280 beads were then washed four times with 200µl Bead Washer Buffer and twice with 200µl
Resuspension Buffer.

A master mix containing 325µl nuclease free water, 39µl A Tailing 10× Reaction Buffer (NEB) and 26µl A tailing enzyme mix (NEB)
was prepared and 30µl added to each tube, mixed with the beads and incubated at 37◦C for 30 minutes. To the A tailed library molecules
1µl of the appropriate Illumina Index adapter (Illumina) was added and mixed then 31µl of Blunt/ TA ligase (NEB) added and incubated
at room temperature for 10 minutes. Post incubation 5µl of stop ligation added and then the adapter ligated library molecules bound to
M280 beads were then washed four times with 200µl Bead Washer Buffer and twice with 200µl Resuspension Buffer.

A master mix containing 240µl nuclease free water, 300µl 2× Kappa HiFi (Kappa Biosystems) and 60µl Illumina Primer Cocktail
(Illumina) was prepared and 50µl added to each tube, mixed with the beads and the contents, including beads, transferred to a 200µl PCR
tube. Each sample was then subjected to amplification on a Veriti Thermal Cycler (Thermo Fisher) with the following conditions: 98◦C
for 3 minutes, 8, 10 or 12 cycles of PCR depending upon copy number entering circularisation of 98◦C for 10 seconds, 60◦C for 30
seconds, 72◦C for 30 seconds followed by 72◦C for 5 minutes and Hold at 4◦C.

Post amplification the PCR tubes were placed on a magnetic plate, the beads allowed to pellet and then 45µl of the PCR transferred to
a 2ml Lobind Eppendorf Tube. To this 31.5µl beads of CleanPCR beads were added to precipitate the DNA, the beads washed twice
with 70% ethanol and the final library eluted in 20µl resuspension buffer. Library QC was performed by running a 1µl aliquot on a High
Sensitivity BioAnalyser chip (Agilent) and the DNA concentration measured using the High Sensitivity Qubit (Thermo Fisher). Each
library was then equimolar pooled (except for the largest insert library which was considerably weaker than the others which was at 10%
concentration) based on DNA concentration. The quantification of the pool was determined by the Kappa qPCR Illumina quantification
kit (KAPPA) with the pool run at 10pM on a MiSeq with a 2×300bp reads read metric.

Reads generated were then processed through NextClip which takes LMP FASTA reads and looks to categorise them into four groups
based on the presence of the Nextera adapter junction sequence. Category A pairs contain the adaptor in both reads, Category B pairs
contain the adaptor in only read 2, Category C pairs contain the adaptor in only read 1, Category D pairs do not contain the adaptor in
either read. NextClip also uses a k-mer-based approach to estimate the PCR duplication rate while reads are examined. Filtered reads in
categories A, B and C were then mapped back to the Wheat Chromosome 3B reference using BWA mem with the default parameters.
This uses the reference sequence and measures from the leftmost to the rightmost aligned bases within the reads to determine the insert
size.

Once characterised the libraries with inserts centred at 9kbp (Fraction 4) and 11kbp (Fraction 3) were then sequenced to greater depth
as 2×250bp reads on HiSeq2500s.
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3 RNA sequencing

3.1 Stranded RNA sequencing on Illumina HiSeq2500

Quality checked libraries were quantified to range from 2.2nM to 9.87nM. Each library was then diluted to 2nM with NaOH and 5µl
transferred into 995µl HT1 (Illumina) to give a final concentration of 10pM. 135µl of the diluted library pool was then transferred into a
200µl strip tube, spiked with 1% PhiX Control v3 and placed on ice before loading onto the Illumina cBot. The library was hybridised to
the flow cell using HiSeq Rapid Paired End Cluster Generation Kit v2, following the Illumina RR_TemplateHyb_FirstExt_VR recipe.
Following the hybridisation procedure, the flow cell was loaded onto the Illumina HiSeq2500 instrument following the manufacturer’s
instructions. The sequencing chemistry utilised was HiSeq Rapid SBS v2 using HiSeq Control Software 2.2.58 and RTA 1.18.64. Each
library was run across a single lane for 250 cycles for each paired end read. Reads in bcl format were demultiplexed based on the 6bp
Illumina index by CASAVA 1.8, allowing for a one base-pair mismatch per library, and converted to FASTQ format by bcl2fastq.

3.2 Isoform Sequencing (Iso-Seq™)

The procedures used followed the Pacific Biosciences protocol. http://www.pacb.com/wp-content/uploads/Procedure-Checklist-
Isoform-Sequencing-Iso-Seq-Analysis-using-the-Clontech-SMARTer-PCR-cDNA-Synthesis-Kit-and-SageELF-Size-

Selection-System.pdf
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4 Genomic assembly and scaffolding

4.1 Contig assembly

We generated 1.1 billion 250bp paired-end reads from two PCR-free CS42 libraries (see Table S4.1) which provided 32.78× coverage
of the CS42 genome (approx. 30× 31-mer coverage). Insert size distributions of each library were checked by mapping to the CS42
chromosome 3B pseudo-molecule (Choulet et al., 2014) using the DRAGEN co-processor (EdicoGenome, 2014).
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Figure S4.1: Insert size distributions of the two PE libraries.

A method based on DISCOVAR de novo (Weisenfeld et al., 2014) was chosen to assemble contigs as this approach utilises PCR-free
libraries to reduce coverage bias, and uses long 250bp reads generated by the latest Illumina sequencing technology. Originally developed
to assemble human genomes, the algorithm is designed to retain the majority of the variation present in the reads when generating the
assembly, including variation between homologous chromosomes and repeat copies. This is important when assembling a repeat-rich
hexaploid genome such as wheat to prevent collapsing of repeats and homologous/homoeologous regions during assembly. Contig
assembly starts by correcting errors in the reads by creating “friend stacks” for each read in a read pair, then retaining only “true
friends”, reads that perfectly match the original read pair (with an offset). A consensus sequence is called for each stack, in most
cases including the gap between the read pairs consistent with the library fragmentation step. Overlaps between each stack are used to
generate a ‘joint consensus’ for the original DNA fragment, typically yielding a single unambiguous joint consensus, a “closed pair”.
The unipath graph is created from the consensus sequences, simplified to remove artifacts from the laboratory process, then the closed
pair sequences are applied to the graph to join paths that overlap and pull apart regions containing collapsed repeats. The version of the
contigger used is available in Github (https://github.com/bioinfologics/w2rap-contigger/releases/tag/CS42_TGACv1)
and is fully described elsewhere (Clavijo et al., 2017). Contigs were QC’ed using KAT (Mapleson et al., 2017) spectra-cn plots to
check motif representation. Importantly, our data generation was tailored to generate maximum complexity, precisely sized, low bias
sampling.

4.2 Scaffolding

Multiple Nextera Long Mate Pair libraries were constructed as described above, QC’ed by alignment to the 3B pseudomolecule, and
chosen for sequencing as described in our published LMP protocol (see Table S4.2; Heavens et al. (2015)). Raw reads were pre-processed
using a pipeline based on NextClip (Leggett et al., 2014). Briefly, this pipeline merges overlapping read pairs with FLASH (Magoc
and Salzberg, 2011), generates a read 2 by reverse complementing the read 1 sequence, then runs Nextclip to identify and trim reads
containing the Nextera adaptor.

Table S4.1: Paired-end library details

Library
type

Read
count

Read
length (bps)

Insert
size (bps)

Read
coverage

1 PCR-free 658,890,225 250 620 19.38
2 PCR-free 455,733,257 250 600 13.4
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Table S4.2: Summary of library sequencing. *Library 4 was sequenced twice, once generating 150bp reads and once generating 250bp reads.

Library Type Read
count

Read
length (bp)

Insert
size (bp)

Read
coverage

Fragment
coverage

1 TALL 118,575,256 150 690 2.09 4.81
2 TALL 309,422,248 150 690 5.46 12.56
3 TALL 434,404,265 150 690 7.67 17.63

4* MP 151,086,835 150 2,480 2.67 22.04
508,236,686 250 2,480 14.95 74.14

5 MP 170,061,926 150 4,300 3.00 43.02
6 MP 142,304,055 150 5,250 2.51 43.95
7 MP 432,253,166 250 9,300 12.71 236.47
8 MP 173,921,104 250 9,180 5.12 93.92
9 MP 404,721,706 250 11,600 11.90 276.16

Figure S4.2: Insert size distribution for TALL libraries.
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Figure S4.3: Insert size distribution for LMP libraries.
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Table S4.3: Summary contig and N-remapped scaffolds for the TGACv1 assembly of Chinese Spring 42.

Size
(Gb)

Sequence count
(≥500bp)

N20
(kb)

N50
(kb)

N80
(kb)

NG50
(kb) L50 %N

Contigs 13.26 2,977,539 40.7 16.7 3.1 8.7 200,473 0.1
Scaffolds 14.07 1,333,497 175.6 83.9 25.4 63.1 47,111 5.6

In addition to the PE reads used to generate contigs, three Tight, Amplification-free, Large insert Library (TALL) and six mate-pair
libraries were used for scaffolding. The TALL library protocol generates paired-end reads with a tight insert-size distribution without
PCR-amplification and provided additional coverage for scaffolding. Contigs were scaffolded using SOAPdenovo2 (Luo et al., 2012). A
k-mer length of 71 was used for the prepare and mapping stage. SOAPdenovo2 replaces N-stretches (gaps) in contigs with Cs and Gs
during scaffolding, so to correct this contigs were mapped back to the scaffolds and the gaps converted back to Ns. Contig and scaffold
contiguity statistics are shown in Table S4.3.

4.3 Contamination screening and filtering

The scaffolds were checked for contamination against the NCBI nucleotide database using BLAST+ and the results joined to NCBI’s
taxonomy database. Filtering was applied to show hits of more than 98% identity over 90% of scaffold length. From this list, scaffolds
identified with a taxonomy containing “BEP” (the grass BEP clade), “Poales” (the order encompassing grasses) or “eudicotyledons”
(the dicot group of angiosperms) were kept and the remaining scaffolds were considered to be contamination. These were mainly short
contigs containing PhiX.

4.4 Chromosome arm binning

Scaffolds were classified into chromosome-arm bins using arm-specific Chromosome Survey Sequence (CSS) reads (The International
Wheat Genome Sequencing Consortium, 2014). Scaffolds from 3B were not separated into short/long arm bins as individual arm datasets
were not generated for this chromosome in the CSS project. The sect method of KAT was used to compute kmer coverage over each
scaffold using each CSS read set. Each non-repetitive kmer in a scaffold was scored proportionally to coverage on each CSS arm and
scaffolds were classified using the following set of rules:

1. Scaffolds with less than 10% of the kmers producing a vote were left as unclassified (marked as Chromosome arm “U”). These are
mostly small and/or repetitive sequences.

2. Scaffolds with a top score towards a CSS set at least double the second top score were classified to the highest scoring chromosome
arm.

3. Scaffolds with a top score towards a CSS set less than double the second top score were left as unclassified (marked as Chromosome
arm “U”, but with the two top scores and CSS sets included in the sequence name). This category contains scaffolds that are
classified as combinations of the two arms from the same chromosome, probably due to imprecise identification during flow-sorting.
It also contains scaffolds from regions of the genome with specific flow-sorting biases, and assembly chimeras.

4.5 Sequence length and content filter

Rather than using a simple length cutoff to include scaffolds in the final assembly, a content filter was applied to the scaffolds classified
into each chromosome-arm bin to ensure short scaffolds containing unique content were not excluded from the assembly. Scaffolds were
sorted by length, longest first. Scaffolds longer than 5kbp were automatically added to the assembly. Scaffolds between 5kbp and 500bp
were added from longest to smallest if 20% of the kmers in the scaffold were not already present in the assembly. Scaffolds shorter than
500bp were excluded.

4.6 Assignment of scaffold identifiers

For assigned scaffolds, the arm assignment is included in the FASTA identifier. For unassigned scaffolds with more than 10% voting
kmers, the highest and second highest vote is included in the FASTA identifier to indicate possible arms. Per chromosome statistics for
the final classified scaffolds are given in Table S4.4.

