TFE3 REGULATES WHOLE BODY ENERGY METABOLISM IN COOPERATION WITH TFEB

Nunzia Pastore^{1,2}, Anna Vainshtein^{1,2}, Tiemo J. Klisch^{1,2}, Andrea Armani³, Tuong Huynh^{1,2}, Niculin J. Herz^{1,2}, Elena V. Polishchuk⁴, Marco Sandri^{3,5} and Andrea Ballabio^{1,2,4,6}

Appendix Table of Content:

-Appendix Materials and Methods -Appendix Figures -Appendix Figure legends -Appendix Tables

Appendix Material and Methods

AAV vectors production and injection

The human *TFE3* coding sequence was cloned into the pAAV-CMV-EGFP plasmid (Tessitore et al, 2008) by replacing the enhanced green fluorescence protein (EGFP) sequence. The AAV vectors were produced and characterized by the Telethon Institute of Genetics and Medicine (TIGEM, Naples, Italy) AAV Vector Core. pAAV2.1-CMV-hTFE3 and pAAV2.1-CMV-EGFP were triple-transfected in subconfluent 293 cells along with pAd-Helper and pack2/1 packaging plasmids as described previously (Xiao et al, 1999). Recombinant vectors were purified by two rounds of CsCl gradient centrifugation, as described previously (Xiao et al, 1999). Vector titers, expressed as genome copies per milliliter (GC/ml), were assessed by both PCR quantification and dotblot analysis. Mice were intramuscularly (i.m.) injected with a total dose of 10¹¹ GC of AAV2.1 vector preparation. Muscles were collected 8 weeks after injection and frozen in liquid nitrogen for subsequent analysis.

Protein Carbonyls detection

Carbonylation of liver proteins was detected by using the OxyBlot Protein Oxidation Detection Kit from Millipore following the manufacturer's instructions.

Appendix Figure S1

Appendix Figure S1. TFE3 depletion alters energy expenditure

A Energy expenditure (EE) in WT (black line) (n=5) and *Tfe3* KO mice (red line) (n=4). Grey areas indicate dark periods (6 PM to 6 AM). Data are presented as mean \pm SEM.

B Bar graph represents average EE values during day and night (n=5 per group). Data are presented as mean \pm SEM. Student's two-tailed *t*-test: Day *P=0.05; Night *P=0.017.

Appendix Figure S2

Appendix Figure S2. Energy expenditure

A Energy expenditure (EE) in WT (black line) and *Tfe3* KO mice (red line) after 1 month of HFD (n=5 per group). Grey areas indicate dark periods (6 PM to 6 AM). Data are presented as mean \pm SEM.

B Bar graph represents average EE values during day and night (n=5 per group). Data are presented as mean \pm SEM.

Appendix Figure S3

Appendix Figure S3. TFE3 regulates thermogenesis genes in BAT

A Uncoupling protein (*Ucp*) and β -oxidation gene expression in brown adipose tissues (BAT) from WT and *Tfe3* KO mice fed a HFD for 18 weeks (*n*=10 per group). Dashed line represents WT mice fed a chow diet. Data are presented as mean ± SEM. Student's two-tailed *t*-test: *Tfe3* ****P*<0.0001; *Ucp1* **P*=0.0213; *Ucp3* ****P*=0.0006; *Ppara* **P*=0.0114.

B UCP1 immunoblot and relative quantification from WT and *Tfe3* KO mice fed a HFD for 18 weeks. Data are presented as mean \pm SEM. Student's two-tailed *t*-test: ***P*=0.0011.

Appendix Figure S4. TFE3 regulates mitochondrial function

A Overall protein carbonylation of WT and *Tfe3* KO livers revealed by Oxyblot. A representative immunoblot for carbonylated proteins is depicted on the left, and densitometric quantification of the carbonylated proteins is represented by the graph on the right. Data are presented as mean \pm SEM. Student's two-tailed *t*-test: *Tfe3* ***P*=0.0462.

