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Supplementary Figure 1 | Western blot analysis of insulin-dependent activation of the 

IRS-1-Ras-MAPK signalling cascade in HEK-293 cells. HEK-293 cells co-transfected with 

the circuit components pIR (PhCMV-IR-pA), pTetR-ELK1 (PhCMV-TetR-ELK1-pA) and 

pMF111 (PhCMV*-1-SEAP-pA) (a, c, e; Circuit) were stimulated with different concentrations 

of insulin, and the cells were harvested and probed for IR, phospho-IRS-1 and 

phospho-Erk1/2. HEK-293 cells co-transfected with pKZY73, pTetR-ELK1 and pMF111 (b, 

d, f; Control) were used as a control. Total ERK1/2 and β-actin were used as loading 

controls.�
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Supplementary Figure 2 | Insulin-triggered SEAP expression in human insulin receptor 

(IR)-transfected HEK-293 cells. HEK-293 cells were co-transfected with pIR 

(PhCMV-IR-pA), pTetR-ELK1 (PhCMV-TetR-ELK1-pA) and pMF111 (PhCMV*-1-SEAP-pA) at a 

ratio of 1:1:1 and cultivated for 72 hours in the presence or absence of different 

concentrations of insulin. Control cells were co-transfected with pEYFP-C1 

(PhCMV-EYFP-pA), pTetR-ELK1 and pMF111 or pKZY73 (PSV40-cTAAR1-pA), pTetR-ELK1 

and pMF111. The data represent the mean ± SD; n=3 independent experiments. 
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Supplementary Figure 3 | Adjustability and reversibility of the synthetic insulin-sensor 

device in an insulin-deficient mouse model. (a) Insulin ELISA was performed 7 days after 

STZ injection. (b) Animals were intraperitoneally implanted with 2x106 encapsulated 

pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule) and received daily 

injection of insulin. Serum SEAP levels were profiled of treated animals after 48 h. (c, d) 

Reversibility of insulin-triggered SEAP expression in mice. Mice implanted with 2x106 

encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells were injected with 

3µg/kg insulin at 0 and 48 h (ON-OFF-ON) or only at 24 h (OFF-ON-OFF) after implantation. 

SEAP levels in the serum were profiled of treated animals after 24, 48, and 72h. The data 

represent the mean ± SEM, statistical analysis using a two-tailed Student’s t-test, n=6 mice 

per group. *P < 0.05, **P<0.01, ***P < 0.001 vs. control. N.D., not detectable (Detection 

limit: <0.2 ng/mL). 
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Supplementary Figure 4 | The impact of glucose levels on insulin-triggered SEAP 

expression in vitro. HEK-293 cells were co-transfected with pIR, pTetR-ELK1 and pMF111 

at a ratio of 1:1:1 and cultivated for 48 hours in the presence of different concentrations of 

glucose and in the presence or absence of human insulin (1 ng/mL) before SEAP levels were 

profiled in the culture supernatant. The data represent the mean ± SD; n=3 independent 

experiments. 
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Supplementary Figure 5 | Insensitivity of the insulin-sensor circuit to feed-fasting cycles 

mice. Wild-type mice were intraperitoneally implanted with 2x106 encapsulated 

pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule) and either 

subjected to an initial starvation phase of 24 hours (average glycaemia of starved mice prior to 

food exposure: 4.9±0.6mM) or normal access to food over 48 hours (average glycaemia of 

non-fasted mice: 9.5±0.9mM). SEAP levels in the animals’ sera were quantified at 24 and 48 

hours after implantation. The data represent the mean ± SEM, n=8 mice per group. 
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Supplementary Figure 6 | Serum containing high levels of insulin triggered transgene 

expression in HEK-293 cells. (a, c) Cell-based assay. Insulin-triggered SEAP expression of 

pIR-/pTetR-ELK1-/pMF111-co-transfected HEK-293 cells cultivated for 72 hours in the 

presence of (a) 10% mouse serum or (c) 10% human serum. (b, d) ELISA of undiluted serum 

used in (a) and (c). Corresponding insulin levels in the (b) mouse and (d) human sera were 

quantified by an insulin-specific ELISA. The data represent the mean ± SD, statistical 

analysis by a two-tailed Student’s t-test, n=8, **P<0.01, ***P < 0.001 vs. control.  
� �
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Supplementary Figure 7 | Self-sufficient insulin-sensor-based control of SEAP expression 

in insulin-resistant (a) db/db, (b) ob/ob and (c) DIO mouse models. Mice were 

intraperitoneally implanted with 2x106 encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic 

HEK-293 cells (200 cells/capsule). Control mice were intraperitoneally implanted with 2x106 

encapsulated pKZY73-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule). 