4.7 Comparison of TGACv1 scaffolds to Chapman and CSS assemblies

We compared our 3B scaffolds to 3B scaffolds from the Chapman (Chapman et al., 2015) and CSS (The International Wheat Genome
Sequencing Consortium, 2014) assemblies. Although there are more scaffolds in the TGACv1 3B assembly than the Chapman 3B
scaffolds, they are more contiguous and represent a much higher portion of the chromosome. To compare gene content between
assemblies, the 7703 genes identified on 3B (Choulet et al., 2014) were aligned to the 3B scaffolds from each assembly using GMap
(Wu and Watanabe, 2005). Genes were counted if they aligned with at least 95% identity over 80% of their length. We could align
91.2% of 3B genes to our 3B scaffolds compared to around 70% that aligned to Chapman and CSS 3B scaffolds indicating the increased
completeness of our assembly.
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Table S4.4: Assembly statistics for classified scaffolds.

Arm Total (bp) N20 N50 N80 N% Count

1AL 355,144,189 159,693 80,107 30,798 5.57 19,140
1AS 200,141,416 176,516 85,799 32,413 5.48 11,382
1BL 427,850,462 212,050 105,411 41,787 5.43 19,349
1BS 224,120,373 204,783 99,660 39,287 5.36 11,813
1DL 292,316,462 127,480 65,923 23,018 6.59 19,204
1DS 155,677,507 123,950 62,097 19,441 6.74 12,849
2AL 408,449,610 164,629 84,674 33,270 5.49 19,410
2AS 318,533,889 183,072 90,023 33,061 5.40 17,435
2BL 423,469,708 227,122 117,486 45,691 5.14 16,714
2BS 317,593,121 215,046 108,705 45,716 5.19 12,136
2DL 335,204,207 133,166 70,105 26,700 6.67 19,424
2DS 245,159,861 140,704 72,904 24,794 6.56 16,533
3AL 381,464,830 165,249 84,656 33,372 5.64 17,063
3AS 277,280,281 188,759 93,882 40,580 5.27 10,234
3B 789,970,040 223,860 116,546 47,041 5.13 29,090
3DL 340,636,885 136,140 68,689 24,264 6.53 22,646
3DS 228,916,862 145,224 72,644 23,143 6.42 16,817
4AL 363,230,010 179,374 89,157 33,873 5.46 18,295
4AS 276,247,067 181,019 91,272 35,335 4.98 14,167
4BL 272,849,020 240,935 127,687 58,815 4.99 7,632
4BS 310,515,948 224,543 110,746 45,899 4.90 14,697
4DL 306,806,261 171,404 80,284 28,140 6.31 18,791
4DS 171,621,745 137,248 68,499 21,787 6.30 13,021
5AL 413,139,451 161,674 81,944 33,128 5.90 18,826
5AS 231,190,161 180,634 89,316 35,125 5.14 11,705
5BL 466,173,773 207,503 107,733 43,825 5.21 19,325
5BS 182,789,732 209,845 107,461 40,181 5.16 9,793
5DL 345,449,775 130,074 65,820 23,183 7.02 23,851
5DS 173,821,965 133,804 64,345 18,898 6.58 14,481
6AL 302,563,130 168,100 85,773 33,526 5.53 14,457
6AS 264,274,034 160,498 81,455 30,863 5.68 14,315
6BL 362,924,849 203,268 110,331 45,402 5.22 13,913
6BS 299,250,616 185,879 100,360 38,835 5.51 13,349
6DL 236,649,310 143,791 71,511 24,364 6.34 16,246
6DS 178,741,401 146,601 65,202 21,073 6.62 13,586
7AL 334,861,391 184,024 92,381 37,818 5.49 13,158
7AS 259,954,140 187,229 99,434 47,521 5.56 7,777
7BL 406,571,657 203,402 107,841 45,705 5.17 15,233
7BS 287,930,109 222,106 119,366 48,224 4.95 10,813
7DL 273,279,341 135,861 69,599 23,246 6.84 18,964
7DS 303,641,845 133,599 68,218 24,284 6.63 19,510
U 680,947,588 192,507 78,842 6,368 6.58 88,799

Total 13,427,354,022 180,094 88,778 32,825 5.73 735,943
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4.8 Assembly validation

4.8.1 Contig validation by mate-pair link support

To validate the contigs produced by the w2rap-contigger, we used the Nextera 11kbp mate pair library as an independent dataset, before
it was incorporated into the assembly during scaffolding. We used this library to find unsupported regions in the contigs, by assessing the
link support.

Figure S4.4: Content on contigs by number of components in the contig when splitting at breakpoints with support <percentile>:<link threshold>

The mate pair library was aligned using BWA to all contigs longer than 33kbp (3× the length of the library), the links were projected
on each contig to obtain a measure of bridging link coverage. This reflected the amount of support at each position across the contig.
Breakpoints were identified on any contig position with low link support; subsequently, the amount of sequence contained on contigs
divided in different number of components and a corrected N50 for the set of broken contigs were computed. To choose link thresholds, a
sample of 100 contigs was taken and the percentiles of the accumulated link distribution was computed (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 5, 10, 15, 20, 25, 30, 35th percentile), ; this procedure was repeated 500 times and the mean of those percentile distributions
was used for the breakpoint calculations. These analyses are shown in Figures S4.4 and S4.5.

Both plots show a very small amount of affected content and a very small change of N50 in the lower percentiles of coverage, with
values of linkage that are much higher than the usual accepted thresholds of 3 to 5 links. At the 1st percentile, with more than 14 links,
most of the content is on single-component contigs, with only a small amount of content on 2-component contigs and negligible content
on contigs broken into more components. Higher percentiles are included to show how the assembly breaks down as expected once the
requirement for links is higher than the typical coverage, but we do not consider any of those thresholds to represent significant risk of
misassemblies.

The code for this analysis is available on https://github.com/bioinfologics/assembly_validation/tree/master/link_

support.

4.8.2 Scaffold validation by gene order between 3B and TGACv1 3B sequences

As a proxy to assess the accuracy of the scaffold linkage, we used the alignment of 3B genes to contigs and scaffolds to assess the
coherence between our assembly and the 3B pseudo-molecule reference. We looked for blocks on our contigs and scaffolds where two or
more genes aligned and compared the order of genes in these blocks to gene order in the 3B pseudo-molecule. In all cases, on both
contigs and scaffolds we found gene order in full agreement with 3B (Table S4.5).

This provides extra evidence that at least on the genic level, our assemblies are consistent with the existing reference, with the scaffolds
generating precise linkage over longer ranges.
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Figure S4.5: N50 for the contig subset when splitting at breakpoints by link coverage threshold.

Table S4.5: Identification of gene blocks.

Number of blocks Genes in syntenic blocks Sequence contained in blocks (Mb)

TGACv1 contigs 1,266 3,224 15.0
TGACv1 scaffolds 1,503 4,792 60.7

4.9 Assessment of chromosome arm assignment accuracy

Table S4.6: Assessment of chromosome arm assignment accuracy.

Genes aligned Genes aligned to 3B classified scaffolds Genes aligned to potential 3B scaffolds Genes aligned to other arms

TGACv1 contigs 6,859 6,185 50 624
TGACv1 scaffolds 7,124 6,487 169 468

We aligned the genes identified on chromosome 3B (Choulet et al., 2014) to our assembled contigs and scaffolds in order to assess
how accurately our algorithm assigned sequences to chromosome arms. We aligned these sequences with GMAP, using as a minimum
threshold 95% alignment identity over 80% of the sequence length. We found that for contigs, 90.2% of genes aligned to 3B classified
scaffolds with a further 0.7% aligning to potential 3B scaffolds (unclassified but with 3B as a suggested assignment). 9.1% aligned to
other arms. For scaffolds, 91.1% aligned to 3B classified sequences, 2.4% to potential 3B scaffolds and 6.7% to other arms.
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5 Integration with genetic maps and chromosomal alignments

To order the TGACv1 scaffolds along the wheat genome, we used the “Synthetic W7984” × Opata M85 map, hereafter WGS map,
described in Chapman et al. (2015). The WGS map was constructed using a whole genome shotgun approach on 78 double haploid (DH)
lines derived from W7984/Opata F1 hybrids. In order to anchor the TGACv1 scaffolds to the WGS map, we used the 437,973 scaffolds
of the W7984 assembly, which were assigned to the genetic bins of the WGS map, as markers. Given the relatively low functional
population size and high number of markers, even small frequencies of scoring error will result in high rates of ordering ambiguities
between markers within short genetic distances. We corrected the genetic distances between bins by iterating over the bins b and merging
bins bi and bi+1 into b′i if:

• |bi−bi+1|< 1.6 recombinations (1 recombination represents 0.586cM on the WGS map)

• b′i did not span more than 2.5cM [Abraham Korol - pers. comm.]

The map position for each b′i was calculated as the arithmetic mean of all bins merged into it. A mapping between the original WGS
map bins and our corrected version can be found in (Supplementary File S4). Marker sequences were then aligned against all TGACv1
scaffolds with megablast (blast version 2.2.28, multithreaded). Only the best BLAST hit (-max_target_seqs 1) for each marker was
taken into consideration. Markers that could be aligned equally well to more than one scaffold were discarded. BLAST hits were filtered
by e-value (less than 10×10−10), percent identity (at least more than 98.5%), and alignment length (at least 1kbp of the marker sequence
is aligned).

TGACv1 scaffolds were then anchored to the corrected WGS map by assigning them to the genetic bin of their matching marker
sequences. In order to deal with ambiguous bin assignments due to multiple markers matching a scaffold, we classified the anchored
scaffolds according to the following scheme:

1. unique: all matching markers are assigned to the same bin.

2. ambiguous: matching markers are assigned to the same chromosome but to different genetic bins.

3. homoeolog: matching markers are assigned to the same chromosome of different subgenomes.

4. conflict: matching markers are assigned to different, non-homeologous chromosomes.

5. novel: subset of class1:unique comprising scaffolds that do not have a CSS-based chromosome arm assignment.

6. cc_unique: subset of unique, comprising scaffolds with conflicting CSS-based and genetic map-based chromosome assignments
(cc: Chapman/Clavijo conflict).

7. cc_ambiguous: subset of ambiguous, comprising scaffolds with conflicting CSS-based and genetic map-based chromosome
assignments.

The final TGACv1 map was constructed only from uniquely anchored scaffolds, i.e. scaffolds of classes 1, 5, and 6. The map is
available in Supplementary File S5 and scaffold classifications for all anchored scaffolds in Supplementary File S6. Python scripts for
generation of the TGACv1 map are available at https://github.com/krasileva-group/tgac-map.
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6 Detection and confirmation of chromosomal translocations

6.1 Detection of translocations from OrthoMCL output

Potential chromosome translocation events were identified as outlier triads of orthologous sequences (as identified by OrthoMCL,
see Section 10). These triads are defined as three orthologous sequences that belong to the same OrthoMCL group, with two of the
sequences being assigned to two different homoeologous chromosomes (e.g. 5B, 5D) and the third sequence, the “outlier”, to a different
non-homoeologous chromosome (e.g. 4A). The translocated sequence is assumed to have moved from the missing chromosome (source)
of the homoeologous triplet (5A in the example case) to the chromosome on which the outlier sequence is located (destination).

In the present analysis, we further included orthologs with multiple copies on either of the three involved chromosomes. As
chromosomal translocations typically do not involve just a single gene but a whole chromosomal region and such copies could have
occurred independently of a translocation, these occurrences would not prevent either of the copies (or all) to be translocated.

6.2 PCR assays of suspected translocations

Triads with sequences that are annotated as being transposon-associated were ignored. In order to validate these potential translocation
events via PCR, primer pair candidates for the outlier sequence were designed using Polymarker (Ramirez-Gonzalez et al., 2015) without
specifying marker SNPs. The candidate pairs were then checked for specificity via blastn (using Blast 2.2.28, multithreaded with
-task blastn-short, -evalue 20, -dust no). Primer pairs were discarded if any off-target Blast hit with up to 3 mismatches/indels
was found.

(A)

L L

L

1 2 3 4

5

(B)

L
6 7 8 9

L

Figure S6.1: Gel images for gels 1–2 (panels A–B, respectively). Each gel contains five lanes per primer pair as described in the text. See Table S6.1 for
details on each primer pair.

Primer pair Gel Lanes Translocation
type

Translocation
group

Fragment
length

Annealing
temperature (◦C)

1 1 1–5 4AL_5AL group17899 78 55
2 1 7–11 4AL_5AL group17588 57 55
3 1 13–17 7BS_4AL group1175 58 55
4 1 19–23 5BL_4BS group17187 101 55
5 1 25–29 7AL_3AL group12953 67 55

6 2 1–5 4AL_5AL group16803 118 60
7 2 7–11 5AL_4AL group3295 89 60
8 2 13–17 7BS_4AL group6850 69 60
9 2 19–23 5AL_7BS group7391 50 60

Table S6.1: Primer pairs.