B Quantification of the RoGFP fluorescence intensity 405/488 emission ratio. ROS production was monitored by transfection of the ROS sensor Matrix-roGFP plasmid in WT (n=7) and *Tfe3* KO (n=9) MEFs. Data are presented as mean ± SEM. Student's two-tailed *t*-test: *P=0.0110.

C-D Mitochondrial membrane potential of WT (n=4) and *Tfe3* KO (n=7) HeLa (C), and WT (n=5) and *Tfe3* KO (n=8) MEFs (D) and representative images of TMRM signal. Where indicated, oligomycin (olm) or protonophore carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) were added. Data are presented as mean \pm SEM.

Appendix Table S1. Metabolic parameters of 2-months-old WT and *Tfe3* **KO mice 24h after fasting.** ALT, AST, CPK and LDH values are reported in U/L along with the relative *p* value calculated by Student's two-tailed *t*-test.

		ALT	AST	СРК	LDH
Fed	WT	45±13.4	67.75±14.6	273±110.7	280±92.7
	KO	21.75±1.8	60.5±9.6	418±122.6	253.75±51.8
	p value	0.138	0.69	0.44	0.81
Fasted	WT	25.5±4.3	55.5±11.06	203.25±59.8	176.75±32.1
	KO	86.5±49.4	154±85.6	1693.3±958.17	402.25±85.19
	p value	0.05	0.067	0.024	0.048

Appendix Table S2. Gene ontology analysis of the 136 mitochondria-related genes

Biological Processes in which	N GENES	SYMBOLS
the TFE3_Mitochondrial		
Targets are enriched:		
GO:0000266~mitochondrial	3	FIS1, BAX, MUL1
fission		
GO:0000302~response to reactive	6	GPX4, BCL2, TXNRD2, PRDX5, SOD2,
oxygen species		GLRX2
GO:0001666~response to	4	LONP1, BCL2, ABAT, SOD2
hypoxia		
GO:0001836~release of	6	BID, BAK1, BBC3, BCL2, BAX, SOD2
cytochrome c from mitochondria		
GO:0006006~glucose metabolic	5	PDK1, PDK4, PCK2, OGDH, CPT1A
process		
GO:0006066~alcohol metabolic	6	PDK1, CPT1B, PDK4, PCK2, OGDH,
process		CPT1A
GO:0006084~acetyl-CoA	6	NNT, ACO2, SUCLG1, CS, IDH2, SUCLA2
metabolic process		
GO:0006119~oxidative	11	ATP5D, NDUFS4, NDUFB6, NDUFV1,
phosphorylation		NDUFS8, ATP5F1, ATP5O, ATP5G1,
		ATP5A1, ATP5G3, UQCRB
GO:0006120~mitochondrial	4	NDUFS4, NDUFB6, NDUFV1, NDUFS8
electron transport, NADH to		
ubiquinone		
GO:0006139~nucleobase,	23	ATP5D, PHB, CYCS, AK3, ATP5F1, ESR2,
nucleoside, nucleotide and		ATP5G1, ATP5G3, SOD2, GLRX2,
nucleic acid metabolic process		MTHFD1, LONP1, SLC25A13, BAX,
		MARS2, TFB2M, ATP5O, ATP5A1,
		POLG2, FPGS, DNAJA3, LRPPRC, DUT
GO:0006200~ATP catabolic	4	ATP5D, LONP1, ATP5O, ATP5A1
process		
GO:0006626~protein targeting to	9	BID, GRPEL1, TIMM17A, TIMM9,
mitochondrion		TIMM10, TIMM13, MIPEP, TIMM44,
		TOMM34
GO:0006635~fatty acid beta-	6	CPT1B, ACADS, ECHS1, BDH2, DECR1,
oxidation		CPT1A
GO:0006732~coenzyme	14	ACO2, SUCLG1, CS, NFS1, COQ7, SOD2,
metabolic process		GLRX2, COQ4, MTHFD1, NNT, GPX4,
		IDH2, FPGS, SUCLA2
GO:0006754~ATP biosynthetic	8	ATP5D, SLC25A13, ATP5F1, AK3, ATP5O,
process		ATP5G1, ATP5A1, ATP5G3
GO:0006800~oxygen and	6	NDUFS4, GPX4, BCL2, NDUFA13, MPV17,
reactive oxygen species metabolic		SOD2
process		

identified as TFE3 targets (Betschinger et al, 2013) (p 2,38*E-23).

