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1.0 Introduction
This document aims at providing a thorough analysis of the top placed (winner) submissions 
that were received as a part of the recently completed EPA ToxCast Marathon Match challenge. 
The document starts by outlining the testing and scoring set ups that were used in the 
challenge. This exercise is to provide a complete background of the results and outcomes that 
are discussed further. In the next section, a concise summary of the provisional and system 
scores of the winner submissions along with the same scores for algorithm provided by EPA 
are described. The document then discusses various methods and approaches that were 
implemented by the winners to solve the challenge and glosses over the features selection 
methods and feature combinations that were used. Further, it provides a detailed statistical 
analysis done by our internal team on the results from the challenge and draws insights on 
various important aspects of the outcome. Next, it shows comparisons between various 
dimensions ranging from differences in modeling approach between submissions to scoring. 
Finally, it draws conclusions from the results discussed earlier and provides a concise view on 
the outcome of the challenge.

Please note:

1. The provided submission details and results are based on only top-4 submissions (based on 
final score) which are the prize winners in this contest.

2. All the analysis done here is based purely on the outcome of the Marathon Match. No 
insights presented here have been drawn from the follow-up round which is under-way 
currently. A separate analysis will be provided at the end of that round.

3. There have been few issues related to 1st place submission, specifically concerning the use of 
external data in the model which was not allowed in the match. But at this point we have not 
reached any conclusion and we are still in discussions with the winner to better understand the 
model and see if it actually uses any external data. It may be disqualified in such a scenario but 
at present, we are considering it as qualified submission and below analysis provides full details 
about that submission. 

4. All the details provided in Section 4 related to the methods implemented by each submission 
has been extracted and summarized using the full documentation provided by the winners as a 
part of this match. 

2.0 Testing and Scoring Mechanism
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The data in this match consisted of 1854 chemicals. Internally, this data had been split into 3 
groups: 

● Group A contains 483 chemicals,
● Group B contains 143 chemicals, and
● Group C contains remaining 1228 chemicals.

.This problem had 1 example, 1 provisional and 1 system test case. The score for each test case 
was evaluated using RMSE metric. However, this metric was applied only to a certain subset of 
data: 

● For example test case this subset is training data (the data for which we had shared LEL 
values with members). It contains all chemicals from group A.

● For provisional test case this subset contains 63 chemicals randomly selected from 
group B.

● For system test case this subset contains remaining 80 chemicals from group B.

For n chemicals, if xi is the ground truth LEL and yi is the predicted LEL value for a chemical i, 
then the score will be calculated as: 

Score = 1,000,000.0 * (2 - SquareRoot(((x0-y0)2 + (x1-y1)2 + ... + (xn-1-yn-1)2) / n))

Note: if any of yi values is outside [-50, 50] range (and thus is obviously a very bad prediction), it 
was changed to -50 (if it is negative) or 50 (if it is positive) before the score was calculated.

3.0 Provisional and System Scores Summary (Top-4)
Table 3-1 provides system scores, final provisional scores and best provisional scores for top-
4 submissions. It also provides system and provisional scores for algorithms provided by EPA. 
The number in the parenthesis signifies the rank obtained by submissions corresponding to the 
test case. For EPA provided submissions, it means the rank they would have achieved in current 
setup.

Submission System Score Final Prov. Score Best Prov. Score

noveserj 880,600.27 (#1) 973,447.55 (#8) 973,447.55

NobuMiu 869,008.54 (#2) 972,777.97 (#9) 972777.97

a9108tc 865,655.93 (#3) 948,126.87 (#16) 1080134.36

klo86min 860,859.77 (#4) 906,363.11 (#27) 1054988.54
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EPA_Assay 750421.99 (#14) 747443.85 (#36) 747443.85

EPA_BP 795412.15 (#11) 861629.73 (#31) 861629.73

Table 3-1. System Score, Final Provisional Score and Best Provisional Score

4.0 Algorithms, Tools and Feature Selection Methods (Top-4)
The first success of this match is that we have been able to receive different machine learning/
scientific approaches and variety of feature combinations use which was one of the major 
expectations. Analyzing the approaches of top-4 submissions, we observed a striking dichotomy 
in their roadmaps for solving this challenge. While the 1st place submission has used much 
more domain specific approach with the use of sophisticated models available in field of 
cheminformatics, the next two submissions in rank have used a more traditional machine 
learning (numerical-driven) approach. The 4th place submission used a mixture of both 
approaches. And it was an extremely interesting outcome to see that both these approaches 
competed very closely without much difference in their final performance in the provided 
set-ups. Such an outcome helps to instate the confidence that data science approach to such 
problems does perform as strong as any domain specific approach.