We tested a set of 9 genes corresponding to 3 known and 3 novel predicted translocations by PCR amplification of wild type and
appropriate nullisomic lines (Sears, 1966). Five reactions were set up for each primer pair using the following template genomic DNA:

• 10ng Chinese Spring wheat

• 1ng Chinese Spring wheat

• 10ng nullisomic gDNA for the predicted source chromosome

• 10ng nullisomic gDNA for the destination chromosome predicted to receive the locus
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• a negative control without DNA.

A reaction volume of 25µL was used with the following final concentrations:

• 1× Flexi Buffer

• 2mM MgCl2

• 0.2mM dNTP each

• 0.5µM forward primer

• 0.5µM reverse primer

• 0.025U/µL of GoTaq Hot Start Polymerase

PCR was performed using a AB Verity with the following programme:

• 2min at 95◦C

• 32 cycles of:

– 30s at 95◦C

– 30s at 55◦C

– 10s at 72◦C

• A final extension for 30s at 72◦C

For primer pairs where non-specific bands were observed, the annealing temperature was increased from 55◦C to 60◦C in order to
improve the stringency/specificity. We ran 10µL of the amplicons on 4% agarose E-gels (Invitrogen) and scored PCRs that amplified
the Chinese Spring control cleanly. As primers could produce some off-target amplifications (e.g. homoeologous copies) we scored
departures and arrival nullisomics as negative if they produced a band at the same intensity as 1ng of Chinese Spring or lower, bands of
the same intensity were scored as ambiguous. Details on all the primers and the experiments are reported in Supplementary File S7.

6.3 Cross-validation of translocations by using the genetic map

Overall 436 (35%) of all 1240 triads (supporting 152, or 40.75%, of 373 potential translocation events) could be anchored to the TGACv1
map (Supplementary File: S3). Of these, 416 (33.55%) triads (supporting 146 — 11.77% — potential translocation events) could be
anchored without conflict between their CSS-based chromosome assignment and their genetic bin on the TGACv1 map. In 8 out of
20 conflicting triads the chromosome on the TGACv1 map is identical to the source chromosome of the potential translocation event
(Table S6.2), rendering the event undetectable when relying solely on TGACv1 map information.
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Table S6.2: Triads with conflicts between TGACv1 map and CSS chromosome arm assignment

Gene/Representative transcript OrthoMCL group
Translocation

TGACv1 genetic bin Note
Source Destination

TRIAE_CS42_5DS_TGACv1_457137_AA1482860.1 group11550 2DL 5DS 2D:65.70 map chromosome is
source chromosome

TRIAE_CS42_7BL_TGACv1_576879_AA1858370.1 group14472 3B 7BL 3B:45.71 map chromosome is
source chromosome

TRIAE_CS42_7BL_TGACv1_576879_AA1858380.1 group14473 3B 7BL 3B:45.71 map chromosome is
source chromosome

TRIAE_CS42_7BL_TGACv1_576879_AA1858390.1 group14474 3B 7BL 3B:45.71 map chromosome is
source chromosome

TRIAE_CS42_5DL_TGACv1_436092_AA1457960.1 group15184 5AL 4AL 3A:49.69
TRIAE_CS42_5DL_TGACv1_435790_AA1454970.1 group15512 5AL 4AL 5B:129.99
TRIAE_CS42_5DL_TGACv1_436307_AA1459890.1 group15869 5AL 4AL 4A:106.06
TRIAE_CS42_4DL_TGACv1_342399_AA1112520.1 group17975 4AL 5AL 6B:70.29
TRIAE_CS42_4DL_TGACv1_342399_AA1112540.1 group17976 4AL 5AL 6B:70.29
TRIAE_CS42_4DL_TGACv1_342399_AA1112570.1 group17977 4AL 5AL 6B:70.29
TRIAE_CS42_6AS_TGACv1_485809_AA1552570.1 group20423 2AL 6AS 2A:82.29 map chromosome is

source chromosome
TRIAE_CS42_5DL_TGACv1_433289_AA1408400.1 group22982 5AL 2AL 7B:51.03
TRIAE_CS42_5DL_TGACv1_436092_AA1457970.1 group23416 5AL 4AL 3A:49.69
TRIAE_CS42_5AS_TGACv1_392779_AA1264470.1 group23830 7AL 5AS 7A:63.00 map chromosome is

source chromosome
TRIAE_CS42_2AS_TGACv1_112471_AA0338700.1 group3312 2BS 5BL 7A:68.56
TRIAE_CS42_4DL_TGACv1_342436_AA1113710.2 group4786 4AL 5AL 7D:73.08
TRIAE_CS42_2BS_TGACv1_146689_AA0470800.1 group5765 2DS 3DL 3B:48.27
TRIAE_CS42_5AS_TGACv1_393155_AA1269210.1 group6137 3AL 5AS 3A:70.72 map chromosome is

source chromosome
TRIAE_CS42_1BS_TGACv1_050024_AA0166120.1 group7241 3AL 1BS 3A:57.65 map chromosome is

source chromosome
TRIAE_CS42_7DL_TGACv1_605399_AA2006440.1 group7349 7AL 4BL 4D:47.93
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7 Repeat analysis

Transposons were detected and classified by a homology search against the REdat_9.7_Triticeae section (13,229 elements, 100Mbp)
from the PGSB transposon library (Spannagl et al., 2016). The program vmatch (http://www.vmatch.de) was used for that purpose
as a fast and efficient matching tool suited for large and highly repetitive genomes with the following parameters: identity greater or
equal to 70%, minimal hit length 75bp, seedlength 12bp; the exact commandline is:
-d -p -l 75 -identity 70 -seedlength 12 -exdrop 5

The vmatch output was filtered for redundant hits via a priority based approach, which assigns higher scoring matches first and either
shortens (less than 90% coverage and at least 50bp rest length) or removes lower scoring overlaps to obtain an overlap free annotation.

Full-length LTR-retrotransposons elements were identified with LTRharvest (Ellinghaus et al., 2008), which reported 354,315 non
overlapping candidate sequences under the following parameter settings:
overlaps best -seed 30 -minlenltr 100 -maxlenltr 2000 -mindistltr 3000

-maxdistltr 25000 -similar 85 -mintsd 4 -maxtsd 20 -motif tgca

-motifmis 1 -vic 60 -xdrop 5 -mat 2 -mis -2 -ins -3 -del -3

All candidates where annotated for PfamA domains with hmmer3 (Eddy, 2011) and stringently filtered for false positives by several
criteria, the main ones being the presence of at least one typical retrotransposon domain (e.g. RT, RH, INT, GAG) and a tandem repeat
content below 25%. The filtering steps led to a final set of 44,579 high confidence full-length LTR retrotransposons. The composition of
repeats in the assembled genome can be observed in Table S7.1.

% of Genome % of TE Number Total (Mb) Average
length (bp)

Mobile Element (TXX) 81.10 100.00 9,673,829 10,268.4 1061

Class I: Retroelement (RXX) 67.70 83.50 7,249,022 8571.7 1182
LTR Retrotransposon (RLX) 67.30 83.00 7,171,177 8522.1 1188
Ty1/copia (RLC) 14.20 17.50 1,555,328 1792.5 1152
Ty3/gypsy (RLG) 30.80 37.90 2,971,111 3895.2 1311
Unclassified LTR (RLX) 20.80 25.60 2,621,553 2627.7 1002
non-LTR Retrotransposon (RXX) 0.40 0.50 77,845 49.6 638
LINE (RIX) 0.40 0.50 72,414 47.6 657
SINE (RSX) 0.00 0.00 5431 2.2 375

Class II: DNA Transposon (DXX) 12.90 15.90 2,233,197 1636.3 733
DNA Transposon Superfamily (DTX) 12.80 15.70 2,123,788 1616.6 761
CACTA superfamily (DTC) 12.40 15.30 1,951,401 1567.8 803
hAT superfamily (DTA) 0.01 0.01 1642 0.6 393
Mutator superfamily (DTM) 0.16 0.20 61,612 20.3 329
Tc1/Mariner superfamily (DTT) 0.04 0.05 37,550 5.0 134
PIF/Harbinger (DTH) 0.12 0.15 34,127 15.1 443
unclassified (DTX) 0.06 0.07 37,456 7.7 206
DNA Transposon Derivative (DXX) 0.13 0.16 102,275 16.5 162
MITE (DXX) 0.13 0.16 102,275 16.5 162
Helitron (DHH) 0.01 0.01 1965 1.5 765
unclassified DNA transposon (DXX) 0.01 0.02 5169 1.7 331
Unclassified Element (TXX) 0.48 0.59 191,610 60.3 315

Retro-TE/DNA-TE ratio 5.20

Gypsy/Copia ratio 2.20

Table S7.1: Repeat composition of the bread wheat genome.
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8 Construction of the wheat gene set

The wheat gene set for wheat was generated using a custom pipeline integrating wheat-specific transcriptomic resources, including
PacBio transcriptomic data, similarity to proteins of related species, and evidence-guided ab initio predictions generated with AUGUSTUS

(Stanke et al., 2006).
The pipeline was divided in five different phases. In the first phase, RNA-Seq models were generated with 4 different assembly methods

utilising data from multiple tissues and conditions, and integrated together with PacBio transcripts into a coherent and non-redundant set
of models using Mikado (Venturini et al., 2016). In the second phase, PacBio reads were classified based on protein similarity and a
subset of high quality (e.g. full length, canonical splicing, non-redundant) transcripts employed to train an AUGUSTUS wheat-specific
gene prediction model. In the third phase, AUGUSTUS was used to generate a first draft of the genome annotation, using as input
Mikado-filtered transcript models, reliable junctions identified with Portcullis (Mapleson et al., 2016), and peptide alignments of proteins
from five different species closely related to wheat (Brachypodium distachyon 314 v. 3.1, Zea mais 284 v. 6a, Oryza sativa 204 v. 7.0,
Sorghum bicolor 313 v. 3.1, and Setaria italica 312 v. 2.2, all downloaded from Phytozome (Goodstein et al., 2012)). In the fourth
stage, this draft annotation was refined and polished by identifying and correcting probable gene fusions, missing loci and alternative
splice variants. Finally, the polished annotation was functionally annotated and all loci were assigned a confidence rank based on their
similarity to known proteins and their agreement with wheat transcriptomic data.

8.1 Reference guided transcriptome reconstruction

8.1.1 Alignment of Illumina RNA-seq data

Data preparation RNA-Seq data from three different datasets was utilised for the annotation: ERP004714 (used for the annotation
provided in The International Wheat Genome Sequencing Consortium (2014)), ERP004505 (used for the grain-development analyses in
Pfeifer et al. (2014)) and an internally generated dataset of 250bp paired-end strand-specific reads from six different tissues (PRJEB15048;
Table S8.1). In total, the three datasets comprised over 3.2 billion paired-end reads. For each dataset, read samples were collapsed by
tissue and filtered using trim-galore v. 0.3.7 (BabrahamLab, 2014), with the command line options:
-q 20 --phred33 --stringency 5 --fastqc --length 60

Due to concerns of high concentration of ribosomal RNA in the internally produced samples, reads from that dataset were further filtered
using SortMeRNA v. 2.0 (Kopylova et al., 2012), with the command line options:
--num_alignments 1 --fastx --paired_in

and using RFam (5S and 5.8S) and Silva (Archea 16S-23S, Bacteria 16S-23S, Eukariota 18S-28S) as databases.

Alignment with STAR Filtered reads were aligned to the wheat genome using a forked version of STAR-2.5.0-alpha (Dobin et al.
(2013), commit f82c5a0028; see (https://github.com/alexdobin/STAR/issues/85)). The genome was indexed using the
option
--genomeChrBinNbits 14

in accordance with STAR documentation, and the process had to be performed on a UV supercomputer due to the memory requirements
(∼2TB of RAM). Reads were aligned with stringent parameter in a two pass approach to ensure alignment accuracy, a first pass using
the custom command-line options
--outFilterMismatchNmax 3 --alignEndsType EndToEnd

--alignIntronMin 20 --alignIntronMax 200000

--outSJfilterIntronMaxVsReadN 10000 10000 10000

to increase the accuracy of the alignments and
--outSAMattributes NH HI NM MD AS XS

to ensure the compatibility of the output with downstream tools such as Cufflinks (Trapnell et al., 2010). All 1,519,861reliable junctions
detected by STAR in at least one sample during this first pass were collapsed, and given as input for a second round of alignments, with
the same command line parameters but also providing the merged junction file with the options:
--limitSjdbInsertNsj 2000000 --sjdbOverhang 250

Finally, the alignments from all samples were filtered with portcullis v. 0.10.1 (Mapleson et al., 2016) to exclude spliced reads with
non-canonical junctions that were on manual review identified as predominantly due to misalignment.

