Supplementary Information

Self-adjusting synthetic gene circuit for correcting insulin resistance

Haifeng Ye^{1,2,#*}, Mingqi Xie^{1,#}, Shuai Xue², Ghislaine Charpin-El Hamri³, Jianli Yin², Henryk Zulewski^{1,4,5} and Martin Fussenegger^{1,6*}

¹Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.

²Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, 200241 Shanghai, China.

³Institut Universitaire de Technologie, IUT, Département Génie Biologique, F-69622 Villeurbanne Cedex, France.

⁴Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.

⁵Present address: Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland.

⁶University of Basel, Faculty of Science, Mattenstrasse 26, CH-4058 Basel, Switzerland.

[#]These authors contributed equally to this work.

^{*}To whom correspondence should be addressed: M.F. (Tel: +41 61 387 31 60, Fax: +41 61 387 3988, E-mail: fussenegger@bsse.ethz.ch) or H.Y. (Tel: +86 21 5434 1058, Fax: +86 21 5434 2908, E-mail: hfye@bio.ecnu.edu.cn)

Page

Western blot analysis of insulin-triggered signalling cascade	3
Insulin-triggered SEAP expression in insulin receptor-expressing HEK-293	4
Validation of the insulin-sensor device in type-1 diabetic mice	5
Impact of glucose levels on insulin-triggered SEAP expression in vitro	6
Insensitivity of the insulin-sensor device to feed-fasting cycles in mice	7
Induction of the insulin-sensor device by blood-insulin levels	8
Self-sufficient insulin-sensor-based expression control in insulin-resistant mice	9
Insulin-triggered adiponectin expression in HEK-293 cells	10
Plasmids designed and used in this study	11

Table of contents

Supplementary Figure 1 | Western blot analysis of insulin-dependent activation of the IRS-1-Ras-MAPK signalling cascade in HEK-293 cells. HEK-293 cells co-transfected with the circuit components pIR (P_{hCMV} -IR-pA), pTetR-ELK1 (P_{hCMV} -TetR-ELK1-pA) and pMF111 (P_{hCMV} *-1-SEAP-pA) (**a**, **c**, **e**; Circuit) were stimulated with different concentrations of insulin, and the cells were harvested and probed for IR, phospho-IRS-1 and phospho-Erk1/2. HEK-293 cells co-transfected with pKZY73, pTetR-ELK1 and pMF111 (**b**, **d**, **f**; Control) were used as a control. Total ERK1/2 and β -actin were used as loading controls.

Supplementary Figure 2 | Insulin-triggered SEAP expression in human insulin receptor (IR)-transfected HEK-293 cells. HEK-293 cells were co-transfected with pIR (P_{hCMV} -IR-pA), pTetR-ELK1 (P_{hCMV} -TetR-ELK1-pA) and pMF111 (P_{hCMV} *-1-SEAP-pA) at a ratio of 1:1:1 and cultivated for 72 hours in the presence or absence of different concentrations of insulin. Control cells were co-transfected with pEYFP-C1 (P_{hCMV} -EYFP-pA), pTetR-ELK1 and pMF111 or pKZY73 (P_{SV40} -cTAAR1-pA), pTetR-ELK1 and pMF111. The data represent the mean ± SD; n=3 independent experiments.

Supplementary Figure 3 | Adjustability and reversibility of the synthetic insulin-sensor device in an insulin-deficient mouse model. (a) Insulin ELISA was performed 7 days after STZ injection. (b) Animals were intraperitoneally implanted with $2x10^6$ encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule) and received daily injection of insulin. Serum SEAP levels were profiled of treated animals after 48 h. (c, d) Reversibility of insulin-triggered SEAP expression in mice. Mice implanted with $2x10^6$ encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells were injected with $2x10^6$ encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells were injected with 3μ g/kg insulin at 0 and 48 h (ON-OFF-ON) or only at 24 h (OFF-ON-OFF) after implantation. SEAP levels in the serum were profiled of treated animals after 24, 48, and 72h. The data represent the mean \pm SEM, statistical analysis using a two-tailed Student's *t*-test, n=6 mice per group. **P* < 0.05, ***P*<0.01, ****P* < 0.001 vs. control. N.D., not detectable (Detection limit: ≤ 0.2 ng/mL).