Below, we will provide a concise summary of each submission - algorithms and feature 
selection approaches - and refer to more details wherever required. The full version of all the 
materials that have been discussed below will be available to you along with code modules. 
Also, please ask for any references that have been used in the description and that will also be 
provided if not available online.

Rank-I Submission

As mentioned earlier, this submission was based more on domain-specific approach in which 
molecular descriptors were used as the only set of features and all these features were 
calculated on-the-fly from the SMILES code provided by EPA. SMILES codes and LEL values were 
the only data (from EPA provided data set) that this submission used for obtaining challenge 
predictions. 

The model used by this submission was built using OCHEM. OCHEM (online chemical database 
and modeling environment, https://ochem.eu) is a publicly available web-based platform 
for QSAR research, developed and maintained by Helmholtz Zentrum Muenchen (http://
www.helmholtz-muenchen.de) and eADMET GmbH (http://eadmet.com).

Ten individual LEL models were built using different in-silico descriptor packages available in 
OCHEM. No EPA in-vitro features were used in this model. Although several models with EPA 
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in-vitro features were built, their inclusion into the final model did not result into a statistically 
significant increase in prediction accuracy. The final model was built as a simple average 
consensus over these ten individual models.

Figure 4-1 illustrates the full architecture of the resulting LEL model.

Figure 4-1. Final Consensus Model Diagram

Following is the brief outline of the process that this submission followed in achieving the 
predictions (excerpt created from full submission by the winner):

- All the molecular structures were preprocessed following a standardized OCHEM protocol in 
which the molecules were cleaned, neutralized, standardized and desalted.

- Some of the descriptors require a 3D representation of the molecule. These descriptors were 
calculated based on an optimized 3D structure representation using Corina tool by Molecular 
Networks GmbH.

- Ten different descriptor packages implemented in the public platform OCHEM were used 
individually to create ten models for the resulting consensus – here is the list of packages:
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● Electrotopological state indices (E-State indices)
● Chemaxon descriptors
● Inductive descriptors
● QNPR Descriptors
● ADRIANA.Code
● Mera, Mersy
● GSfrag
● ISIDA SMF descriptors
● Dragon6 descriptors
● CDK descriptors

- Within each individual model, basic unsupervised descriptor selection procedure was 
performed. First, descriptors with constant values for the dataset were removed. Next, 
descriptors with pair-wise correlation of more than 0.95 were eliminated.

- Bootstrap aggregation (bagging) meta-learning approach with the bag size of 64 was used 
in each individual model. That is, each of the ten individual models in the challenge are an 
ensemble of 64 models, built on different training sets, which were obtained from the original 
one through resampling with replacement.

- For all ten of the individual models, the Associative Neural Networks (ASSN) machine learning 
method was used. ASNN is the author's implementation of the algorithm that uses local error 
correction in neural network ensemble prediction space.

- The Final EPA ToxCast challenge model was applied to the full set of 1854 molecules. In the 
resulting predictions file there are 37 errors (descriptors for these molecules could not be 
calculated for various reasons). Predictions for these molecules were taken as a mean value for 
the training set = 3.2602 -log(M).

- The final model is freely available from the OCHEM web site and can be accessed and used by 
the EPA without any limitations.

Rank-II Submission

This submission use a more numerical-driven approach and completely base its solution on 
Random Forest algorithm. It does not use any other libraries or helper tools and strictly uses 
the data provided by EPA. Following is the outline of this solution:
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- It uses Random Forest Algorithm of R package.

- Number of trees is 16000.