Alignment with TopHat2 As the original IWGSC annotation had been created using the aligner TopHat2 (Kim et al., 2013), we also
aligned reads from the ERP004714 dataset using this program. To retrieve splicing junctions related to the original annotation, IWGSC
models were aligned against our reference using GMAP v. 2015-09-29 (Wu and Watanabe, 2005), with the command line options:
--min-identity=0.99 --min-trimmed-coverage=0.90 -n 1

and subsequently collapsed and filtered for models only with canonical junctions using gffread from Cufflinks v. 2.2.2beta (Trapnell
et al., 2012; Roberts et al., 2011a,b). 281,562 unique splicing junctions from the aligned models were retrieved with a custom Python3
script from the surviving 85,242 models and provided to TopHat v.2.1.0 (patched to use Bowtie2.2.5 (Langmead and Salzberg, 2012)
long indices; the patch was subsequently integrated into the later TopHat v.2.1.1). Reads from ERP004714 were then aligned in single
pass using the CLI options
-a 13 -i 20 -I 400000 -g 20 --no-discordant -N 1 --read-edit-dist 1 --read-realign-edit-dist 1 --read-gap-length

1 --library-type fr-unstranded

and additionally providing the junction file from above.
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Table S8.1: Sequencing reads used in this study. ERP004714: Grain, Leaf, Root, Spike and Stem, ERP004505: 10DPA, AL_20DPA, AL.SE_30DPA,
REF_20DPA, SE_20DPA, SE_30DPA and TC_20DPA, PRJEB15048: seedling, root, leaf, stem, spike and seed.

ERP004714 ERP004505 PRJEB15048

Number of samples 5 7 6
Number of reads 1,536,051,415 873,709,556 824,241,135
Number of filtered reads 1,412,029,174 873,550,049 731,931,657
Average no. filtered reads per sample 282,405,834.8 124,792,864.1 121,988,609.5
Aligned reads (STAR) 1,203,100,456 744,087,908 488,750,691
Aligned reads (STAR second pass) 1,267,816,403 759,278,032 579,642,183
Aligned reads (TopHat2) 1,299,830,440 NA NA

Table S8.2: Number of PacBio reads, per sample and size-fraction.

Stage Size Fraction Leaf Root Seed Seedling Spike Stem Total

Reads of 0.7 - 2 kbps 345,566 482,417 410,969 227253 353,196 210,462 2,029,863
insert 2-3 kbps 267,379 410,186 364,988 330,525 375,062 376,717 2,124,857

3-5 kbps 367,571 356,396 301,030 110,628 311,537 370,739 1,817,901
Total 980,516 1,248,999 1,076,987 668,406 1,039,795 957,918 5,972,621

IsoSeq + 0.7 - 2 kbps 69,817 116,164 86,031 77,211 98,848 79,909 527,980
Quiver 2-3 kbps 55,789 125,622 77,619 97,894 90,340 104,293 551,557

3-5 kbps 73,513 73,351 56,315 34,818 88,516 103,272 429,785
Total 199,119 315,137 219,965 209,923 277,704 287,474 1,509,322

Aligned 187,583 297,970 205,990 197,535 259,329 265,816 1,414,223

% aligned 94.21% 94.55% 93.65% 94.10% 93.38% 92.47% 93.70%

8.1.2 Alignment of PacBio RNA-seq data

Data preparation PacBio sequencing data from six tissues was analysed initially using the SMRTanalysis package (v2.3.0.140936),
stopping at the quiver step. The “CircularConsensus” step of the ConsensusTools utility was called with the command-line options
--minFullPasses 0 --minPredictedAccuracy 75

while during the classification step the option
--min_seq_len 300

was invoked. The pipeline provided a total of over 1.5 million PacBio transcriptomic reads for downstream analyses (Table S8.2).

Read alignment PacBio reads were aligned using the gmapl utility from GMAP v. 2015-11-20 (Wu and Watanabe, 2005), with the
command line options
-f 2 --no-chimera -n 1 --min-trimmed-coverage=0.90 --min-identity=0.95 --split-output

We further discarded alignments deemed to be translocations by GMAP (those reported in the .transloc file).

8.1.3 Transcript assembly

The illumina RNA-Seq alignments (18 from STAR and 5 from TopHat2) were assembled by tissue/condition using three different tools:
CLASS v. 2.12 (Song et al., 2016), Cufflinks v. 2.2.2 beta (commit 753c109e31; Trapnell et al. (2010); Roberts et al. (2011a,b)) and
StringTie v.1 .10 (Pertea et al., 2015). CLASS was called using the option -F 0.05; Cufflinks was invoked asking to limit the intron
size to 200,000 and using both the fragment-bias correction and the multi-read rescue method:
-I [200000] -b -u

Samples from the internal dataset were assembled using also the option:

Table S8.3: Illumina and PacBio transcript assembly statistics. For each tool, assembled transcripts have been clustered into loci using cuffcompare
(v.2.2.1, command line options “-C -G”; Trapnell et al. (2010))

Method Loci Transcripts Average
number of exons

Average
cDNA size

Number of
monoexonic transcripts

CLASS 181,259 3,188,679 5.48 1,304.55 326,210
Cufflinks 270,456 3,281,661 4.37 1,595.44 1,078,721
StringTie 285,728 3,826,431 4.47 1,554.83 1,117,717
Trinity 244,384 646,244 2.96 1,301.02 333,428
PacBio (4 samples) 81,752 1,020,650 6.80 2,109.06 131,357
PacBio (all 6 samples) 88,609 1,330,372 6.79 2,100.97 173,661
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Table S8.4: Mikado transcript assembly statistics.

Genes Transcripts Average
number of exons

Average
cDNA size

Number of
monoexonic transcripts

Mikado (4 PacBio) 81,848 120,886 6.36 2,098.83 18,554
Mikado (6 PacBio) 83,144 128,030 6.29 2,182.37 19,175
Mikado (Illumina and PacBio) 273,243 373,861 4.07 1,377.70 93,564

--library-type fr-firststrand

StringTie was invoked asking for assemblies longer than 200bp (“-m 200”). In addition the alignments of reads from the internal dataset
(6 tissues) were merged using the MergeSamFiles utility from picard (Wysokar et al., 2016). The merged BAM file was used as input for
Trinity v.2.1.1 (Haas et al., 2013) in genome-guided mode, using the command line options:
--SS_lib_type RF --genome_guided_max_intron 200000

The assembled transcripts were then aligned against the genome using gmap from GMAP v. 2015-11-20 (Wu and Watanabe, 2005),
using the command line options:
-f 2 --min-trimmed-coverage=0.80 --min-identity=0.90

Uniquely and multiply mapping transcripts were further filtered using a custom python3 script to retain only those alignments in which
the assembled transcript mapped against the same region from which its original read cluster originated from. The number and features
of transcripts detected by each method is reported in Table S8.3.

We used Mikado (Venturini et al., 2016) to integrate the ∼11 million Illumina assemblies generated by multiple assembly tools
(CLASS, Cufflinks, StringTie, Trinity) and ∼1.4 million aligned PacBio reads. Mikado leverages transcript assemblies generated by
multiple methods to improve transcript reconstruction. Loci are first defined across all input assemblies with each assembled transcript
scored based on metrics relating to ORF and cDNA size, relative position of the ORF within the transcript, UTR length and presence of
multiple ORFs. The best scoring transcript assembly is then returned along with additional transcripts (splice variants) compatible with
the representative transcript.

We generated three Mikado selected transcript sets for use in gene predictor training or annotation (Table S8.4):

1. Alignments from 4 PacBio samples (Root, Seedling, Spike, Stem) were analysed with Mikado 0.11.0, without BLAST data and
disabling the “chimera_split” algorithm. The transcript set was used in gene predictor training.

2. Mikado (v. 0.19.2) run on the full set of 6 PacBio samples, with BLAST data, and enabling the chimera_split option in
“PERMISSIVE” mode.

3. The 70 RNA-Seq assemblies (23 alignments * 3 assemblers + Trinity) and PacBio alignments (Root, Seedling, Spike, Stem) were
analysed using Mikado v. 0.18.0 with the “chimera_split” option set to PERMISSIVE.

For Mikado runs incorporating BLAST data transcripts passing the “prepare” step were blasted against filtered and masked proteins of
B. distachyon, O. sativa, S. bicolor, S. italica and Z. mays using BLAST+ v. 2.2.30 and limiting each result to the best 15 matches.

8.2 Gene predictor training

The primary PacBio alignments from 4 samples (Root, Seedling, Spike, Stem) analysed with Mikado 0.11.0 were filtered for full-length
complete and coding transcripts using Full-lengtherNEXT (v0.0.8; Fernandez and Guerrero (2012)) with open reading frames (ORFs)
predicted using TransDecoder v2.0.1 (Grabherr et al., 2011). A reliable set of transcripts were selected for training AUGUSTUS having
single full length ORF, with 5’ and 3’ UTR present, consistent Full-lengtherNEXT and TransDecoder CDS coordinates, a minimum
CDS to transcript ratio of 50% and a single transcript per gene. We excluded genes with a genomic overlap within 1000bp of a second
gene and gene models that are homologous to each other with a coverage and identify of 80%. The filtered PacBio set contained 9952
transcripts selected for training AUGUSTUS. The trained AUGUSTUS model resulted in 0.941 sn, 0.844 sp nucleotide level, 0.798 sn,
0.756 sp exon level and 0.455 sn, 0.367 sp at the gene level.

8.3 Gene prediction using evidence guided AUGUSTUS

Protein coding genes were predicted using AUGUSTUS (Stanke et al., 2006) by means of a Generalized Hidden Markov Model (GHMM)
that takes both intrinsic and extrinsic information into account.

8.3.1 Generation of external hints for gene prediction

Junctions RNA-Seq junctions (defining introns) were derived from RNA-Seq alignments (From TGAC: Leaf, Stem, Spike, Seed,
Seedling and Root samples; From accession ERP004505: 10DPA, AL_20DPA, AL.SE_30DPA, REF_20DPA, SE_20DPA, SE_30DPA
and TC_20DPA samples; From accession ERP004714: Grain, Leaf, Root, Spike and Stem samples), using portcullis v.0.12.0 (Mapleson
et al., 2016) and the default set of filtering parameters. Junctions that pass and fail the portcullis filter were classified as Gold and Silver
respectively.
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Table S8.5: Description of reference protein datasets used with AUGUSTUS (Stanke et al., 2006). Proteins were filtered at 50% identity and 80%
coverage and junctions checked against the Illumina junctions as an additional filtering criterion. Any intron over 50kb resulted in the protein alignment
being removed.

B. distachyon O. sativa S. bicolor S. italica Z. mays

Total Proteins 52,972 49,061 47,205 43,001 88,760
Proteins Aligned 30,354 23,929 23,231 23,107 38.653
Proteins Aligned (%) 57.30% 48.77% 49.21% 53.74% 43.55%
Protein Alignments 105,190 89,739 83,561 86,381 142,217

Proteins Protein sequences from 5 species (Brachypodium distachyon, Oryza sativa, Sorghum bicolor, Setaria italica and Zea mays)
were soft masked for low complexity (segmasker from NCBI BLAST+ 2.3.0) and aligned to the soft masked genome (using PGSB
repeats) with exonerate v2.2.0 (Slater and Birney, 2005) with parameters:
--model protein2genome --softmaskquery yes --softmasktarget yes --bestn 10 --minintron 20

To identify a high confidence set of alignments, exonerate results were filtered at 50% identity and 80% coverage. Furthermore,
alignments whose introns were either longer than 50kbps or that were not present in the set of Illumina RNA-Seq junctions were removed
from further analysis (see Table S8.5).