Supplementary Figure 4 | The impact of glucose levels on insulin-triggered SEAP expression *in vitro*. HEK-293 cells were co-transfected with pIR, pTetR-ELK1 and pMF111 at a ratio of 1:1:1 and cultivated for 48 hours in the presence of different concentrations of glucose and in the presence or absence of human insulin (1 ng/mL) before SEAP levels were profiled in the culture supernatant. The data represent the mean \pm SD; n=3 independent experiments.

Supplementary Figure 5 | Insensitivity of the insulin-sensor circuit to feed-fasting cycles mice. Wild-type mice were intraperitoneally implanted with $2x10^6$ encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule) and either subjected to an initial starvation phase of 24 hours (average glycaemia of starved mice prior to food exposure: 4.9 ± 0.6 mM) or normal access to food over 48 hours (average glycaemia of non-fasted mice: 9.5 ± 0.9 mM). SEAP levels in the animals' sera were quantified at 24 and 48 hours after implantation. The data represent the mean \pm SEM, n=8 mice per group.

Supplementary Figure 6 | Serum containing high levels of insulin triggered transgene expression in HEK-293 cells. (a, c) Cell-based assay. Insulin-triggered SEAP expression of pIR-/pTetR-ELK1-/pMF111-co-transfected HEK-293 cells cultivated for 72 hours in the presence of (a) 10% mouse serum or (c) 10% human serum. (b, d) ELISA of undiluted serum used in (a) and (c). Corresponding insulin levels in the (b) mouse and (d) human sera were quantified by an insulin-specific ELISA. The data represent the mean \pm SD, statistical analysis by a two-tailed Student's *t*-test, n=8, ***P*<0.01, ****P* < 0.001 vs. control.

Supplementary Figure 7 | Self-sufficient insulin-sensor-based control of SEAP expression in insulin-resistant (a) db/db, (b) ob/ob and (c) DIO mouse models. Mice were intraperitoneally implanted with $2x10^6$ encapsulated pIR-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule). Control mice were intraperitoneally implanted with $2x10^6$ encapsulated pKZY73-/pTetR-ELK1-/pMF111-transgenic HEK-293 cells (200 cells/capsule). After 48 hours of implantation, SEAP levels in the serum were profiled. The data represent the mean \pm SEM, statistical analysis by a two-tailed Student's *t*-test, n=8 mice per group. ***P < 0.001 vs. control.

Supplementary Figure 8 | Insulin-triggered adiponectin expression in HEK-293 cells. The adiponectin expression kinetics of HEK-293 cells co-transfected with pIR, pTetR-ELK1, and pHY79 ($P_{hCMV*-1}$ -Fc-adiponectin-pA) at a ratio of 1:1:1 and cultivated for 72 h in the presence or absence of different concentrations of human insulin. The Fc-adiponectin expression levels in the culture medium were quantified using a human IgG1-specific ELISA kit. The data represent the mean \pm SD; n=3 independent experiments.

 Table S1. Plasmids designed and used in this study.

