Expanded View Figures

Figure EV1. Analysis of Atg4 association with the PAS by time-lapse live-cell imaging.

- A Cells expressing Atg4-GFP and mCherry-V5-Atg8 (RGY287) were starved in SD-N medium for 30 min and incubated with CMAC for 10 min, before being examined by time-lapse fluorescence microscopy. PAS were considered mCherry-Atg8-positive puncta adjacent to the vacuole, stained with CMAC. Images of the same cells were collected every 1 min for 15 min. For the complete movie, see the supplemental data (Movie EV1). Scale bar, 2 µm.
- B Experiments as in panel (A) were quantified by normalizing the autophagosome cycle, defined as the interval of time form the appearance until disappearance of mCherry-Atg8 puncta [49], to 1 and integrating Atg4-GFP recruitment to the PAS overtime. Data are from four independent experiments where the PAS remained in the imaged focal planes over the course of the entire filming.

Autophagosome cycle duration [arbitrary units]

Figure EV1.

Figure EV2. Atg4 association with the PAS does not require components of the Atg1 complex, Atg9 cycling system and PI3K complex.

- A Fluorescence microscopy images showing the subcellular localization of Atg4-GFP in *atg13*Δ (SAY030), *atg2*Δ (SAY109), *atg9*Δ (SAY016), *atg18*Δ (SAY017), *atg6*Δ (SAY013), and *atg14*Δ (SAY110) strains analyzed as in Fig 1. White arrows highlight Atg4-GFP puncta. DIC, differential interference contrast. Scale bars, 5 μm.
- B Percentage of cells, in the experiments shown in panel (A), that display an Atg4-GFP punctate structure. Data represent the average of three independent experiments \pm SD.
- C Subcellular localization of Atg4-GFP in double knockout cells lacking Atg1 and components of the conjugation systems leading to the formation of Atg8-PE: *atg7*Δ (SAY032), *atg3*Δ (SAY031), *atg8*Δ (SAY033), *atg1*Δ (SAY035), *atg1*Δ (SAY134), and *atg1*Δ (SAY135). Cells were grown and imaged as in Fig 1. DIC, differential interference contrast. Scale bars, 5 µm.

Α	Atg4-GFP	DIC	C	Atg4-GFP	DIC
atg13∆			atg1∆ atg3∆		
atg6∆			atg1∆ atg7∆		
atg14∆			atg1∆ atg8∆		
atg9∆	j. J.		atg1∆ atg10∆		
atg2∆	000000 000000 000000		atg1∆ atg12∆		
atg18∆			atg1∆ atg16∆		

Figure EV2.

Figure EV3. Putative LIR (pLIR) motifs in S. cerevisiae Atg4 and their conservation among eukaryotes.

A Saccharomyces cerevisiae Atg4 amino acid sequence. The catalytic site (C147, D322, and H324) is highlighted in red, while the putative LIR motifs are indicated in blue.

B The amino acid sequence of the regions flanking the two conserved pLIR motifs of *S. cerevisiae* Atg4 (in blue), that is, F102 to 1105 (pLIR2) and Y424 to 1427 (pLIR4), were aligned with that of homologous proteins from different species using the Kalign alignment tool (http://www.ebi.ac.uk/Tools/msa/kalign/). UniprotKB accession numbers are *C. albicans* Atg4 (Q59UG3), *A. nidulans* Atg4 (Q5BTL0), *S. cerevisiae* Atg4 (P53867), *K. lactis* Atg4 (Q6CQ60), *C. elegans* Atg4.1 (Q9NA30), *C. elegans* Atg4.2 (Q9U1N6), *D. melanogaster* Atg4 (M9PBM3), *D. rerio* Atg4B (Q6DG88), *M. musculus* ATG4A (Q8C9S8), *M. musculus* ATG4B (Q8BGE6), *M. musculus* ATG4C (Q811C2), *M. musculus* ATG4D (Q88GV9), *H. sapiens* ATG4A (Q8WYN0), *H. sapiens* ATG4B (Q9Y4P1), *H. sapiens* ATG4C (Q96DT6), and *H. sapiens* ATG4D (Q86TL0). The asterisk indicates conservation of the residue while two dots designate similarity.

Α	1	MQRWLQLWKM	DLVQKVSHGV	FEGSSEEPAA	LMNHD <u>YIVL</u> G pLIR1	EVYPERDEES	GAEQCEQDCR
	61	YRGEAVSDGF	LSSLFGREIS	SYTKEFLLDV	QSRVNFTYRT	R FVPI ARAPD pLIR2	GPSPLSLNLL
	121	VRTNPISTIE	DYIANPDCFN	TDIGWG C MIR	TGQSLLGNAL	QILHLGRDFR	VNGNESLERE
	181	SKFVNWFNDT	PEAPFSLHNF	VSAGTELSDK	RPGEWFGPAA	TARSIQSLIY	GFPECGIDDC
	241	IVSVSSGDIY	ENEVEKVFAE	NPNSRILFLL	GVKLGINAVN	ESYRESICGI	LSSTQSVGIA
	301	GGRPSSSLYF	FGYQGNEFLH	F D P H IPQPAV	EDSFVESCHT	SKFGKLQLSE	MDPSMLIGIL
	361	IKGEKDWQQW	KLEVAESAII	NVLAKRMDDF	DVSCSMDDVE	SVSSNSMKKD	ASNNENLGVL
	421	EGD <u>YVDI</u> GAI pLIR4	FPHTTNTEDV	DEYDC <mark>FQDI</mark> H pLIR3	CKKQKIVVMG	NTHTVNANLT	DYEVEGVLVE
	481	KETVGIHSPI	DEKC				

pLIR2

pLIR4

CaAtg4	SYRC	GFEE	PK	100	DEEEE FINL NV	408
AnAtg4	TYRSI	NFPE	PK	94	DEVEA FDDL DV	400
ScAtg4	TYRT	RFVE	PI AR	107	VLEGD yvdi ga	429
KIAtg4	TYRT	Q FTE	PI RR	82	QDTGE YVDV GT	401
CeAtg4.2	TYRT	DFPA	LLD	192	ADKHG FEML	521
MmAtg4C	TYRE	EFPÇ] EA	100	FSTEE FVLL	458
HsAtg4C	TYRE	EFPÇ]I EG	100	FSTEE FVLL	458
MmAtg4D	TYRR	DFPE	L AG	133	PSSED FVFL	471
HsAtg4D	TYRR	DFPE	P LPG	133	PSSED FVFL	471
CeAtg4.1	TYRR	DFSE	PI GG	74	KIDDD FEVL DV	434
DmAtg4A	TYRH	GFSE	PL GE	87	SDSDS FAIV ES	386
MmAtg4A	TYRR	KFSI	PI GG	66	ELEED feil sv	395
DrAtg4B	TYRR	KFSI	PI GG	66	DLEED feil sv	394
HsAtg4A	TYRKI	NFQE	PI GG	63	SEDEE feil sl	398
MmAtg4B	TYRRI	NFPA	IGG	63	SEDED feil gg	393
HsAtg4B	TYRKI	N FPA	IGG	63	SEDED feil sl	393
	* *	*	:		: :	

Figure EV3.

Figure EV4. Atg4 LIR2 motif is essential for the Cvt pathway.

A The strains described in Fig 2C were grown to an exponential log phase before proteins were precipitated with TCA and analyzed by Western blotting with anti-myc, anti-Ape1, and anti-Pgk1 antibodies.

B The percentage of prApe1 and mApe1 in the experiment shown in panel (A) were quantified, and values were plotted. Data represent the average of five independent experiments \pm SD.