PacBio transcript classification To generate high confidence evidence hints for gene prediction, Mikado filtered PacBio transcripts
(Root, Seedling, Spike, Stem) were classified into the following three categories:

Gold : PacBio reads having a full length hit (complete/putative complete) with Full-LengtherNEXT and having a maximum of 2
complete 5’UTR exons and 1 complete 3’UTR exon;

Silver : Remaining models meeting the maximum 5’UTR and 3’UTR restrictions with an additional constraint of having at least 900bp
CDS length;

Bronze : any remaining Mikado PacBio transcripts were assigned to the bronze category.

In addition, polished (Quiver high and low quality filtered) PacBio reads were filtered for splice sites that are concordant with Illumina
RNA-Seq alignments and were used along with other evidences for the gene prediction.

Classification of Mikado transcripts The Mikado models (combining Illumina and PacBio assemblies) were classified into the
following three categories:

Gold : Mikado transcripts having a full length hit (complete/putative complete) with Full-LengtherNEXT and having having a maximum
of 2 complete 5’UTR exons and 1 complete 3’UTR exon;

Silver : Remaining models meeting UTR restrictions with an additional constraint of having at least 300bp CDS length;

Bronze : Any remaining Mikado transcripts were assigned to bronze category if they had a maximum intron length of 50kbp.

RNA-seq coverage hints Individual RNA-Seq bam files from STAR were merged together and reads were extracted from merged
bam using picardtools (SamToFastq.jar v1.84; Wysokar et al. (2016)). The extracted PE reads were then normalised using a Trinity
utility (v2.0.2; Grabherr et al. (2011)):
insilico_read_normalization.pl --max\_cov 50 --pairs_together --KMER_SIZE 25

and were used to create the normalised bam with picardtools (FilterSamReads.jar v1.84; Wysokar et al. (2016)). The wig file was
generated using RSeQC v2.3.7 (bam2wig.py; Wang et al. (2012)) and then converted to a hints file using a utility provided with
AUGUSTUS (v2.7; (Stanke et al., 2006)):
wig2hints.pl --width=10 --margin=10 --minthresh=2 --minscore=4 --prune=0.1 --radius=4.5

8.3.2 Gene prediction

AUGUSTUS (v2.7) was used to predict gene models for the Wheat CS42 TGACv1 genome assembly by utilising the evidence hints
generated from five sets of cross species protein alignments, PacBio models, Mikado PacBio models, PacBio plus Illumina Mikado
models and RNA-Seq junctions (defining introns). Interspersed repeats were provided as “nonexonpart” hints and RNA-Seq read density
was provided as “exonpart” hints. We assigned higher bonus scores and priority based on evidence type and classification (Gold, Silver,
Bronze) to reflect the reliability of different evidence sets (see supplementary AUGUSTUS config file S8); Statistics of the generated
models are presented in Table S8.6).
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Table S8.6: AUGUSTUS gene prediction statistics.

Gene Count 224,994
Total transcripts 224,994
Transcripts per gene 1
Transcript mean size (incl. intron) (bp) 3547.89
Transcript mean size cDNA (bp) 1447.66
Transcript median size cDNA (bp) 1239
Min cDNA 8
Max cDNA 15,613
Total exons 833,929
Exons per transcript 3.71
Exon mean size (bp) 390.58
Total exons (distinct) 827,714
Exon mean size (distinct) (bp) 392.09
CDS mean size (bp) 302.18
CDS mean size (distinct) (bp) 302.22
Transcript mean size CDS (bp) 959.71
Transcript median size CDS (bp) 747
Min CDS 3
Max CDS 14,259
5UTR mean size (bp) 154.03
5UTR mean size (distinct) (bp) 153.96
3UTR mean size (bp) 249.69
3UTR mean size (distinct) (bp) 249.73

8.4 Gene model refinement

The primary gene models generated by AUGUSTUS were corrected to remove long terminal introns spanning over 10kbp, identified from
manual review as likely artefacts. To identify incorrectly split genes, AUGUSTUS gene models were compared against the high quality
Mikado PacBio Gold and Silver set of gene models to identify cases where more than one AUGUSTUS model was contained within a
PacBio model with at least 80% nucleotide precision (specificity), in which case we retained only the AUGUSTUS gene model with the
highest nucleotide F1.

To add reliable alternative splice variants we ran PASA (Haas, 2003) with a filtered set of transcripts, removing from Mikado transcripts
and PacBio reads those which had introns greater than 10kb, and retaining PacBio splice junctions that were consistent with RNA-Seq
Illumina alignments. Transcripts were integrated into the annotation via a PASA utility:
validate_alignments_in_db.dB --MIN_INTRON_LENGTH=20 --MAX_INTRON_LENGTH=50000

--MIN_PERCENT_ALIGNED=70 --MIN_AVG_PER_ID=95 --NUM_BP_PERFECT_SPLICE_BOUNDARY=3

A second round of updates to the annotation was generated with PASA assemblies constructed from only PacBio reads. To identify and
correct gene annotation artefacts, any incorrectly fused PASA models were replaced with a PacBio Gold gene model when the latter was
found to overlap with a nucleotide recall of at least 30%. PASA transcripts associated with the incorrectly fused PASA gene but not
found to overlap with the PacBio Gold gene model were clustered into new loci and retained. Transcript models with cDNAs shorter
than 300bp were removed from further analysis.

8.5 Assignment of gene biotypes and confidence classification

Gene models were classified as coding, non-coding and repeat associated and assigned as high or low confidence based on support from
cross species protein similarity and wheat transcripts.

We decided to assign a confidence ranking to each transcript, in three levels:

Protein ranking : this rank is based on similarity - or lack thereof - of the transcript against publicly available protein datasets. The
rankings go from 1 (best) to 5 (worst).

Transcript ranking: this rank is based on support for the model - or lack thereof - from our multiple sources of transcriptomic evidence.
The rankings go from 1 (best) to 5 (worst).

Confidence: we assigned a general binary confidence tag (“High” vs “Low”) for each transcript. To qualify to be considered a
high-confidence coding transcript, a model has to fall in one of the following categories:

• Protein ranking P1 and transcript ranking T4 or better

• Protein ranking P2 and transcript ranking T4 or better

• Protein ranking P3 and transcript ranking T1
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8.5.1 Cross species protein similarity ranking

Each gene model was assigned a protein rank (P1–P5) reflecting the level of coverage of the best identified homolog in a plant protein
database. Protein ranks were assigned as:

Protein Rank 1 (P1) : proteins identified as full length in Full-LengtherNEXT with the UniProt database or at least 80% coverage in
a supplementary BLAST database consisting of A.thaliana, B. distachyon, O. Sativa, S. bicolor, S. italica and Z. mays proteins

Protein Rank 2 (P2) : proteins with at least 60–80% coverage in the supplementary BLAST database;

Protein Rank 3 (P3) : proteins with at least 30–50% coverage in the supplementary BLAST database;

Protein Rank 4 (P4) : proteins with a low coverage hit (between 0–30%) in the supplementary BLAST database;

Protein Rank 5 (P5) : proteins with no hit in the supplementary BLAST database.

8.5.2 Wheat transcript support ranking

A transcript rank (T1–T5) was assigned based on the extent of support for the predicted gene model from either wheat PacBio reads or
assembled wheat RNA-Seq data (all 10,943,015 transcripts assembled from all four transcript assembly methods).

We calculated a variant of annotation edit distance (AED) and used this to determine a transcript level ranking. First we define
accuracy AC as:

AC = (SN +SP)/2

where SN is sensitivity and SP specificity, and then derived the AED:

AED = 1−AC.

Rather than taking the union of all transcript evidence, we calculate AED at base, exon and splice junction level against all individual
wheat transcripts used in our gene build (Illumina assemblies, cDNAs and PacBio reads), we then take the mean of base, exon and
junction AED based on the transcript that best supported the gene model. AED statistics were calculated using the compare utility from
Mikado (Venturini et al., 2016).

Transcript ranking was assigned based on:

Transcript Rank 1 (T1) : Full length support from cDNA or Pacbio read;

Transcript Rank 2 (T2) : full length support from Illumina assemblies;

Transcript Rank 3 (T3) : Best average AED less than 0.5;

Transcript Rank 4 (T4) : Best average AED between 0.5 and 1;

Transcript Rank 4 (T5) : No transcriptomic support (best average AED = 1).

8.5.3 Assignment of a locus biotype

Following the assignment of protein and transcript rankings, we assigned a locus biotype to each gene.

Repeat associated biotypes Genes were classified as repeat associated if all their transcripts aligned with at least 20% similarity
and 30% coverage to the TransposonPSI library (v08222010; Haas (2010)) and had at least 40% coverage by PGSB interspersed repeats.
In addition, genes with transcripts that had at least 20% similarity and 50% coverage to the TransposonPSI library or had at least 60%
coverage by the PGSB interspersed repeats were also classified as repeat associated. In order to reduce the number of false positive calls,
the combined set of putative repetitive transcripts identified above were further checked using a BLAST dataset (comprising protein
sequences from A. thaliana TAIR10.31, B. distachyon v3.1, H. vulgare v1.31, O. sativa v7.0, S. bicolor v3.1, S. italica v2.2 and Z. mays
v6a, all from Phytozome) filtered specifically for repeats, by excluding any sequence corresponding to one of the following parameters:

• Protein with a match for “retrotransposon”, “transposon” or both in their description

• At least 30% similarity and 60% coverage to a hit in TransposonPSI

Any assignment of repeat-associated status was judged a false positive call if the protein had a hit with at least 30% coverage against
the filtered protein dataset above.

Non-coding RNAs Genes where all the transcript had a protein rank of P4 or P5 were checked to verify whether they could constitute
putative non-coding RNAs. Transcript sequences were analysed with CPC v. 0.9.2 (Kong et al., 2007) in conjunction with Uniref90 from
Uniprot (retrieved on 11th March 2016). Transcripts were called as putative non-coding RNAs if they met the following conditions:

• PR4 and CPC score lower or equal than -1

• PR5 and CPC score lower than 0
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Table S8.7: Rankings and confidence of coding transcripts.

Protein Rank Transcript Rank Confidence Transcript Count

P1 T1 High 66404
P1 T2 High 43423
P1 T3 High 20937
P1 T4 High 10013
P1 T5 Low 21469

P2 T1 High 3461
P2 T2 High 3545
P2 T3 High 3392
P2 T4 High 2084
P2 T5 Low 6213

P3 T1 High 1813
P3 T2 Low 4521
P3 T3 Low 3995
P3 T4 Low 3406
P3 T5 Low 12210

P4 T1 Low 781
P4 T2 Low 3116
P4 T3 Low 2846
P4 T4 Low 2494
P4 T5 Low 7484

P5 T1 Low 2079
P5 T2 Low 4638
P5 T3 Low 3944
P5 T4 Low 2915
P5 T5 Low 12364

Protein-coding genes Genes not assigned as non-coding were classified as protein coding; all the transcripts associated with them
were assigned the same biotype.

8.5.4 Removal of spurious genes

After assigning a biotype to each gene, we performed a final polish of the annotation by marking for removal loci where all the transcripts
met the following criteria:

• Putative non-coding transcripts lacking transcript support (TR5)

• Putative coding transcript lacking transcript and protein similarity support (TR5,PR5)

• Protein coding transcripts harbouring an in-frame stop-codon

Before discarding these transcripts, we performed an expression estimation against all of our samples using Kallisto v 0.42.5 (Bray
et al., 2016); in parallel, we aligned all high-confidence protein coding transcripts from the previous annotation (The International Wheat
Genome Sequencing Consortium, 2014) using GMAPL v. 2015-11-20 (Wu and Watanabe, 2005) and asking for the best match with
coverage over 90% and identity over 95% (excluding chimeric alignments). Genes were retained if one of their transcripts met at least
one of the following conditions:

• Expression level over 0.5 TPM in at least one of our samples, as measured by Kallisto

• BLAST hit from the Full-LengtherNEXT analysis with the UniProt database.

• Match against the IWGSC set, with AED lower than 1, as measured by Mikado compare

Any gene whose transcripts were all marked for removal, even after these last checks, was excluded from the final annotation.
Table S8.7 reports the final number of coding transcripts per each rank.

8.5.5 Assignment of high and low confidence tags

Based on the above ranking, gene models were classified as high and low confidence as follows:

A High confidence (biotype Protein_coding) - any protein coding gene where any of its associated gene models meet the following
criteria:
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Table S8.8: TGACv1 annotation biotype and gene confidence assignment.