Plasmid	Description	Reference
pcDNA3.1(+)	Mammalian expression vector (P _{hCMV} -MCS-pA).	Invitrogen, CA
pEYFP-C1	Constitutive EYFP expression vector (P _{hCMV} -EYFP-pA).	Clontech, CA
pSEAP2-Control	Constitutive SEAP expression vector (P _{SV40} -SEAP-pA).	Clontech, CA
pIR	Constitutive human IR expression vector (PhCMV-IR-pA) (Addgene no. 24049).	(19)
pCMV-T7-SB100	Constitutive SB100X expression vector (P _{hCMV} -SB100X-pA) (Addgene no. 34879).	(38)
pSBtet-GP	SB100X-specific transposon containing a tetracycline-responsive luciferase expression unit and a constitutive expression unit for EGFP, rtTA and PuroR.	(43)
	(P _{hCMV*-1} -Luc-pA:P _{RPBSA} -EGFP-P2A-rtTA-P2A-PuroR-pA) (Addgene no. 60495).	
pH107	Lentiviral vector containing constitutive expression units for EGFP-3FLAG and ZeoR	ObiO, Shanghai
	(LTR-P _{hCMV} -EGFP-3FLAG-pA:P _{mPGK} -ZeoR-pA-LTR).	
pTetR-ELK1	Constitutive TetR-ELK1 expression vector (P _{hCMV} -TetR-ELK1-pA).	(44)
pMF111	Tetracycline-responsive SEAP expression vector (P _{hCMV*-1} -SEAP-pA).	(33)
pKZY73	Constitutive cTAAR1 expression vector (P _{SV40} -cTAAR1-pA).	(16)
pXS39	Mammalian expression vector containing constitutive expression units for SEAP and ZeoR	This work
	$(P_{hCMV}-SEAP-pA:P_{mPGK}-ZeoR-pA).$	
	A linearized vector (Fragment 1) was PCR-amplified from pcDNA3.1(+) using OXS79	
	(5'- <u>GTTTAAACCCGCTGATCAGCC</u> TCG-3') and OXS80 (5'- <u>CTAGCCAGCTTGGGTCTCCCT</u> ATA	
	G-3'), SEAP-pA (Fragment 2) was PCR-amplified from pSEAP2-Control using OXS81 (5'-AGGGAG	
	ACCCAAGCTGGCTAGGCCCACCATGCTGCTGCTGCTGCTGC-3') and OXS82 (5'-AGCGCCTC	
	CCCTACCCGGTAGGCTCCATCGTTCAGATCCTTATCG-3'), PmPGK-ZeoR (Fragment 3) was	
	PCR-amplified from pH107 using OXS83 (5'-CTACCGGGTAGGGGGGGGGGGCGCTTTTC-3') and	
	OXS84 (5'- <u>GGCTGATCAGCGGGTTTAAAC</u> CCGCTCAGTCCTGCTCCTCGGCCAC-3'), and all	
	fragments were assembled by homologous recombination using the GeneArt® Seamless Cloning and	
	Assembly Kit.	

	Tetracycline-responsive EYFP expression vector (P _{hCMV*-1} -EYFP-pA).	
pHY74	EYFP was PCR-amplified from pEYFP-C1 using OHY163 (5'-gcgccgacgaattcGCCACCATGGTGAG	
	CAAGGGCGAGGAGCTGTTCACC-3') and OHY164 (5'-cacgcacgaagcttTTACTTGTACAGCTCGT This work	
	CCATGCC-3'), restricted with <i>Eco</i> RI/ <i>Hin</i> dIII and cloned into the corresponding sites of pMF111.	
pHY79	Tetracycline-responsive Fc-adiponectin expression vector (P _{hCMV*-1} -Fc-adiponectin-pA). This work	
	Custom-designed Fc-adiponectin ⁷ was restricted with <i>Eco</i> RI/ <i>Hin</i> dIII and cloned into the corresponding	
	sites of pMF111.	
pHY112	Mammalian expression vector containing a constitutive bicistronic expression unit for SEAP and EGFP This work	
	(P _{SV40} -SEAP-P2A-EGFP-pA).	
	A linearized vector (Fragment 1) was PCR-amplified from pSEAP2-Control using OHY205	
	(5'- <u>CTCGGCATGGACGAGCTGTACAAG</u> GGAGAATGGGCGGAACTGGGCGGAG-3') and	
	OHY206 (5'- <u>GGCTGAAGTTAGTAGCTCCGCTTCC</u> TGTCTGCTCGAAGCGGCCGGCCG-3'),	
	P2A-EGFP (Fragment 2) was PCR-amplified from pSBtet-GP using OHY207 (5'-GGAAGCGGAGCT	
	<u>ACTAACTTCAGCC</u> TGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTTCCGGA	
	GTGAGCAAGGGCGAGGAGCTGTTC-3') and OHY208 (5'-CTTGTACAGCTCGTCCATGCCGAG	
	-3'), and both fragments were assembled by homologous recombination using the GeneArt [®] Seamless	
	Cloning and Assembly Kit.	
pHY113	SB100X-specific transposon containing a constitutive bicistronic expression IR and PuroR unit (ITR- This work	
	P _{hCMV} -IR-P2A-PuroR-pA-ITR).	
	A linearized vector (Fragment 1) was PCR-amplified from pSBtet-GP using OHY209 (5'-GGGTCCGG	
	CGCTACTAACTTCAGCC-3') and OHY210 (5'-CTAGATAGCGGACCCCTTACCGAAAC-3'),	
	P _{hCMV} -IR (Fragment 2) was PCR-amplified from pIR using OHY211	
	(5'- <u>CGGTAAGGGGTCCGCTATCTAG</u> GCGCTGCTTCGCGATGTAC GGGCCAG-3') and OHY212	
	(5'- GAAGTTAGTAGCGCCGGACCCGGAAGGATTGGACCGAGGCAAGGTCAG-3'), and both	
	fragments were assembled by homologous recombination using the GeneArt® Seamless Cloning and	
	Assembly Kit.	

