Juanjuan Li et al Niacin therapy for UC EMBO Molecular Medicine

Expanded View Figures

Figure EV1. Effect of niacin on PG, RvE1, and LXA4 production in mice after DSS challenge.

- A Mass spectrometry analysis of PG production in colons from niacin (600 mg/kg)-treated mice after DSS challenge. Vehicle, n=6; niacin 600 mg/kg, n=7.
- B Measurement of urinary metabolite of PGs in niacin (600 mg/kg)-treated mice. PGEM, 11α -hydroxy-9,15-dioxo-2,3,4,5-tetranor-prostane-1,20-dioic acid; PGIM, 2,3-dinor-6-keto-PGF_{1 α}; TxM, 2,3-dinor-TxB₂; PGFM, 13,14-dihydro-15-keto-PGF_{2 α}, n=6.
- C Mass spectrometry analysis of RVE1 and LXA4 production in colons from niacin (600 mg/kg)-treated mice after DSS challenge. n=6.

Data information: Data are shown as mean \pm SEM. Data are representative of at least two independent experiments. Statistical significance was determined using unpaired Student's t-tests. (A) **#P < 0.01. (B) **P < 0.05. (#*P < 0.01.

© 2017 The Authors EMBO Molecular Medicine EV1

EMBO Molecular Medicine

Niacin therapy for UC | Juanjuan Li et al

Figure EV2. DP1 deficiency augments TNBS-induced colitis in mice.

EV2

A H&E staining of histological sections in the distal colon from the mice after TNBS challenge. Scale bar: 100 μm. Graphs represent overall histology score. B–D Body weight loss (B), disease activity index (DAI, C), and colon length (D) of DP1^{-/-} and WT mice in response to 2.5% TNBS challenge.

Data information: Data are shown as mean \pm SEM. Statistical significance was determined using unpaired Student's t-tests. *P < 0.05, **P < 0.01 compared with WT; n = 6.

EMBO Molecular Medicine © 2017 The Authors

Juanjuan Li et al Niacin therapy for UC EMBO Molecular Medicine

Figure EV3. Niacin protects mice against from TNBS-induced colitis.

A—C Effect of niacin treatment on body weight loss (A), disease activity index (DAI, B), and colon length (centimeter) (C) of DP1^{-/-} and WT mice in response to 2.5% TNBS challenge.

Data information: Data are shown as mean \pm SEM. Statistical significance was determined using two-way ANOVA followed by a Bonferroni post hoc test. $^{\#}P < 0.05$, $^{\#\#}P < 0.01$ vs. vehicle. $^{*}P < 0.05$, $^{**}P < 0.01$ compared with WT. WT-vehicle, n = 7; WT-niacin, n = 8; DP1 $^{-/-}$ -vehicle, DP1 $^{-/-}$ -niacin, n = 6.

© 2017 The Authors EMBO Molecular Medicine EV3

EMBO Molecular Medicine Niacin therapy for UC Juanjuan Li et al

Figure EV4. TNBS-induced colitis in cell-specific DP1-deficient mice.

EV4

- A Body weight loss, disease activity index (DAI), and colon length of DP1^{F/F}/Tie2^{Cre} mice, DP1^{F/F}/Villin^{Cre} mice, DP1^{F/F}/LysM^{Cre} mice, and DP1^{F/F}/SM22^{Cre} mice in response to TNBS treatment.
- B Quantitative measurement of vascular permeability by dye leakage in the colonic mucosa from TNBS-challenged DP1^{F/F}/Tie2^{Cre} and DP1^{F/F} mice. The mice were sacrificed at day 6.
- C TUNEL assay (left) and quantitation (right) in colonic tissues from TNBS-challenged DP1^{F/F}/Villin^{Cre} and DP1^{F/F} mice. The arrows indicate the TUNEL⁺ cells (left). Scale bar: 100 μm. DP1^{F/F}, n = 7; DP1^{F/F}/Villin^{Cre}, n = 8.
- D Representative immunofluorescent staining (left) and quantitation (right) of CD301*CD68* cells in colonic tissues from TNBS-challenged DP1^{F/F}/LysM^{Cre} and DP1^{F/F} mice. The arrows indicate the CD301*CD68* cells (left). Scale bar: 100 µm. DP1^{F/F}, n = 8; DP1^{F/F}/LysM^{Cre}, n = 6.

Data information: Data are shown as mean \pm SEM. Statistical significance was determined using two-way ANOVA followed by a Bonferroni post hoc test (A) and unpaired Student's t-tests (B–D). (A, B) *P < 0.05, **P < 0.01 compared with DP1^{F/F}, DP1^{F/F}, DP1^{F/F}/Tie2^{Cre}, DP1^{F/F}/LysM^{Cre}, DP1^{F/F}/SM22^{Cre} n = 6; DP1^{F/F}/Villin^{Cre}, n = 7. (C, D) **P < 0.01 vs. DP1^{F/F}.

EMBO Molecular Medicine © 2017 The Authors

Juanjuan Li et al Niacin therapy for UC EMBO Molecular Medicine

Figure EV5. PGD₂ infusion ameliorates DSS-induced colitis in mice.

A-C Effect of PGD₂ treatment on body weight loss (A), disease activity index (B), and colon length (C, centimeter) of WT mice in response to DSS challenge.

- E Effect of PGD₂ on DSS-induced epithelial cell apoptosis in WT mice. Scale bars: 100 μm. The arrows indicate TUNEL⁺ cells.
- F Effect of PGD₂ on colonic macrophage infiltration in DSS-challenged WT mice. Scale bars: 100 μm. The arrows indicate CD301*CD68* cells.

Data information: All mice were sacrificed at day 9. Data are shown as mean \pm SEM. Statistical significance was determined using unpaired Student's t-tests. (A–C) "P < 0.05, "P < 0.

© 2017 The Authors EMBO Molecular Medicine EV5