GO:0006811~ion transport	16	ATP5D, CPT1B, ATP5F1, ATP5G1,
	_	VDAC2, ATP5G3, VDAC1, SLC25A12,
		NNT. SLC25A13, PSEN1, SLC25A22,
		ATP5O, SLC25A1, ATP5A1, SCO2
GO:0006818~hydrogen transport	7	ATP5D, NNT, ATP5F1, ATP5O, ATP5G1,
		ATP5A1, ATP5G3
GO:0006820~anion transport	7	SLC25A12, SLC25A13, PSEN1, SLC25A22,
1		SLC25A1, VDAC2, VDAC1
GO:0006839~mitochondrial	21	ATP5D, BID, CPT1B, GRPEL1, TIMM17A,
transport		TIMM10, TIMM13, MIPEP, TIMM44,
		SLC25A12, BAK1, SLC25A13, PSEN1,
		BAX, BCL2, TIMM9, SLC25A27, ATP50,
		SLC25A1, SLC25A15, TOMM34
GO:0006865~amino acid	7	SLC25A12, CPT1B, CLN3, SLC25A13,
transport		PSEN1, SLC25A22, SLC25A15
GO:0006874~cellular calcium ion	5	BAK1, CLN3, PSEN1, BCL2, BAX
homeostasis		
GO:0006886~intracellular protein	12	BID, GRPEL1, TIMM17A, TIMM9, TRAK1,
transport		TIMM10, NDUFA13, TIMM13, MIPEP,
		TIMM44, HSPA9, TOMM34
GO:0006979~response to	9	LONP1, PSEN1, GPX4, BCL2, NDUFS8,
oxidative stress		TXNRD2, PRDX5, SOD2, GLRX2
GO:0007005~mitochondrion	24	BID, SPG7, GRPEL1, MSTO1, TIMM17A,
organization		TIMM10, MPV17, MUL1, TIMM13, MIPEP,
		TIMM44, SOD2, BAK1, FIS1, LONP1,
		NDUFS4, BBC3, BAX, BCL2, TIMM9,
		NDUFS8, TFB2M, DNAJA3, TOMM34
GO:0007006~mitochondrial	7	BID, BAK1, BCL2, BAX, TIMM9, TIMM10,
membrane organization		TIMM13
GO:0007007~inner mitochondrial	3	TIMM9, TIMM10, TIMM13
membrane organization		
GO:0007584~response to nutrient	3	BCKDHA, BCL2, BCKDHB
GO:0008635~activation of	3	BAK1, BAX, CYCS
caspase activity by cytochrome c		
GO:0008637~apoptotic	6	BID, BAK1, BBC3, BCL2, BAX, SOD2
mitochondrial changes		
GO:0009060~aerobic respiration	8	NNT, ACO2, SUCLG1, CS, IDH2, SUCLA2,
		SURF1, UQCRB
GO:0010035~response to	11	SLC25A12, ATP5D, D2HGDH, SLC25A13,
inorganic substance		GPX4, BCL2, ABAT, TXNRD2, PRDX5,
		SOD2, GLRX2
GO:0010522~regulation of	3	BAK1, BCL2, BAX
calcium ion transport into cytosol		
GO:0015711~organic anion	5	SLC25A12, SLC25A13, PSEN1, SLC25A22,
transport		SLC25A1
GO:0015800~acidic amino acid	4	SLC25A12, SLC25A13, PSEN1, SLC25A22