pHY115	Tetracycline-responsive bicistronic Fc-adiponectin and EGFP expression vector This work
	(P _{hCMV*-1} -Fc-adiponectin-P2A-EGFP-pA).
	Fc-adiponectin (Fragment 1) was PCR-amplified from pHY79 using OHY213 (5'-CTACCATGACACC
	AACactagtCCTGGAGAAGGTGCCTATGTATAC-3') and OHY214 (5'-GTTAGTAGCTCCGCTTCCG
	TTGGTGTCATGGTAGAGAAGAAAG-3') and P2A-EGFP (Fragment 2) was PCR-amplified from
	pHY112 using OHY215 (5'- <u>CTCTACCATGACACCAACGGAAGCGGAGCTACTAAC</u> TTCAGC-3')
	and OHY216 (5'- <u>CATGTCTGGATCGAAgctagc</u> TTACTTGTACAGCTCGTCCATGCCG-3'). Both
	fragments were assembled by homologous recombination using the GeneArt® Seamless Cloning and
	Assembly Kit and cloned into pHY79 (SpeI/NheI).
pHY117	SB100X derivative containing a constitutive PuroR expression unit (ITR -P _{mPGK} -PuroR-pA-ITR). This work
	A linearized vector (Fragment 1) was PCR-amplified from pSBtet-GP using OHY217 (5'-ATGACCGA
	GTACAAGCCCACGGTGC-3') and OHY218 (5'-CTAGATAGCGGACCCCTTACCGAAAC-3'),
	P _{mPGK} (Fragment 2) was PCR-amplified from pH107 using OHY219 (5'-GGTAAGGGGTCCGCTATCT
	AGCCGGGTAGGGGAGGCGCTTTTCCC-3') and OHY220 (5'-CGTGGGCTTGTACTCGGTCATG
	GTAAGCTTGGGCTGCAGGTCGAAAG-3'), and both fragments were assembled by homologous
	recombination using the GeneArt [®] Seamless Cloning and Assembly Kit.
pHY118	SB100X derivative containing a tetracycline-responsive bicistronic Fc-adiponectin and EGFP This work
	expression unit and a constitutive PuroR expression unit. (ITR-PhCMV*-1-Fc-adiponectin-P2A-EGFP-pA:
	P _{mPGK} -PuroR-pA-ITR).
	A linearized vector (Fragment 1) was PCR-amplified from pHY117 using OHY221 (5'-CCGGGTAGG
	<u>GGAGGCGCTTTTC</u> CC-3') and OHY222 (5'- <u>CTAGATAGCGGACCCCTTACC</u> GAAAC-3'),
	PhCMV*-1-Fc-adiponectin-P2A-EGFP-pA (Fragment 2) was PCR-amplified from pHY115 using
	oligonucleotides OHY223 (5'-GGTAAGGGGTCCGCTATCTAGGTGCCACCTGACGTCTAAGAAA
	CC-3') and OHY224 (5'-GAAAAGCGCCTCCCCTACCCGGG CAGGATCATAATCAGCCATACCA
	C-3'), and both fragments were assembled by homologous recombination using the GeneArt [®] Seamless
	Cloning and Assembly Kit.