Confidence Level Biotype Gene Count

High protein_coding 104091
High ncRNA 10156
Low Protein_coding_repeat associated 8556
Low protein_coding 83217
Low ncRNA_repeat_associated 1954
Low ncRNA 9933

Figure S8.1: Assessment of confidence rankings for the protein coding portion of the wheat gene set. Protein (A) and transcript (B) classification for high
and low confidence genes (gene level) based on classification of the representative gene model.
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• PR1 and TR1 to TR4

• PR2 and TR1 to TR4

• PR3 and TR1

B Low confidence (biotype Protein_coding): any protein coding gene where all of its associated transcript models do not meet the
criteria to be considered as high confidence protein coding transcripts.

C High confidence (biotype ncRNA): any ncRNA gene where any of its associated gene models meet the following criteria:

• TR1

• TR2

D Low confidence (biotype ncRNA): any ncRNA gene where all of its associated transcript models do not meet the criteria to be
considered as high confidence non-coding transcripts.

E Low confidence (biotype Protein_coding_Repeat_associated, ncRNA_Repeat_associated) all repeat associated genes are
classed as low confidence.

This classification defines four locus biotypes (protein_coding, ncRNA, protein_coding_repeat_associated and ncRNA_repeat
associated) and two locus level confidence classifications: “high” or “low”. Transcript classifications were harmonised within each gene
so that each of them only harbours transcripts of one classification, following the order of rankings in the list above.

The number of genes within each category can be found in Table S8.8, and a graphical summary of the genes associated with each
protein and transcript ranking can be found in Figure S8.1.

8.5.6 Assignment of a representative gene model

We assigned a representative model for a gene by selecting a model with the highest confidence ranking (as described in Table S8.7,
where a rank 1 is greater than a rank 5 model, i.e., PR1 is better than PR5, TR1 is better than TR5) and lowest AED by keeping the order:

1. highest protein rank

2. highest transcript rank

3. lowest AED.

For ncRNA genes, we assigned the representative model by considering the order:

1. highest transcript rank

2. lowest AED.

We compiled a summary of the annotation statistics in Table 3 of the manuscript.

8.5.7 Assessment of the TGACv1 annotation

Comparison with B. dystachion models. We assessed the coherence in gene length between a selected set of TGACv1 Triticum
aestivum and Brachypodium distachyon genes. We have downloaded 2707 Brachypodium distachyon proteins identified as single copy
in Brachypodium distachyon, Oryza sativa, Sorghum bicolor, Setaria italica and Zea mays from Phytozome 11 (BioMart URL link:
https://goo.gl/5Ujnkj). The B.distachyon proteins were blasted (ncbi-blast-2.3.0+, maximum evalue 1×10−5) against TGACv1 T.
aestivum proteins and the reciprocal best hit was selected using a custom perl script. A high coherence in gene length was found between
B. distachyon proteins and TGACv1 T. aestivum proteins (Figure S8.2).

Reconstruction of the gene space in multiple T. aestivum assemblies. We assessed how completely the “gene space” was
represented in TGACv1 relative to publicly available wheat assemblies by aligning the 1,509,322 PacBio transcripts to each assembly
(minimum 95% identity; Figure S8.3). Of the PacBio transcripts 93% could be aligned with greater than 90% coverage to TGACv1,
19% more than to the synthetic W7984 assembly (74%; Chapman et al. (2015)).

Comparison with IWGSC gene models We compared the previous annotation with ours (The International Wheat Genome
Sequencing Consortium, 2014; Choulet et al., 2014) by aligning the gene models onto our assembly with GMAPL (version 2015-11-20;
Wu and Watanabe (2005)) with the following command line options:
gmapl --no-chimeras -n 1 -f 2 --min-trimmed-coverage=0.90 --min-identity=0.95

The alignment has been effectuated separately for the high confidence genes and the low confidence set. The alignments were
compared against our annotation with Mikado compare (v. 0.22.0; Venturini et al. (2016)), and binned into four different classes:

1. TGAC model missed (class code in the refmap file: NA, X, x, P, p, i, I, ri, rI, u).
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Figure S8.2: Coherence in gene length between Triticum aestivum and Brachypodium distachyon proteins. Blast analysis (1×10−5) identified 2686
proteins that had reciprocal best hits to 2707 Brachypodium distachyon proteins identified as single copy in B. distachyon, O. sativa, S. bicolor, S. italica,
Z. mays (Phytozome). A high coherence in gene length was found between Triticum aestivum and Brachypodium distachyon, with a correlation coefficient
r equal to 0.969.
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Figure S8.3: Assessment of gene content in different wheat assemblies. PacBio transcripts (1,509,322) were aligned with GMAP (version 2015-11-20;
Wu and Watanabe (2005)) to TGACv1 and three public assemblies. The plot shows cumulative proportion of aligned sequences in each assembly.
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Figure S8.4: Assessment of TGACv1 gene content in public wheat assemblies. TGACv1 transcripts were aligned with GMAP (version 2015-11-20) to
TGACv1 and three public assemblies. The plot shows cumulative proportion of aligned sequences in each assembly.

2. Structural difference between the TGAC model and the IWGSC model (class codes in the refmap file: f, j, J, n, h, O, C, mo, m, o,
e).

3. IWGSC contained within the TGAC model (class codes in the refmap file: c).

4. Concordance between the two annotations (class codes in the refmap file: =, _)

Results are reported in Figure 3 of the manuscript.
To assess how much of the TGACv1 gene content was contained in other publicly available wheat assemblies we aligned TGACv1

genes and assessed the proportion of TGACv1 models aligned relative to alignment coverage (Figure S8.4).

8.5.8 Evaluation of non-coding RNAs

Comparison with coding models in T. aestivum We extracted the GFF3 of the 10,156 high-confidence ncRNA genes of the
TGACv1 annotation using the grep utility from Mikado v0.24.0; only representative transcripts for each gene were retained. Likewise,
we extracted the GFF3 of all coding genes (both high and low confidence). Mikado compare was then used to find the best match for
each entry in the former GFF in the latter one. For the purposes of this evaluation, class codes in the TMAP file of u,p and P were
considered as intergenic, X and x as matches on the opposite strand, and finally i and I as intronic.

Alignment against the genomes of progenitors We downloaded the genomes of two progenitors of Triticum aestivum, Triticum
urartu and Aegilops tauschii, from EnsEMBL plants release 32. The representative transcripts of the 10,156 high-confidence ncRNA
genes of the TGACv1 annotation were aligned against each of these genomes using GMAP v2015-11-20 (Wu and Watanabe, 2005), with
the command line options:
gmap --no-chimeras -n 5 -f 2 --cross-species
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The matches were then extracted from the GFF files, filtered for hits with identity and coverage greater than 90%, and merged into a
unique list.

8.6 Alternative splicing analysis

RNA-Seq reads generated via the Illumina platform are often too short to cover a full transcript and unambiguously link alternative 5’
and 3’ splicing events. Furthermore, mapping of relatively short (100–300bp) reads can lead to misalignment and the identification of
a substantial number of false positive splice junctions (Sturgill et al., 2013). With different assembly methods showing considerable
variation in the number and structure of transcripts assembled we chose to take a conservative approach to annotating alternative
splicing in the TGACv1 gene set, giving greater emphasis to long PacBio reads and excluding transcripts with severely truncated
coding sequences. To provide a more comprehensive representation of alternative splicing we subsequently integrated transcripts
assemblies generated from six strand specific Illumina libraries (Table S8.1, BioProject accession number PRJEB15048). RNA-Seq
transcript assemblies were generated from the six samples using cufflinks (v2.2.1) and subsequently merged via cuffmerge (Roberts
et al., 2011b), the TGACv1 gene models were provided as reference annotation. The merged transcripts assemblies were filtered
to contain transcripts that are novel isoforms to the TGACv1 annotation, i.e. share at least one splice junction with the reference
transcript. Splice variants identified from this additional analysis are provided as a separate track in the Ensembl wheat browser
http://plants.ensembl.org/Triticum_aestivum, and can be retrieved from the Earlham Institute server (see Section 8.8) In
order to analyse different alternative splicing events and to identify transcripts that are susceptible to nonsense mediated decay (NMD), a
bioconductor package, spliceR (Vitting-Seerup et al., 2014), was used with the output generated from running cuffdiff (Trapnell et al.,
2012).

8.7 Functional annotation of protein coding transcripts

All the proteins of our annotation were annotated using AHRD v.3.1 (Hallab et al., 2014). Sequences were blasted against TAIR10
A. thaliana protein sequences (Lamesch et al., 2012) and the plant sequences of UniProt v. 2016_05, both SwissProt and TREMBL
datasets (The UniProt Consortium, 2014). Proteins were BLASTed using BLASTP+ v. 2.2.31 asking for a maximum e-value of 1. We
adapted the standard example configuration file pathtest/resources/ahrd_example_input.yml, distributed with the AHRD tool, changing
the following apart from the location of input and output files:

1. we included the GOA mapping from uniprot,

2. The regular expression used to analyse the TAIR header was amended to correct a parsing error to:

^ >(? < a c c e s s i o n >[aA ] [ tT ][0−9mMcC] [ gG ] \ \ d + ( \ \ . \ \ d +) ? ) \ \ s + \ \ | Symbols
: [ ^ \ \ | ] + \ \ | \ \ s +(? < d e s c r i p t i o n > ( [ ^ \ \ | ] + | ) ) ( \ \ s * \ \ | . * ) ? \ $

Concurrently, we analysed the same set of sequences using InterProScan 5.18.57 (Jones et al., 2014). A custom Perl script was used to in-
tegrate the ranking, biotype, and functional classification from both tools into a unified file available at: http://opendata.earlham.ac.
uk/Triticum_aestivum/TGAC/v1/annotation/Triticum_aestivum_CS42_TGACv1_scaffold.annotation.gff3.functional_

annotation.tsv.gz.

8.8 Data Access

Sequencing reads generated for this study have been submitted to the European Nucleotide Archive under the accession code PRJEB15048.
The annotation is available in Ensembl Plants genomic repository (release 32) at http://plants.ensembl.org/Triticum_aestivum
and from the Earlham Institute server at http://opendata.earlham.ac.uk/Triticum_aestivum/TGAC/v1/annotation. The
latter repository contains the following files:

• TGACv1 annotation, in GFF3 format:

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.gff3.gz

• Sequences for the transcript models of TGACv1 cDNAs, CDS and proteins:

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.gff3.cdna.fa.gz

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.gff3.cds.fa.gz

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.gff3.pep.fa.gz

• Functional annotation of TGACv1 models:

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.gff3.functional_annotation.tsv.gz

• Annotation of alternative splicing events (see Section 8.6), in both GFF3 and GTF format:

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.AS.gff3.gz

– Triticum_aestivum_CS42_TGACv1_scaffold.annotation.AS.gtf.gz
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9 Proteomics

Proteome profiling was conducted through reanalysis of Duncan et al. (2017). Briefly, organ and developmental stage samples were
collected from both field and lab grown Triticum aestivum cv. Wyalkatchem. Frozen samples were crushed using mortar and pestle
before protein extraction with the chloroform / methanol procedure (Wessel and Flügge, 1984) prior to tryptic digestion. A peptide level
prefractionation was performed according to Yang et al. (2012) before reversed phase C18 LC/MS analysis on an Agilent 6550 Q-ToF.
Spectra were matched against the combined high and low confidence protein coding peptide sequence set (249,547 sequences) with
CometUI (2016.01 rev. 2; Eng et al. (2013)) precursor tolerance +/- 50 ppm, variable oxidation of methionine, fixed carbamidomethyl C.
Results were validated through the Trans-Proteomic Pipeline, with the tools peptide and protein prophet (TPP v4.8.0; Deutsch et al.
(2010)). A 2% peptide level FDR cutoff was calculated through the inclusion of reversed decoys of the protein sequences. Peptide
matches to TGACv1 genes and transcripts are provided as Supplementary File S9.
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10 Orthologous gene family analyses

10.1 OrthoMCL gene family clustering of wheat subgenome genes

Gene family clusters were defined from the bread wheat high-confidence class genes, separated for their subgenome origin (A, B and D)
and undefined origin (“U”) using OrthoMCL software version 2.0 Li (2003). In a first step, pairwise sequence similarities between all
input protein sequences were calculated using BLASTP with an e-value cut-off of 1×10−5. Markov clustering of the resulting similarity
matrix was used to define the ortholog cluster structure, using an inflation value (-I) of 1.5 (OrthoMCL default).