- Features from only following four files are used:

● ToxRefDB_Challenge_Training.csv
● TOX21S_v4a_8599_11Dec2013.csv
● toxprint_v2_vs_TOX21S_v4a_8599_03Dec2013.csv
● ToxCast_Summary_AC50_2013_12_10_NO_BSK.csv

- All the data in these files except the following is used as 
features: "CASRN", "chemical_name", "ShortName", "TS_ChemName", "TS_ChemName_Synon
yms", "ChemNote", "STRUCTURE_Formula", "STRUCTURE_IUPAC", "STRUCTURE_SMILES", "STR
UCTURE_SMILES_Desalt".

- All NA data is replaced to -987654321 because it is a bit tricky to handle NA on random forest 
of R.

-  And then features from STRUCTURE_Formula and STRUCTURE_MW are added.

- The complete source code that was used to locally compute the prediction is available.

Rank-III Submission

This submission also use Random forest algorithm as the base but with different selections of 
features from Rank-II submission. This submission also uses ChemminR – a cheminformatics 
package available in R – to calculate some of the features.

Following is the outline of the submission:

- Random Forest is used for solving this problem, which generate a bunch of random decision 
trees according to the training data, and then merge the result from those trees into the overall 
prediction. 

- Maximum depth of tree = 30 and minimum number of instances for each node = 5.

- Split selection for features and merging of predicts is done using statistical formulas which are 
available in the full version.

- Following guideline to select features was used: select the features that is mostly available for 
all data instances, and is rather clean with less noise. 

- The following features were used in this solution.
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o MW
o IntendedTarget
o UseCategory
o ChemType
o ToxPrint
o ToxCastSum
o MW Desalted (generated by ChemmineR)
o Chemical Property (generate by ChemineR)
o Group Information (generated by ChemmineR)
o Ring Information (generated by ChemmineR)

- All the code used in this solution is available for use.

Rank-IV Submission

*several scores are shown in this description. These scores were obtained on training set by the 
member locally. These scores should not be compared in any manner with the provisional or 
system scores obtained from final submission. All the details provided here are extracted from 
final documentation provided by winner – klo86min,

This submission combines the earlier approaches, specifically from feature selection point of 
view and provides a hybrid flavor of the solution. The solution uses Random Forest approach 
at the base but also uses a couple of chemical descriptors libraries to calculate on-the-fly 
features for chemicals. Although, this solution has achieved a 4th place score, it has a very rich 
experiment base as it provides insights into different feature combinations and shows empirical 
evaluation of various approaches. 

Following is the outline of the submission:

- A Random Forest solution has been chosen for its ability to handle “large p (features) small n 
(samples)” cases such as this one and also different variable importance it could compute.

- Table 4-1 shows short list of final features (30 highest importance – full set is available in Table 
A-1 of appendix), sorted by decreasing “removal” importance.
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Table 4-1.  Short list of 30 most important final features

- “Removal Importance” is the difference of 2 scores, computed with and without the feature of 
interest.

- CDK and RDKit descriptor features have been used in addition to features obtained from EPA 
data. Some descriptors have also been build based on MACCS keys. All the input and output 
of the process of this feature extraction is available for use. All features are also available in 
various csv files.

-  Following method was used for extracting EPA features:

o For numerical or binary categorical variable, original data was used.
o For missing values, it is set to zero. This is arbitrary and unfortunate but it scores better 

than using the mean.
o This flaw is partly compensated by the fact that in the final set of feature, there are not 

so many missing values and the RF method could still propagate those value and find a 
good split on the next depth.

o The only non-binary categorical variable that were parsed are the column of the 
file “ToxCast_Generic_Chemicals_2013_12_10.csv”, namely “IntentedTarget” and 
“UseCategory”.

o “UseCategory” was grouped into more general classes: “Herbicide”, “Pesticide”,
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o “Flavor/Flagrance”, “Insecticide”, “Pharma/Drugs”.
o “IntentedTarget” was grouped into different toxicity classes: “High”, “Mild”, “Low”, 

“Unknown”, and “Missing”. 
o Each class have been linked to targets according to what have been observed on 

training data (with a potential over-fit). 
o Figure 4-2 shows the breakdown of this classification with their relative importance:

Table 4-2. Breakdown of Classification sorted by removal importance

-  An ensemble of randomly drawn decision trees (a Random Forest variation) is built using the 
scikit-learn libraries (Machine Learning in Python).