transport		
GO:0015849~organic acid	8	SLC25A12, CPT1B, CLN3, SLC25A13,
transport		PSEN1, SLC25A22, SLC25A1, SLC25A15
GO:0015985~energy coupled	6	ATP5D, ATP5F1, ATP5O, ATP5G1,
proton transport, down		ATP5A1, ATP5G3
electrochemical gradient		
GO:0015986~ATP synthesis	6	ATP5D, ATP5F1, ATP5O, ATP5G1,
coupled proton transport		ATP5A1, ATP5G3
GO:0022900~electron transport	12	SLC25A12, NDUFS4, SLC25A13, NDUFB6,
chain		NDUFV1, NDUFS8, CYCS, CYC1,
		NDUFA13, UQCRB, SOD2, GLRX2
GO:0022904~respiratory electron	8	SLC25A12, NDUFS4, SLC25A13, NDUFB6,
transport chain		NDUFV1, NDUFS8, UQCRB, SOD2
GO:0031667~response to nutrient	7	BCKDHA, CLN3, PSEN1, ACADS, BCL2,
levels		BCKDHB, SOD2
GO:0032469~endoplasmic	4	BAK1, PSEN1, BCL2, BAX
reticulum calcium ion		
homeostasis		
GO:0034440~lipid oxidation	6	CPT1B, ACADS, ECHS1, BDH2, DECR1,
		CPT1A
GO:0034614~cellular response to	3	GPX4, PRDX5, SOD2
reactive oxygen species		
GO:0042391~regulation of	6	BAK1, CLN3, PSEN1, BCL2, BAX, SOD2
membrane potential		
GO:0042594~response to	3	CLN3, PSEN1, ACADS
starvation		
GO:0042773~ATP synthesis	5	NDUFS4, NDUFB6, NDUFV1, NDUFS8,
coupled electron transport		UQCRB
GO:0042775~mitochondrial ATP	5	NDUFS4, NDUFB6, NDUFV1, NDUFS8,
synthesis coupled electron		UQCRB
transport		
GO:0043436~oxoacid metabolic	28	BCAT2, PTGES2, NFS1, ECHS1, MTHFD1,
process		GLS2, CKMT2, IDH2, MARS2, ALDH4A1,
		BDH2, POLG2, SUCLA2, HADH,
		BCKDHA, CPTIB, CLN3, ACO2, ACADS,
		SUCLGI, MCAI, CS, BCKDHB, DECRI,
	20	PCK2, CPTTA, FPG8, SLC25A15
GO:0044248~cellular catabolic	28	ATP5D, BCAT2, ECHST, MTHFDT,
process		LUNPI, GPX4, IDH2, ALDH4AI, BDH2,
		AIFJU, SUCLA2, BUNDHA, CPIIB, CIN2 ACO2 ACADS SUCLC1 CVCS
		CLN5, ACO2, ACAD5, SUCLOI, CTC5,
		NNT PSFN1 RAY ARAT ATP5A1
GO:0044260~cellular	38	TUEM MRPLA2 D2HCDH CRDEI 1
macromolecule metabolic process	50	MRPI 41 MRPS12 NFS1 MIPFP HSCR
		GLRX2 LONP1 RCI 2 TRAK1 MARS2
		$\mathbf{SERV}_{2}, \mathbf{EST}_{1}, \mathbf{B} \mathbf{SEL}_{2}, \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{S} \mathbf{D} \mathbf{Z},$