The input datasets were:

• Bread Wheat A genome (high-conf): 32,452 genes

• Bread Wheat B genome (high-conf): 34,713 genes

• Bread Wheat D genome (high-conf): 32,724 genes

• Bread Wheat genes of unknown origin (high-conf): 4202 genes

Splice variants were removed from the data sets, keeping the representative gene model, and data sets were filtered for internal stop
codons and incompatible reading frames. A total of 87,519 coding sequences from these three datasets were clustered into 25,132 gene
families (clusters). An overview of the cluster structure is shown in Figure S10.1. We identified 13,070× 3 genes found in a 1:1:1:0
ratio in the A,B,D and U subgenomes (triads); this set was filtered to 9642 triads with > 90% identity in pairwise BLASTP alignments
between A,B and D genes (Supplemental file S10). The same OrthoMCL analysis was also performed with all TGACv1 gene models,
both high- and low-confidence in a separate run (Figure S10.2).

Figure S10.1: OrthoMCL clustering of bread wheat genes (HC class) from the A, B and D subgenome and unclassified origin (“Un”). The first number
under the species name gives the total number of transcripts predicted, the second number is the number of transcripts in OrthoMCL clusters. The
difference gives the number of singletons (genes not clustered).

10.2 OrthoMCL gene family clustering of the bread wheat genome and related species

Following the protocol used in section 10.1, OrthoMCL was used to define gene family clusters at a species level, using as datasets
the bread wheat high-confidence class genes, the annotated gene sets of three grasses from diverse grass sub-families, and Arabidopsis
thaliana (Figure S10.3). The input datasets were:

• Bread Wheat A genome (high-conf): 32,452 genes

• Bread Wheat B genome (high-conf): 34,713 genes

• Bread Wheat D genome (high-conf): 32,724 genes

• Bread Wheat genes of unknown origin (high-conf): 4,202 genes

• Sorghum bicolor v2.1: 33,032 genes

• Brachypodium distachyon v2.1: 31,694 genes
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Figure S10.2: OrthoMCL clustering of bread wheat genes (all confidence classes) from the A, B and D subgenome and unclassified origin (“Un”). The
first number under the species name gives the total number of transcripts predicted, the second number is the number of transcripts in OrthoMCL clusters.
The difference gives the number of singletons (genes not clustered).

• Rice MSU7.0: 39,049 genes

• Arabidopsis thaliana TAIR10: 27,416 genes

Coding sequences from these five species were clustered into 29,862 gene families.
In a separate run, the same OrthoMCL analysis was performed with all bread wheat gene models given as as a single species

(Figure S10.3).

10.3 GO over-/under-representation for specific groups/singletons

Over-/under-representation of gene ontology (GO) terms in specific gene families and subsets (see Section 10.4) were analysed via
hypergeometric testing using the functions GOstats (Falcon and Gentleman, 2007) and GSEABase (Morgan et al., 2008)from the
bioconductor R package against a universe of all genes with GO annotations. Revigo (Supek et al., 2011), which removes redundant and
similar terms from long GO lists by semantic clustering was applied to visualise the enrichment results.

10.4 Expanded gene families in OrthoMCL and GO over-representation within

From the OrthoMCL analyses described in Sections 10.1 and 10.2, we extracted gene models from different distinct OrthoMCL subsets:

A “Subgenome-specific” set: Wheat genes in groups/clusters which are subgenome-specific (cluster/group contains only genes
from subgenome A, B or D) and cluster size greater than 1;

B “Subgenome-singletons” set: Wheat genes which were not clustered within any of the OrthoMCL groups, termed “Singletons”,
separated by their subgenome origin;

C “Wheat-subgenome-expanded” set: Wheat genes in groups/clusters where the gene copy number is significantly (p-value less
than 0.05) expanded in one of the subgenomes relative to the other subgenome including clusters (size greater than one) that only
consist of the respective subgenome genes;

D “Wheat-expanded(A/B/D)” set: Wheat genes, separated by subgenome origin, in groups/clusters where the Wheat gene copy
number is significantly expanded (p-value less than 0.05) relative to any of the other species contained including clusters (size
greater than one) that only consist of Wheat genes.

The individual gene sets were analysed for over-represented GO terms from all GO categories “biological process”, “molecular
function” and “cellular component”. Results are summarized and visualized in Supplemental file S2.
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Figure S10.3: OrthoMCL clustering of bread wheat genes (HC confidence class) from the A, B and D subgenome and unclassified origin (“Un”) together
as a single species, against the gene complements of Arabidopsis, Sorghum, Rice and Brachypodium. The first number under the species name gives the
total number of transcripts predicted, the second number is the number of transcripts in OrthoMCL clusters. The difference gives the number of singletons
(genes not clustered).
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11 Gene expression analyses

11.1 Expression quantification and analysis

11.1.1 Gene expression quantification

Wheat gene expression quantification was carried out as described in Borrill et al. (2016) using kallisto v0.42.3 (Bray et al., 2016) to
pseudoalign reads to the complete TGAC transcriptome (including both high and low confidence genes) as a reference. The SRA studies
included are listed in S11.1. For paired end reads kallisto was run using default parameters with 100 bootstraps (-b 100). For single
end reads kallisto was run using 100 bootstraps (-b 100) in the single end read mode (--single), the average fragment length used
was 150 bp (-l 150) with a standard deviation of 50 (-s 50) - these values were taken as an average of reported fragment lengths for
studies included.

Table S11.1: SRA studies analysed with expVIP using TGAC gene models as a reference.

Study identifier Summary Total reads Reads mapped to TGAC

Reads mapped to IWGSC

Reference

DRP000768 phosphate starvation in roots
and shoots

118,053,746 104,886,994 (88%) 84,529,715 (72%) Oono et al. (2013)

ERP003465 fusarium head blight
infected spikelets

1,827,362,091 1,633,149,812
(89%)

1,357,197,955
(74%)

Kugler et al. (2013)

ERP004505 grain tissue-specific
developmental timecourse

873,709,556 718,777,030 (54%) 475,184,621 (82%) Pfeifer et al. (2014)

SRP004884 flag leaf downregulation of
GPC

209,427,573 148,280,320 (72%) 121,855,143 (58%) Cantu et al. (2011)

SRP013449 grain tissue-specific
developmental timecourse

132,702,451 110,682,153 (83%) 82,417,257 (62%) Gillies et al. (2012)

SRP017303 stripe rust infected seedlings 33,361,836 15,622,370 (47%) 13,732,210 (41%) Cantu et al. (2013)
SRP022869 Septoria tritici infected

seedlings
100,582,632 71,948,196 (72%) 63,155,877 (63%) Yang et al. (2013)

SRP028357 shoots and leaves of nulli
tetra group 1 and group 5

3,304,500,117 2,918,789,524
(88%)

2,258,692,000
(68%)

Leach et al. (2014)

SRP029372 grain tissue-specific
developmental timecourse

101,477,759 26,992,810 (22%) 17,525,439 (17%) Li et al. (2013)

SRP038912 comparison of stamen pistil
and pistilloidy expression

217,315,378 196,322,732 (90%) 153,009,134 (70%) Yang et al. (2015)

SRP041017 stripe rust and powdery
mildew infection timecourse

395,463,786 325,434,104 (82%) 272,228,560 (69%) Zhang et al.
(2014a)

SRP041022 developmental time-course
of synthetic hexaploid

134,641,113 120,448,445 (90%) 84,583,556 (63%) Li et al. (2014)

ERP008767 grain tissue-specific
expression at 12 days post
anthesis

45,213,827 36,971,938 (82%) 26,420,708 (58%) Pearce et al. (2015)

SRP045409 drought and heat stress
time-course in seedlings

921,578,806 592,272,829 (64%) 533,928,182 (58%) Liu et al. (2015)

ERP004714 developmental time-course
of Chinese Spring

1,536,051,415 1,340,790,669
(88%)

1,066,712,760
(69%)

Choulet et al.
(2014)

SRP056412 grain developmental
timecourse with 4A
dormancy QTL

1,875,916,011 1,082,551,207
(57%)

808,809,053 (43%) Barrero et al.
(2015)

PR-
JEB15048

developmental time-course
of Chinese Spring

824,241,135 631,301,185 (77%) N/A This study.

11.1.2 Differential gene expression analysis

Differential gene expression analysis was carried out on the kallisto output abundance files using sleuth (Pimentel et al., 2016). Default
settings were used except that the maximum number of bootstraps considered was 30 (max_bootstrap = 30). For the integrated
disease and stress analysis each sample was compared to the control sample from the study from which it originated. Genes with a FDR
adjusted p-value (q-value) less than 0.001 were considered differentially expressed.
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Figure S11.1: Median gene expression level per chromosome bin. cM position was determined by BLAST of TGAC scaffolds to the Chapman scaffold
which had POPSEQ position information. Only bins with 3 or more genes were included. Outliers above expression level 45tpm were excluded from the
graph. Grey vertical lines indicate centromere position.

11.1.3 Visualisation of gene expression

The quantified gene expression from kallisto were visualised using the expVIP platform (Borrill et al., 2016). It is displayed at
www.wheat-expression.com.

11.2 Gene expression across 17 diverse RNA-seq studies

We used expVIP (Borrill et al., 2016) to analyse 16 wheat gene expression studies from the short read archive (SRA) from a range
of tissues, developmental stages and stress conditions alongside the six RNA samples sequenced during the course of this study
(Table S11.1). In total these 424 individual samples contained 12.6 billion reads of which 10 billion mapped to the TGAC transcriptome
containing 273,739 genes. This average mapping rate of 75% of reads is higher than the 59% of reads which mapped to the previous
IWGSC gene models suggesting that the TGAC transcriptome is more complete. We found that 95% of genes (260,079) had at least 1
read mapping to them, and 58% of genes (160,074) were expressed in at least one samples at over 2tpm which has been advocated as the
cut-off for real expression over noise (Wagner et al., 2013). The percentage of genes expressed over the background noise level of 2tpm
is relatively low (58%) which may be because the TGAC gene models also include non-coding RNAs which are generally expressed at
very low expression levels and low confidence gene models which are not supported by evidence from other species. If we only include
high confidence gene models 78% of genes are expressed at over 2tpm. To facilitate access to these RNA-seq datasets we have updated
http://www.wheat-expression.com/ to show gene expression levels for each TGAC gene of interest across all the 17 different
studies. The visualisation interface can be filtered and sorted by the viewer according to the origin of each sample in terms of tissue, age,
stress and variety. One gene and its homoeologs can be displayed as a bar graph or multiple genes can be displayed as a heatmap.

11.3 Gene expression patterns across chromosome regions

To investigate whether specific chromosomal domains influence the gene expression level we examined gene expression across the length
of the chromosomes using genetic map assignments described in Section 5. We found that in general the median expression of genes was
similar throughout most chromosomes (Figure S11.1). However certain chromosomal regions had much higher expression across several
or all of the six tissues examined and these “enhanced expression regions” were located outside of centromeric regions.

11.4 Analysis of homoeolog gene expression in stress conditions

We identified 9642 triads which had a 1-1-1 relationship between the A, B and D genome copies (Section 10.1). To understand the
roles of the three homoeologous copies within triads to a range of stress conditions we leveraged existing RNA-seq data for seedlings
(Table S11.2). Gene expression quantification and differential expression analysis was carried out as described in Sections 11.1.1 and
11.1.2. Within each triad we classified changes in response to stress in each homoeolog as either up-regulation (over 2-fold change),
down-regulation (under 0.5-fold change) or flat (between 0.5 to 2 fold change); all tests were considered statistically significant with q
lower than 0.001. Each triad was then classified according to the number of homoeologs differentially expressed and their direction of
change Table S11.3.
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Table S11.2: RNA-seq samples used to analyse the response of homoeologous genes to stress conditions.

Study Age Conditions Replicates

SRP041017 7 days

Stripe rust 24 h 3
Stripe rust 48 h 3
Stripe rust 72 h 3
Powdery mildew 24 h 3
Powdery mildew 48 h 3
Powdery mildew 72 h 3

SRP045409 7 days

Drought stress 1 h 2
Drought stress 6 h 2
Heat stress 1 h 2
Heat stress 6 h 2
Drought and heat stress 1 h 2
Drought and heat stress 6 h 2

Table S11.3: The expression patterns of homoeologs within triads in response to stress treatments. *For triads where two homoeologues are up or down
regulated, the third homoeologue could not be expressed in the opposite direction to avoid double counting of “opposite” class triads.