- The splitting criteria of the random forest regression is based on variance reduction, which is 
consistent with the root-mean-square error (RMSE) used for this contest.

- The best results were obtained with maximal randomness: random subset of sample drawn 
with replacement (bootstrap, bagging), random subset of feature is drawn for each split, 
randomly capped interval for the pool of tested “best split” values of selected features. The 
scikit function used is “ExtraTreesRegressor”.

- To illustrate the performances of the ExtraTreesRegressor, the member benchmarked few 
others models on the final set of features and Table 4-3 shows the results:

Table 4-3. Performance of different models on final set of features
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- For error management, the member used both out-of-bag error (oob) of the RF, and average 
error over 3 random 8-folds cross validation sets. The oob errors has many advantages - it is a 
direct output of the RF training, it is unbiased as the cross-validation sets helps manage errors: 
poor convergence/high variance of results could be detected, as cross-validation score and 
oob score shall be equivalent. 24 cross-validation testing sets were used - they provide diverse 
configurations and allows to see if score changes/improvement were spread over all different 
testing sets or concentrated on only few ones.

- There is a long discussion provided in this submission about the process of selection of 
features and various experiments that were performed by the member. It will be available for 
use whenever required. Table A-2 (Appendix) summarizes the training performance of various 
feature combinations that were used by the member.

- The solution is to be considered as work-in-progress and some of suggested measures for 
improvement include adding more descriptors, SMARTS pattern, more level8 hitcalls and 
recursive feature augmentation process.

5.0 Statistical Analysis
- Once the match results were available, we used several statistical methods to analyze the 
outcome of the results and to quantify the substance in the provided solutions and achieved 
scores. In this section, we describe various metrics that we calculated based on the system 
score for all the available solutions and also for top-4 placed submission. This analysis is 
expected to give you a quick idea on the outcome of the match.

- As an initial step, a quick investigation was completed by building a graph of Final-Y vs 
Provisional-X scores. Figure 5-1 shows that graph which essentially shows the presence of 
predictive power in the dataset. Each point in the graph corresponds to one competitor. The X-
Axis shows the provisional score of this competitor and the Y-Axis shows his/her final score.
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Figure 5-1. Final (Y-Axis) vs. Provisional (X-Axis) Scores

- Following points are to be noted from the above graph:

o The placement is non-random, so algorithms definitely see some predictive power in the 
data, what is already a great outcome for such a challenge.

o In competition where provisional and system datasets are similar enough, submissions 
that are not overfitted to provisional dataset are expected to have similar provisional 
and final scores. Therefore points would concentrate around the diagonal (dotted line 
in the figure above). However, we clearly see that majority of the dots fall below the 
diagonal. This suggests significant overfitting effects and/or statistical bias between 
provisional and scoring datasets.

o We think that in fact both overfitting and statistical bias took place. The provisional and 
system datasets were obtained by randomly splitting one single dataset which suggests 
that there should be no statistical bias. However, this is true only for sufficiently large 
datasets and in our case we had two pretty small datasets (with 63 and 80 points, 
respectively). Additional study shows that both datasets have almost the same LEL 
mean (abound 2.791), but final dataset happens to have much larger LEL variance (1.314 
against 1.083 in provisional).
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o Large LEL variance in final dataset means that higher RMSE values (and thus lower 
scores) should be expected. This explains why almost all dots on the figure above fall 
below the diagonal. Furthermore, LEL variance gives the maximum possible score for a 
solution that returns a constant value (and thus sees no predictive value in datasets). 
RMSE of 1.314 corresponds to a score of 686K. Therefore, all dots above Y = 686K (line 
Q) correspond to submissions that were able to find some predictive power in the data. 
(Solutions below line Q could also find some predictive power, but had some problems 
using their findings, or fighting overfitting, etc.)

o We can see that points lie on different distance from the diagonal. This shows that 
despite statistical bias between provisional and final datasets, there were definitely 
overfitting effects in the contest as well. However, it’s important to note that almost 
all (more exactly, all except one) top (largest Y) points lie pretty close to the diagonal. 
This means that among the highest scoring group, all competitors did a very good job 
fighting overfitting. (One outlier dot among the top ones corresponds to 8-th place 
competitor.) 