pHY121	SB100X derivative containing a constitutive bicistronic IR and TetR-Elk1 expression unit and a	This work
	constitutive ZeoR expression unit (ITR-P _{hCMV} -IR-P2A-TetR-Elk1-pA:P _{mPGK} -ZeoR-pA-ITR). A	
	linearized vector (Fragment 1) was PCR-amplified from pHY113 using OHY231	
	(5'-TTCGAAGGCCTGTCGTGAAGCTTGG-3') and OHY232 (5'-GGGACCAGGATTCTCCTCGAC	
	GTC-3'), TetR-Elk1 (Fragment 2) was PCR-amplified from pTetR-ELK1 using OHY233 (5'-GTCGAG	
	GAGAATCCTGGTCCCATGTCTAGACTGGACAAGAGCAAAG-3') and OHY234 (5'-GTCTGGAT	
	CGAAGCTTAGTTACCCGGGACCGGTTCATGGC-3'), pA-P _{mPGK} -ZeoR (Fragment 3) was	
	PCR-amplified from pXS39 using OHY235 (5'-GAACCGGTCCCGGGTAACTAAGCTTCGATCCAG	
	ACATGATAAGATAC-3') and OHY236 (5'-GCTTCACGACAGGCCTTCGAATCAGTCCTGCTCCT	
	CGGCCACGAAG-3'), and all fragments were assembled by homologous recombination using the	
	GeneArt [®] Seamless Cloning and Assembly Kit.	

Oligonucleotides: Restriction endonuclease-specific sites are underlined in lowercase letters, annealing base pairs are indicated in capital letters, the homologous recombination sequences are underlined in capital letters.

Abbreviations: 3FLAG, a polypeptide epitope containing three DYKDDDDK⁴⁵ repeats; cTAAR1, chimeric trace-amine-associated receptor 1; EGFP, enhanced green fluorescent protein; ELK1, human ETS domain-containing transcription factor Elk1; EYFP, enhanced yellow fluorescent protein; Fc-adiponectin, synthetic secretion-engineered adiponectin²³ containing a 5' Kozak sequence, an interleukin-2 secretion signal and the Fc sequence of human IgG1 fused N'-terminally to three human globular adiponectin modules; ITR, inverted terminal repeats of SB100X; IR, insulin receptor; Luc, firefly luciferase; LTR, lentiviral long terminal repeat; MCS, multiple cloning site; pA, polyadenylation signal; PCR, polymerase chain reaction; P_{hCMV} , human cytomegalovirus immediate early promoter; $P_{hCMVmin}$, minimal version of P_{hCMV} ; $P_{hCMV*-1}$, tetracycline-responsive promoter (tetO₇- $P_{hCMVmin}$); P_{mPGK} , mouse phosphoglycerate kinase gene promoter; P_{RPBSA} , synthetic constitutive promoter³; P_{SV40} , simian virus 40 promoter; P2A, picornavirus-derived self-cleaving peptide engineered for bicistronic gene expression in mammalian cells; **PuroR**, gene conferring puromycin resistance; **rtTA**, reverse tetracycline-dependent transactivator; **SEAP**, human placental secreted alkaline phosphatase; **SB100X**, Sleeping Beauty transposase; **TetR**, *Escherichia coli Tn*10-derived tetracycline-dependent repressor of the tetracycline resistance gene; **tetO**₇, TetR-specific heptameric operator sequence; **ZeoR**, gene conferring zeocin resistance.

References:

- 16 Ye, H. et al. Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. *Proceedings of the National Academy of Sciences of the United States of America* **110**, 141-146 (2013).
- 19 Jacob, K. K., Whittaker, J. & Stanley, F. M. Insulin receptor tyrosine kinase activity and phosphorylation of tyrosines 1162 and 1163 are required for insulin-increased prolactin gene expression. *Molecular and Cellular Endocrinology* **186**, 7-16 (2002).
- 23 Ge, H. et al. Generation of novel long-acting globular adiponectin molecules. Journal of Molecular Biology 399, 113-119 (2010).
- 33 Fussenegger, M. et al. Streptogramin-based gene regulation systems for mammalian cells. *Nature Biotechnology* 18, 1203-1208 (2000).
- 38 Mates, L. *et al.* Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. *Nature Genetics* **41**, 753-761 (2009).
- 43 Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. *Biotechnology Journal* **10**, 647-653 (2015).
- 44 Keeley, M.B., Busch, J., Singh, R. & Abel, T. TetR hybrid transcription factors report cell signalling and are inhibited by doxycycline. *BioTechniques* **39**, 529-536 (2005).
- 45 Noguchi, C., Garabedian, M. V., Malik, M. & Noguchi, E. A vector system for genomic FLAG epitope-tagging in Schizosaccharomyces pombe. *Biotechnology Journal* **3**, 1280-1285 (2008).