After 48 hours of implantation, SEAP levels in the serum were profiled. The data represent 

the mean ± SEM, statistical analysis by a two-tailed Student’s t-test, n=8 mice per group. 

***P < 0.001 vs. control.  
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Supplementary Figure 8 | Insulin-triggered adiponectin expression in HEK-293 cells. 

The adiponectin expression kinetics of HEK-293 cells co-transfected with pIR, pTetR-ELK1, 

and pHY79 (PhCMV*-1-Fc-adiponectin-pA) at a ratio of 1:1:1 and cultivated for 72 h in the 

presence or absence of different concentrations of human insulin. The Fc-adiponectin 

expression levels in the culture medium were quantified using a human IgG1-specific ELISA 

kit. The data represent the mean ± SD; n=3 independent experiments. 
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Table S1. Plasmids designed and used in this study. 

Plasmid Description Reference 
pcDNA3.1(+) 
pEYFP-C1 
pSEAP2-Control 

Mammalian expression vector (PhCMV-MCS-pA). 
Constitutive EYFP expression vector (PhCMV-EYFP-pA). 
Constitutive SEAP expression vector (PSV40-SEAP-pA). 

Invitrogen, CA 
Clontech, CA 
Clontech, CA 

pIR Constitutive human IR expression vector (PhCMV-IR-pA) (Addgene no. 24049). (19) 
pCMV-T7-SB100 
pSBtet-GP 
 
 
pH107 
 
pTetR-ELK1 

Constitutive SB100X expression vector (PhCMV-SB100X-pA) (Addgene no. 34879). 
SB100X-specific transposon containing a tetracycline-responsive luciferase expression unit and a 
constitutive expression unit for EGFP, rtTA and PuroR. 
(PhCMV*-1-Luc-pA:PRPBSA-EGFP-P2A-rtTA-P2A-PuroR-pA) (Addgene no. 60495). 
Lentiviral vector containing constitutive expression units for EGFP-3FLAG and ZeoR 
(LTR-PhCMV-EGFP-3FLAG-pA:PmPGK-ZeoR-pA-LTR). 
Constitutive TetR-ELK1 expression vector (PhCMV-TetR-ELK1-pA). 

(38) 
(43) 
 
 
ObiO, Shanghai 
 
(44) 

pMF111 Tetracycline-responsive SEAP expression vector (PhCMV*-1-SEAP-pA). (33) 
pKZY73  Constitutive cTAAR1 expression vector (PSV40-cTAAR1-pA). (16) 
pXS39 
 
 
 
 
 
 
 
 
 
 

Mammalian expression vector containing constitutive expression units for SEAP and ZeoR 
(PhCMV-SEAP-pA:PmPGK-ZeoR-pA).  
A linearized vector (Fragment 1) was PCR-amplified from pcDNA3.1(+) using OXS79 
(5’-GTTTAAACCCGCTGATCAGCCTCG-3’) and OXS80 (5’-CTAGCCAGCTTGGGTCTCCCTATA 
G-3’), SEAP-pA (Fragment 2) was PCR-amplified from pSEAP2-Control using OXS81 (5’-AGGGAG 
ACCCAAGCTGGCTAGGCCCACCATGCTGCTGCTGCTGCTGC-3’) and OXS82 (5’-AGCGCCTC 
CCCTACCCGGTAGGCTCCATCGTTCAGATCCTTATCG-3’), PmPGK-ZeoR (Fragment 3) was 
PCR-amplified from pH107 using OXS83 (5’-CTACCGGGTAGGGGAGGCGCTTTTC-3’) and 
OXS84 (5’-GGCTGATCAGCGGGTTTAAACCCGCTCAGTCCTGCTCCTCGGCCAC-3’), and all 
fragments were assembled by homologous recombination using the GeneArt® Seamless Cloning and 
Assembly Kit. 

This work 
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pHY74 

Tetracycline-responsive EYFP expression vector (PhCMV*-1-EYFP-pA).  
EYFP was PCR-amplified from pEYFP-C1 using OHY163 (5’-gcgccgacgaattcGCCACCATGGTGAG 
CAAGGGCGAGGAGCTGTTCACC-3’) and OHY164 (5’-cacgcacgaagcttTTACTTGTACAGCTCGT 
CCATGCC-3’), restricted with EcoRI/HindIII and cloned into the corresponding sites of pMF111. 