- As a next step, we calculated various metrics for a thorough analysis to gain more insights 
about the solutions and to understand the significance of the results. The metrics that were 
used for this analysis include:

o RMSE: Root-Mean Squared Error (lower the value, better the result)
o RMSE (80%): RMSE on 80% best predictions (lowest prediction error)
o Pearson: just Pearson correlation coefficient (higher the value, better the result)
o Pearson (80%): the same on 80% best predictions
o AUC: percentage of pairs where predicted1 < predicted2 among those where 

ground_truth1 < ground_truth2 (higher the value, better the result)
o P-value: defines significance of the prediction, evaluated on 1 million random 

permutations. 

Table 5-1 shows the above metrics for the top 4 solutions and also provides a comparison with 
the two solutions provided by EPA.

Solution RMSE RMSE 
(80% best)

Pearson Pearson 
(80% best)

AUC P-value

noveserj 1.119 0.657 0.561 0.661 0.701 0
NobuMiu 1.13 0.649 0.551 0.672 0.683 0
a9108tc 1.134 0.642 0.542 0.621 0.677 4.00E-006

klo86min 1.139 0.667 0.538 0.673 0.682 0
EPA_Assay 1.249 0.733 0.336 0.518 0.616 1.51E-003

EPA_BP 1.204 0.748 0.436 0.5 0.636 1.21E-004
Table 5-1. Various Metric Results on outcome of match

Comments based on the above results:
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- The colored values in the table shows the statistically top performers in that particular metric. 
Those columns for which first 4 are not green signifies that some other submissions performed 
statistically better than the top-4 winners for that particular metric. But overall, top-4 have 
performed significantly better.

- As it is seen, the values of AUC and Pearson correlation coefficient are not very high overall 
showing that prediction in general is not an easy task.

- With a random AUC baseline of 50%, there is a significant difference between winner’s 70% 
and EPA’s solutions results of 62-64%.

- Generally, if one has 50% AUC it means that all the guesses are absolutely random.
If one assumes that her subset consists of x fraction of chemicals that you predict 100% 
accurately, and 1-x fraction of chemicals you predict absolutely randomly, then your expected 
AUC value is:

AUC%=100%*[x^2 +1/2*(1-x^2)] = 50% (1+x^2)

x = SQRT ((AUC - 50%)/50%)

Based on the above formula:

Solution AUC (%) x

EPA_Assay 61.6 48%

EPA_BP 63.6 52%

#1 Solution 70.1 63%

- Considering the above statistic, 63% over the other two solutions is a pretty good result.

- This is one and simple way to look at AUC. There are various ways to look at AUC and an 
extreme case model with a double Gaussian assumption would work as follows:

o Assume that the LELs are distributed as Gauss with mean square deviation 1.
o Assume that the LELs, predicted by algorithm, have equal precision, meaning they are 

distributed around true values with deviation x.
o Derive AUC as a function of x. It is easy, as all the integrals can be taken analytically.
o Turn it around as x vs AUC, so 1/x would get you the level of granulation of the LEL 

distribution by algorithm (simply speaking, in how many categories the algorithm’s 
precision allows to split the chemicals)

- The answer is simple (all integrals can be taken analytically): N=1/x = -ctg(Pi*AUC/100%). 
Using this, the above three cases now turns out to be:
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Solution AUC (%) N

EPA_Assay 61.6 0.38

EPA_BP 63.6 0.46

#1 Solution 70.1 0.73

- N<1 means that the ability of solution to intentionally localize the value LEL of chemical is 
near but still within the natural deviation of LEL. But as one can see, comparatively the winner 
solution adds much more than just the random guess to the predictions (as N is comparable to 
1).

6.0 Conclusions
The size of the data set, the natural variability within each set, and the subject domain of the 
problem combined to present a very ambitious challenge for a machine learning solution. 
The variety of techniques observed in solutions submitted to this [topcoder] contest, and 
the statistically significant performance of the solutions, lead us to conclude that the match 
successfully produced solutions that were in fact predictive.  That these solutions also 
out-performed the algorithms supplied by the EPA, reinforced our confidence in both the 
applicability of data science techniques to this problem, and the immediate results of the 
solutions. 