		TFB2M, POLG2, DNAJA3, HSPA9, PDK1,
		CLN3. MRPL51. PHB. PDK4. CYCS. RAF1.
		MUL1. MRPS21. ESR2. MSRB3. SOD2.
		MRPL23, MRPS18C, PSEN1, L2HGDH,
		TSFM BAX LRPPRC DUT
GO:0044262~cellular	9	PDK1, PSEN1, PDK4, TRAK1, CS, IDH2,
carbohydrate metabolic process		PCK2, OGDH, CPT1A
GO:0044271~nitrogen compound	15	ATP5D, BCAT2, AK3, NFS1, ATP5F1,
biosynthetic process		ATP5G1, ATP5G3, MTHFD1, SLC25A13,
5 1		ALDH4A1, ATP5O, ATP5A1, FPGS,
		SUCLA2, SLC25A15
GO:0045039~protein import into	3	TIMM9. TIMM10. TIMM13
mitochondrial inner membrane	-	
GO:0046034~ATP metabolic	9	ATP5D. LONP1. SLC25A13. ATP5F1. AK3.
process	-	ATP5O, ATP5G1, ATP5A1, ATP5G3
GO:0046902~regulation of	4	BID. BAK1. BCL2. BAX
mitochondrial membrane		, , , , , , , , , , , , , , , , , , ,
permeability		
GO:0046942~carboxylic acid	8	SLC25A12, CPT1B, CLN3, SLC25A13,
transport		PSEN1, SLC25A22, SLC25A1, SLC25A15
GO:0048545~response to steroid	6	BCKDHA, ACADS, GPX4, BCL2,
hormone stimulus		BCKDHB, ESR2
GO:0051171~regulation of	12	BCKDHA, PTGES2, PHB, TRAK1,
nitrogen compound metabolic		NDUFA13, TFB2M, ATPIF1, ESR2,
process		DNAJA3, LRPPRC, SOD2, GLRX2
GO:0051345~positive regulation	6	BAK1, BBC3, BAX, CYCS, MUL1,
of hydrolase activity		DNAJA3
GO:0051881~regulation of	4	BAK1, BCL2, BAX, SOD2
mitochondrial membrane		
potential		
GO:0070584~mitochondrion	4	BAK1, FIS1, BAX, MUL1
morphogenesis		
GO:0070585~protein localization	9	BID, GRPEL1, TIMM17A, TIMM9,
in mitochondrion		TIMM10, TIMM13, MIPEP, TIMM44,
		TOMM34

Appendix Table S3. Metabolic parameters in WT and *Tfe3* **KO mice fed a HFD for 18 weeks.** ALT, AST, ALP, CPK, LDH and glucose values are reported in U/L along with the relative *p* value calculated by Student's two-tailed *t*-test.

	ALT	AST	ALP	СРК	LDH	Glucose
WT	318±89.8	259.5±76.6	126±19.5	375.75±76.4	611.25±119.8	284.33±25.5
KO	563.3±124.4	686.33±187.6	299.5±64.8	215.5±62.2	3289±1334.7	171±21.2
p value	0.186	0.089	0.042	0.155	0.094	0.0417
WT HDAd- TFE3 early	99.75±26.7	127.75±18.9	70.75±18.9	556.5±174.6	373.75±76.8	262.5±23.1
p value	0.058	0.146	0.0443	0.3796	0.146	0.898
WT HDAd- TFE3 Late	96±30.3	139.7±27	118.75±17.0	259.25±98.7	365.3±54.8	212.25±21.7
p value	0.100	0.260	0.789	0.387	0.165	0.313