 
 
This work 

pHY79 Tetracycline-responsive Fc-adiponectin expression vector (PhCMV*-1-Fc-adiponectin-pA).  
Custom-designed Fc-adiponectin7 was restricted with EcoRI/HindIII and cloned into the corresponding 
sites of pMF111. 

This work 

pHY112 Mammalian expression vector containing a constitutive bicistronic expression unit for SEAP and EGFP 
(PSV40-SEAP-P2A-EGFP-pA).  
A linearized vector (Fragment 1) was PCR-amplified from pSEAP2-Control using OHY205 

This work 

 (5’-CTCGGCATGGACGAGCTGTACAAGGGAGAATGGGCGGAACTGGGCGGAG-3’) and 
OHY206 (5’-GGCTGAAGTTAGTAGCTCCGCTTCCTGTCTGCTCGAAGCGGCCGGCCG-3’), 
P2A-EGFP (Fragment 2) was PCR-amplified from pSBtet-GP using OHY207 (5’-GGAAGCGGAGCT 
ACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTTCCGGA
GTGAGCAAGGGCGAGGAGCTGTTC-3’) and OHY208 (5’-CTTGTACAGCTCGTCCATGCCGAG 
-3’), and both fragments were assembled by homologous recombination using the GeneArt® Seamless 
Cloning and Assembly Kit. 

 

pHY113 
 
 
 
 
 
 
 
 

SB100X-specific transposon containing a constitutive bicistronic expression IR and PuroR unit (ITR- 
PhCMV-IR-P2A-PuroR-pA-ITR).  
A linearized vector (Fragment 1) was PCR-amplified from pSBtet-GP using OHY209 (5’-GGGTCCGG 
CGCTACTAACTTCAGCC-3’) and OHY210 (5’-CTAGATAGCGGACCCCTTACCGAAAC-3’), 
PhCMV-IR (Fragment 2) was PCR-amplified from pIR using OHY211 
(5’-CGGTAAGGGGTCCGCTATCTAGGCGCTGCTTCGCGATGTAC GGGCCAG-3’) and OHY212 
(5’- GAAGTTAGTAGCGCCGGACCCGGAAGGATTGGACCGAGGCAAGGTCAG-3’), and both 
fragments were assembled by homologous recombination using the GeneArt® Seamless Cloning and 
Assembly Kit. 

This work 
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pHY115 Tetracycline-responsive bicistronic Fc-adiponectin and EGFP expression vector 
(PhCMV*-1-Fc-adiponectin-P2A-EGFP-pA).  
Fc-adiponectin (Fragment 1) was PCR-amplified from pHY79 using OHY213 (5’-CTACCATGACACC 
AACactagtCCTGGAGAAGGTGCCTATGTATAC-3’) and OHY214 (5’-GTTAGTAGCTCCGCTTCCG 
TTGGTGTCATGGTAGAGAAGAAAG-3’) and P2A-EGFP (Fragment 2) was PCR-amplified from 
pHY112 using OHY215 (5’-CTCTACCATGACACCAACGGAAGCGGAGCTACTAACTTCAGC-3’) 
and OHY216 (5’-CATGTCTGGATCGAAgctagcTTACTTGTACAGCTCGTCCATGCCG-3’). Both 
fragments were assembled by homologous recombination using the GeneArt® Seamless Cloning and 
Assembly Kit and cloned into pHY79 (SpeI/NheI).  

This work 

pHY117 SB100X derivative containing a constitutive PuroR expression unit (ITR -PmPGK-PuroR-pA-ITR).  
A linearized vector (Fragment 1) was PCR-amplified from pSBtet-GP using OHY217 (5’-ATGACCGA 
GTACAAGCCCACGGTGC-3’) and OHY218 (5’-CTAGATAGCGGACCCCTTACCGAAAC-3’), 
PmPGK (Fragment 2) was PCR-amplified from pH107 using OHY219 (5’-GGTAAGGGGTCCGCTATCT 
AGCCGGGTAGGGGAGGCGCTTTTCCC-3’) and OHY220 (5’-CGTGGGCTTGTACTCGGTCATG 
GTAAGCTTGGGCTGCAGGTCGAAAG-3’), and both fragments were assembled by homologous 
recombination using the GeneArt® Seamless Cloning and Assembly Kit. 