Following are the key highlights of what makes these results a positive outcome:

- The provided ToxCast data have been successfully used to predict statistically relevant LEL 
values, which verified the predictive power of the data, and reinforced confidence that data 
science can provide promising solutions to these problems.

- Two very different approaches to the same problem were discovered which provides a 
promising outlook on future directions in this undertaking. Specifically, a great comparative 
analysis is now available to gauge:

o Numerical driven data science approach (Random forest) vs. highly sophisticated 
domain-specific approach (OCHEM tool)

o Use of in-vitro features vs. use of molecular descriptors and also their combination.
o EPA’s current algorithmic approach to the problem vs. solution available from 

community.
- Statistical analyses have shown that prediction was indeed tough with the given data set and 
overfitting issues but the winner solutions have combated such issues and shown significantly 
successful results. It has also shown that the overall outcome of the contest is strong with 
results that can prove to be baseline for further research.
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- Having said that, we would also like to add a word of caution that these results must be 
considered as the first step towards building a comprehensive and sophisticated machine 
learning approach for predicting LEL values. 

- We are also doing some more statistical analysis and gauging the scientific relevance of these 
submissions through our follow-up round which will be presented separately. Such an analysis 
will help to build further confidence in this already promising outcome.

 

Appendix – Feature Sets used by Rank-IV submission
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Table A-1. Full feature set used by Rank-IV submission
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Table A-2. Scores for various feature combinations
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Description of the consensus model for prediction of Lowest Effect Level (LEL) 
concentrations (Technical description) 

Brief summary 
The model used in the EPA ToxCast challenge was built using OCHEM (helper tool 
described in the EPA ToxCast - Chemical Structural Descriptors (pdf version), pdf 
document under section “Databases” - “Online Chemical database”, page 51). 

OCHEM(online chemical database and modeling environment, http://ochem.eu)1 is a 
publicly available web-based platform for QSAR research, developed and maintained 
by Helmholtz Zentrum München (http://www.helmholtz-muenchen.de) and  
BIGCHEM GmbH (http://bigchem.de). 

Within the scope of the challenge, the 483 molecules with experimental LEL values were 
uploaded to OCHEM. They were used as the training set for the model 
(http://ochem.eu/basket/101620). Additionally, the whole challenge set of 1854 molecules 
without values were uploaded to OCHEM and used for predictions 
(http://ochem.eu/basket/102518). According to the EPA ToxCast challenge rules, no 
additional data from OCHEM-Database were used in this challenge, except for the data 
provided in the challenge. 

The profile of the model used in the challenge is publicly available from the following 
link (http://ochem.eu/model/174), the article profile with links to the model and data are 
available from the following link (http://ochem.eu/article/68104). 

Data preparation 

The dataset from the ToxRefDB_Challenge_Training.csv file was used as a reference for 
creating training and test sets for the challenge. The file contains 1854 rows, each row 
representing one molecule. For 483 rows the experimental LEL values were provided, 
the rest were considered as predicted (test) set. 

The file ToxRefDB_Challenge_Training.csv was appended by the SMILES column. The 
SMILES information was taken from the files containing structural information - 
ToxCast_Generic_Chemicals/csv/ToxCast_Generic_Chemicals_2013_12_10.csv. 
Pairwise correspondence between the rows of the files was established using the 
CASRN column, which was present in both mentioned files. 

The resulting file was uploaded to the OCHEM using the batch data upload tool 
(http://docs.ochem.eu/display/MAN/Batch+data+upload). Besides the LEL values and 
SMILES structural information, molecule names and CASRN were uploaded for 
convenience purposes. 

OCHEM Modeling Workflows 
Within the scope of the challenge, default OCHEM workflows were used for individual 
model creation process, as well as for the process of applying model to the final test set. 
Figure S1 illustrates the simplified OCHEM workflows for the modeling process. 
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Figure S1. Simplified model creation and prediction workflows used in the challenge. 