Condition 0 1 up 1 down 2 up* 2 down* 3 up 3 down Opposite

drought_1h 8,588 866 148 31 0 0 0 9
heat_1h 6,931 1,731 707 142 17 3 0 111
drought_heat_1h 5,941 2,008 1,129 214 68 10 1 271
drought_6h 6,248 1,521 1,354 148 110 1 1 259
heat_6h 5,288 1,780 1,728 195 211 5 3 432
drought_heat_6h 4,965 1,677 2,028 185 253 8 8 518
mildew_24h 8,793 607 218 15 2 0 0 7
mildew_48h 8,802 180 640 4 12 0 0 4
mildew_72h 9,184 24 425 0 6 0 0 3
yellow_rust_24h 9,069 267 290 3 7 0 0 6
yellow_rust_48h 9,455 13 172 0 2 0 0 0
yellow_rust_72h 9,342 41 257 0 1 0 0 1

In triads in which two homoeologs were up- or down-regulated, the A, B and D genome were represented equally (chi-squared
test p = 0.517 and p = 0.243 respectively). Similarly in triads in which one homoeolog was down-regulated the three genomes were
represented equally (chi-squared test p = 0.537). However in triads in which one homoeolog was up-regulated the three genomes
did not respond equally, with the D genome being more responsive to stress conditions (the numbers of triads with one homoeolog
up-regulated in which the A, B and D genome homoeolog was upregulated were 3390, 3494 and 3831 respectively, chi-squared test
p = 3.45×10−7). In triads with opposite patterns of homoeolog expression the B genome was more frequently up-regulated than the
other two genomes (the numbers of triads with opposite homoeolog expression patterns in which the A, B and D genome homoeolog
was upregulated were 526, 606 and 538 respectively, chi-squared test p = 0.035), however all three genomes were as likely as each other
to be the down-regulated genome in triads with opposite homoeolog expression patterns (chi-squared test p = 0.0745).

11.5 Homoeologous gene expression analysis

We decided to investigate expression of homoelogous genes using an ad-hoc approach similar to that described in Liu et al. (2015). We
decided to focus on three studies for this analysis: SRP041017, SRP045409, and ERP004505. For each of our 9642 triads, we verified in
each condition whether their expression was balanced by performing a paired fisher test between the A and B gene, B and D gene, and A
and D gene; as in Liu et al. (2015), we compared the two expression values for the triads against the sum of all the expression values for
the subgenome in the condition, minus the expression of the gene under analysis (equation (1)); Fisher test as implemented in Scipy v.
0.18.0 Jones et al. (2001)). We corrected our p-values using the standard Benjamini-Hochberg method for False Discovery Rate, as
implemented in Stasmodels 0.6.1 (Seabold and Perktold, 2010).

F(x,y) = Fisher((t pmx, t pmy),((
Ξ

∑
χ=1

t pmχ )− t pmx,(
ϒ

∑
υ=1

t pmυ )− t pmy)) (1)

The probability for two homoeologous x,y genes to be expressed at an unbalanced level was calculated by performing a Fisher exact
test of their expression, in TPM, versus the sum of all TPM values of the triads for their respective subgenomes Ξ and ϒ excluding the
couple of genes themselves.

Expression values for the analysed triplets, and the accession codes for the RNA-Seq raw data, can be found in Supplementary file S11,
while the Fisher test evaluation results are reposted in Supplementary file S12.

Subsequently, we considered a pairwise comparison within a replicate as significant if the following conditions verified:

1. at least one of the two genes compared had to have an expression level greater than 0.01 TPMs (to exclude lowly expressed loci).

2. the comparison had to have a corrected p-value lower than 0.05.
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3. Either one of the two genes had an expression of 0, or the absolute log2 Fold Change between the two genes was 1 or above.

Each comparison was assigned one of three signed values (0 for no differential expression, 1 for an over-expression of the first
gene compared to the second, -1 for an under-expression of the first gene compared to the first, NA if neither gene was expressed at a
sufficiently high level). A pair of genes was considered as unbalanced if all the replicates were found to have a significant and coherent
difference in expression between the two members (ie. if in a couple the first gene was significantly under-expressed in a sample and
significantly over-expressed in another replicate or without evidence for a difference in expression, the comparison would have been
called as inconclusive). A triad was called as unbalanced if at least one of its internal pairs was unbalanced.

Expression values for the analysed triplets can be found in supplementary file S11, while the Fisher test evaluation results are reposted
in supplementary file S12. The final evaluation is reported in supplementary file S13.

11.6 Gene expression in syntenic loci

Collinearity was detected between the high confidence genes annotated on the wheat sub-genomes using MCScanX (Wang et al., 2012).
Protein sequences for the high confidence genes were used in all versus all BLASTP analysis (Section 10.1).

Conserved blocks were defined as a set of at least 5 genes (anchors) in the same order between 2 sub-genomes, with a maximum
of 25 spacer genes between the anchors in a collinear block. A total of 91 pairwise collinear blocks were identified, from these 12
collinear blocks of the A, B and D sub-genomes were identified. (Supplemental file S14). Pairwise alignments between two syntenic
blocks were calculated using LAST (Frith et al., 2010). Adjacent syntenic alignments were joined into single larger syntenic alignments
using the UCSC Chain/Net pipeline (Kent et al., 2003). Expression levels of genes in the blocks were assessed using triplicated
RNAseq data from Chinese Spring root and shoot tissues, and from 10day and 20 whole endosperm tissue (SRA studies DRP000768
and ERP004505). Gene expression levels were expressed as log2(T PM + 1). Unbalanced expression was defined as a significant
difference in expression between homoeologues in any of the four tissues measured, defined as the expression of any homoeologue
having greater than 4(T PM + 1) expression levels than another homoeolog. Collinear relationships, synteny links, and expression
levels for the genes on four syntenic blocks selected to illustrate different patterns of gene expression were plotted using SyntenyPlot
(https://github.com/lufuhao/SyntenyPlot). Promoter motifs were identified using PlantCARE, and transcription start sites
were identified from the TGACv1 annotation. Synteny views of genes in AA, BB, and DD scaffolds in 4 selected blocks are shown in
Figure S11.2, showing different patterns of conservation of gene and repeat order and gene expression.
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(A) This block illustrates a high degree of similarity in the A, B and D genomes, with similar patterns of gene expression. AA: reverse complement of
TGACv1_scaffold_195481_3AL:1–18115, BB: TGACv1_scaffold_224116_3B:34006–53294, DD: TGACv1_scaffold_250027_3DL:14626–41915.

(B) This block shows the interspersion of a tract of repeats in the A genome compared to the B and D genomic blocks. A gene encoding a histone-lysine
N methyltransferase in the D genome is expressed at lower levels in root tissues. AA: TGACv1_scaffold_288349_4AL:28586–78590, BB: reverse
complement of TGACv1_scaffold_328157_4BS:112255–138693, DD: TGACv1_scaffold_361457_4DS:18746–46470.

(C) This block shows unbalanced expression of an uncharacterised protein in the A, B and D genomes. There are major differences in the repeat composition
in the A and B genomes compared to the D genome AA: TGACv1_scaffold_375286_5AL:25956–75758, BB: TGACv1_scaffold_404593_5BL:66316–
159457, DD: reverse complement of TGACv1_scaffold_435472_5DL:7315–31129.

(D) A gene encoding a cytrochrome P450 72A14-like protein is highly expressed in shoot tissues in the A genome, and the homoeologous B and D
genes are not detectably expressed. AA: TGACv1_scaffold_392578_5AS:182276–210005, BB: TGACv1_scaffold_424311_5BS:12106–37625, DD:
TGACv1_scaffold_456510_5DS:23146–64545.

Figure S11.2: Four syntenic blocks showing conserved gene order and different patterns of gene expression, and repeat and gene interspersions. Genome
segments are arranged to reveal patterns of maximum conservation. Unbalanced gene expression is identified by a red asterisk above the bar graph of
expression levels. The x axis scale is in bp. Bar plots the log2(T PM+1) of gene expression (0-6) on the y axis. Asterisks above gene expression bar plots
indicate unbalanced expression. Arrows indicate genes, with homoeologous genes shown in the same colour. Red arrows mark no-syntenic genes. Black
boxes show repeat-masked regions.
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(A) Alignment of the fourth homoeologous group of genes in Figure A

(B) Alignment of the second homoeologous group of genes in Figure C

(C) Alignment of the fourth homoeologous group of genes in Figure D

Figure S11.3: Examples of promoter region divergence in homoeologous genes showing unbalanced expression in Figure S11.2, above. Promoter regions
end are 1500bp upstream of the initiating ATG codon. Red arrows indicate the location of transcriptional start sites.
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Figure S12.1: Scaffold 577042 of the TGACv1 assembly with resistance genes, aligned BACs and read data. The tracks from top to bottom show
coverage of paired-end reads, coverage of mate-pair reads, coverage of mate-pair fragments, GC content and N regions (highlighted in green), resistance
genes, and BACs. There are two BACs in 7 and 4 contigs, respectively, and 20 resistance genes.
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Figure S12.2: Scaffold 080625 of the TGACv1 assembly with gluten genes, aligned BACs and read data. The tracks from top to bottom show coverage
of paired-end reads, coverage of mate-pair reads, coverage of mate-pair fragments, GC content and N regions (highlighted in green), gluten genes, and
BACs. There is one BAC in 5 contigs and 6 resistance genes.

12 Gene families of agronomic importance

12.1 Disease resistance genes

Disease resistance genes were predicted by analysing the domain architectures with previously established pipeline (Sarris et al., 2016)
which utilises the Pfam annotation of functional domains. In addition, we scanned high confidence proteomes for previously identified
NLR MEME motifs (Jupe et al., 2012) and analysed the results with NLR-parser (Steuernagel et al., 2015) to predict NLR-associated
motifs and assess CC-NBS-LRR type disease resistance genes. The fragmented and complete transcript genes were also compared by
the presence of start and stop codons in predicted transcripts. The sequences for the resistance genes are provided in Supplementary
files S15, S16, S17 and S18.

12.2 Gluten genes

Due to the challenges of annotating repeat rich gluten genes, we reviewed all regions with nucleotide similarity to publicly available
gluten sequences (NCBI, Zhang et al. (2014b); Pfeifer et al. (2014)) with blastx (e-10) or GMAP (at least 95% identity, at least 40%
coverage) via the Apollo browser (http://genomearchitect.github.io/).

Due to the challenges of annotating repeat rich gluten genes, we reviewed regions with nucleotide similarity to publically available
gluten sequences (NCBI, Zhang et al. (2014a), Pfeifer et al. (2014)) with blastx (e-10) or GMAP (at least 95% identity, at least 40%
coverage) via the Apollo browser (http://genomearchitect.github.io/). The manually updated annotations are provided as
supplementary files S19, S20, S21, S22 and S23. Gluten pseudogenes are provided in a separate Supplementary file, S24.
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12.3 Gibberellin genes

Wheat genomic sequences corresponding to genes from the gibberellin biosynthesis, inactivation and signalling pathways were identified
in the TGACv1 assembly by BLASTN, using previously identified sequences from wheat (Pearce et al., 2015) or rice (Hirano et al.,
2008) and aligned using Geneious (http://www.geneious.com).

12.4 BAC analysis

The two BACs we have used in our examples are from a larger set of BACs which we were sequenced and assembled. Briefly, BACs were
selected for sequencing from a HinDIII partial digest BAC library (Allouis et al., 2003). BAC DNAs were miniprepped (Sambrook and
Russell, 2006), treated with ATP dependent DNase to remove E. coli genomic DNA, and individually barcoded Illumina Nextera libraries
prepared. Nextera libraries were sequenced using Illumina chemistry 2×250bp cycles (paired end). The reads were demultiplexed
and filtered to remove the BAC vector, E. coli genome, and wheat chloroplast and mitochondria sequences. The remaining reads for
each BAC were then assembled using DISCOVAR de novo (Weisenfeld et al., 2014) and then trimmed to remove any remaining vector
sequence from the contigs. The assemblies had an average content of 111kbp and an average contig N50 of 16.7kbp. The assemblies of
the BACs used in Figures S12.1 and S12.2 are given in Supplemental files S25 and S26, respectively.
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