This work 

pHY118 SB100X derivative containing a tetracycline-responsive bicistronic Fc-adiponectin and EGFP 
expression unit and a constitutive PuroR expression unit. (ITR-PhCMV*-1-Fc-adiponectin-P2A-EGFP-pA: 
PmPGK-PuroR-pA-ITR).  
A linearized vector (Fragment 1) was PCR-amplified from pHY117 using OHY221 (5’-CCGGGTAGG 
GGAGGCGCTTTTCCC-3’) and OHY222 (5’-CTAGATAGCGGACCCCTTACCGAAAC-3’), 
PhCMV*-1-Fc-adiponectin-P2A-EGFP-pA (Fragment 2) was PCR-amplified from pHY115 using 
oligonucleotides OHY223 (5’-GGTAAGGGGTCCGCTATCTAGGTGCCACCTGACGTCTAAGAAA 
CC-3’) and OHY224 (5’-GAAAAGCGCCTCCCCTACCCGGG CAGGATCATAATCAGCCATACCA 
C-3’), and both fragments were assembled by homologous recombination using the GeneArt® Seamless 
Cloning and Assembly Kit. 

This work 
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pHY121 SB100X derivative containing a constitutive bicistronic IR and TetR-Elk1 expression unit and a 
constitutive ZeoR expression unit (ITR-PhCMV-IR-P2A-TetR-Elk1-pA:PmPGK-ZeoR-pA-ITR). A 
linearized vector (Fragment 1) was PCR-amplified from pHY113 using OHY231 
(5’-TTCGAAGGCCTGTCGTGAAGCTTGG-3’) and OHY232 (5’-GGGACCAGGATTCTCCTCGAC 
GTC-3’), TetR-Elk1 (Fragment 2) was PCR-amplified from pTetR-ELK1 using OHY233 (5’-GTCGAG 
GAGAATCCTGGTCCCATGTCTAGACTGGACAAGAGCAAAG-3’) and OHY234 (5’-GTCTGGAT 
CGAAGCTTAGTTACCCGGGACCGGTTCATGGC-3’), pA-PmPGK-ZeoR (Fragment 3) was 
PCR-amplified from pXS39 using OHY235 (5’-GAACCGGTCCCGGGTAACTAAGCTTCGATCCAG 
ACATGATAAGATAC-3’) and OHY236 (5’-GCTTCACGACAGGCCTTCGAATCAGTCCTGCTCCT 
CGGCCACGAAG-3’), and all fragments were assembled by homologous recombination using the 
GeneArt® Seamless Cloning and Assembly Kit. 

This work 

Oligonucleotides: Restriction endonuclease-specific sites are underlined in lowercase letters, annealing base pairs are indicated in capital 

letters, the homologous recombination sequences are underlined in capital letters. 

Abbreviations: 3FLAG, a polypeptide epitope containing three DYKDDDDK45 repeats; cTAAR1, chimeric trace-amine-associated receptor 1; 

EGFP, enhanced green fluorescent protein; ELK1, human ETS domain-containing transcription factor Elk1; EYFP, enhanced yellow 

fluorescent protein; Fc-adiponectin, synthetic secretion-engineered adiponectin23 containing a 5’ Kozak sequence, an interleukin-2 secretion 

signal and the Fc sequence of human IgG1 fused N’-terminally to three human globular adiponectin modules; ITR, inverted terminal repeats of 

SB100X; IR, insulin receptor; Luc, firefly luciferase; LTR, lentiviral long terminal repeat; MCS, multiple cloning site; pA, polyadenylation 

signal; PCR, polymerase chain reaction; PhCMV, human cytomegalovirus immediate early promoter; PhCMVmin, minimal version of PhCMV; 

PhCMV*-1, tetracycline-responsive promoter (tetO7-PhCMVmin); PmPGK, mouse phosphoglycerate kinase gene promoter; PRPBSA, synthetic 

constitutive promoter3; PSV40, simian virus 40 promoter; P2A, picornavirus-derived self-cleaving peptide engineered for bicistronic gene 
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expression in mammalian cells; PuroR, gene conferring puromycin resistance; rtTA, reverse tetracycline-dependent transactivator; SEAP, 

human placental secreted alkaline phosphatase; SB100X, Sleeping Beauty transposase; TetR, Escherichia coli Tn10-derived 

tetracycline-dependent repressor of the tetracycline resistance gene; tetO7, TetR-specific heptameric operator sequence; ZeoR, gene conferring 

zeocin resistance. 
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