Gene		Sequences (5'->3')
Tfe3	forward	AGGATCAAAGAGCTGGGCAC
	reverse	CCGGCTCTCCAGGTCTTTG
Pepck	forward	GGCGATGACATTGCCTGGATGA
-	reverse	TGTCTTCACTGAGGTGCCAGGA
G6Pc	forward	TGGTAGCCCTGTCTTTCTTTG
	reverse	TTCCAGCATTCACACTTTCCT
Gsk3	forward	TGGCAGCAAGGTAACCACAG
	reverse	CGGTTCTTAAATCGCTTGTCCTG
Opa1	forward	ATACTGGGATCTGCTGTTGG
	reverse	AAGTCAGGCACAATCCACTT
Drp1	forward	TCAGATCGTCGTAGTGGGAA
	reverse	TCTTCTGGTGAAACGTGGAC
Fisl	forward	AAGTATGTGCGAGGGCTGT
	reverse	TGCCTACCAGTCCATCTTTC
Mfn1	forward	CCTACTGCTCCTTCTAACCCA
	reverse	AGGGACGCCAATCCTGTGA
Mfn2	forward	ATGTTACCACGGAGCTGGAC
	reverse	AACTGCTTCTCCGTCTGCAT
<i>Cd36</i>	forward	GGACATTGAGATTCTTTTCCTCTG
	reverse	GCAAAGGCATTGGCTGGAAGAAC
Cptla	forward	GGCATAAACGCAGAGCATTCCTG
	reverse	CAGTGTCCATCCTCTGAGTAGC
Cyp7a1	forward	CACCATTCCTGCAACCTTCTGG
	reverse	ATGGCATTCCCTCCAGAGCTGA
Fgf21	forward	ATCAGGGAGGATGGAACAGTGG
	reverse	AGCTCCATCTGGCTGTTGGCAA
Pgcla	forward	GAATCAAGCCACTACAGACACCG
	reverse	CATCCCTCTTGAGCCTTTCGTG
ApoA4	forward	CAGAAGACGGATGTCACTCAGC
	reverse	AGCTGTACGACAAAGGGCACCA
Cyp17a1	forward	AGCTCTGTGCTGAACTGGATCC
	reverse	AGACGGTGTTCGACTGAAGCCT
Cyp4a10	forward	GCTACTCAAGGCTTTCCAGCAG
	reverse	CCAGAACCATCTAGGAAAGGCAC
Cyp4a14	forward	CAGCTACCAAGGCAGTGTTCAG
	reverse	GGACAAACGTCCATCAGAGGAC
Fasn	forward	AGAAGCCATGTGGGGAAGATT
	reverse	AGCAGGGACAGGACAAGACAA
Srebp1c	forward	AGCTGTCGGGGTAGCGTCTG
	reverse	GAGAGTTGGCACCTGGGCTG
Ucp1	forward	CAAAAACAGAAGGATTGCCGAAA
	reverse	TCTTGGACTGAGTCGTAGAGG

Appendix Table S4. Primers used for qPCR analysis

Ucp2	forward	ATGGTTGGTTTCAAGGCCACA
	reverse	TTGGCGGTATCCAGAGGGAA
Ucp3	forward	GTGCTGAGATGGTGACCTACG
	reverse	GCGTTCATGTATCGGGTCTTTA
Ppara	forward	ACCACTACGGAGTTCACGCATG
	reverse	ACCACTACGGAGTTCACGCATG
Ppary	forward	GTACTGTCGGTTTCAGAAGTGCC
	reverse	ATCTCCGCCAACAGCTTCTCCT
Acotl	forward	ACTACGATGACCTCCCCAAG
	reverse	CATAGCAAGGCCAAGTTCAC
Gapdh	forward	AACACTGAGCATCTCCCTCA
	reverse	GTGGGTGCAGCGAACTTTAT
<i>S16</i>	forward	AGGAGCGATTTGCTGGTGTGG
	reverse	GCTACCAGGGCCTTTGAGATG

Appendix Table S5. Primary antibodies used for immunoblots and staining.

Antigen	Species in which the	Dilution	Source
	Ab was raised		
TFE3	Rabbit	1:1000	Sigma Aldrich
TFEB	Rabbit	1:1000	Bethyl Laboratories
Н3	Rabbit	1:3000	Cell Signaling
OXPHOS	Mouse	1:3000	Invitrogen
TOM20	Rabbit	1:250	Santa Cruz
GAPDH	Mouse	1:1000	Santa Cruz
ACTIN	Mouse	1:1000	Novus Biological
DYSTROPHIN	Mouse	1:1000	Novocastra
UCP1	Rabbit	1:5000	Abcam