 
The model training involves the following steps (described in greater detail in the next 
section): 

• preprocessing of the initial molecular structures, cleaning, neutralization and 
salts removal 

• generation of 3D coordinated (for the workflows that use 3D descriptors) 
• calculation of the full descriptor matrix 
• unsupervised descriptor selection based on descriptor correlation 
• training of the model using the machine learning model, this step often includes 

meta-learning techniques like bootstrap aggregation 
• output of the resulting model (machine learning method - specific data) 

Application of this model shares a significant amount of steps with the training process and 
involves: 

• preprocessing of the initial molecular structures, cleaning, neutralization and 
salts removal 

• generation of 3D coordinated (for the workflows that use 3D descriptors) 
• calculation of the full descriptor matrix 
• descriptor selection based on the list of required descriptors for the model being 

applied 
• application of the machine learning model using the model data and descriptor 

matrix 
• output of resulting predictions 

Model description 
Within the scope of the challenge, ten individual LEL models were built according to 
the previously mentioned workflows using different in-silico descriptor packages 
available in OCHEM. No EPA in-vitro features were used in this model. Although 
within the scope of the challenges several models with EPA in-vitro features were built, 
their inclusion into the final model did not result into a statistically significant increase 
in prediction accuracy. 
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The final model was built as a simple average consensus over these ten individual 
models. Figure S2 illustrates the full architecture of the resulting LEL model. 

Figure S2. Final consensus model structure diagram 
 

The rationale to use the consensus model is based on the earlier observations,2-5 that 
such models usually provides higher accuracy compared to the individual approaches. 
Indeed, the models developed using different descriptors have different biases and their 
combination decreases their variances thus providing the optimal performance.6, 7 

Data preprocessing. All the molecular structures were preprocessed following a 
standardized OCHEM protocol. The molecules were: 

• Cleaned - the molecule structure was exported to SMILES format and imported 
back, the 2D coordinates were then recalculated from scratch. 

• Neutralized - charged atoms in the molecules were neutralized by attaching 
additional hydrogen atoms to them. 

• Standardized - inconsistent representation of Nitro groups was unified. 

• Remove salts - all salts or counter-ions were removed, only the largest molecular 
fragment was kept. 

More information on OCHEM data preprocessing protocol is available at the OCHEM 
manual page - http://docs.ochem.eu/display/MAN/Molecule+preprocessing 

3D Structure generation. Some of the descriptors require a 3D representation of the 
molecule. These descriptors were calculated based on an optimized 3D structure 
representation. The optimization was performed using OCHEM recommended 
optimization protocol that utilizes Corina8 tool by Molecular Networks GmbH. 

Descriptor packages. Ten different descriptor packages implemented in the public 



 22 

platform OCHEM were used individually to create ten models for the resulting 
consensus. 

• Electrotopological state indices (E-State indices) - molecular descriptors 
introduced by Kier and Hall.9,10 The descriptors combine electronic and 
topological properties of the described molecules. More information can also be 
found on the OCHEM manual page for E-State indices -  
http://docs.ochem.eu/display/MAN/ESTATE 

• Chemaxon descriptors - also known as Chemaxon calculator plugins, is a set of in-
silico prediction tools provided by Chemaxon. More information can be found on the 
manual page (http://docs.ochem.eu/display/MAN/Chemaxon+descriptors) or on 
Chemaxon calculator plugin page (http://www.chemaxon.com/products/calculator-
plugins/). 

• Inductive descriptors11 - the descriptors calculated based on models of inductive and 
steric effects, inductive electronegativity and molecular capacitance. These molecular 
parameters are accessible from electronegativities and covalent radii of the constituent 
atoms and interatomic distances and can reflect a variety of aspects of intra- and 
intermolecular interactions (http://docs.ochem.eu/display/MAN/Inductive+Descriptors). 

• QNPR Descriptors - quantitative name-property relationship descriptors are 
derived directly from the compounds name or SMILES strings. For each 
molecule either canonical SMILES or IUPAC name are split into fragments of a 
specified length, and the fragments become the descriptor names. The values are 
calculated as the number of occurrences of a particular fragment in a string for a 
molecule. In the challenge the OCHEM implementation of QNPR was used, 
calculated over SMILES of length 1 - 3, only descriptors that occur in more than 
5 molecules in the set were kept (http://docs.ochem.eu/display/MAN/QNPR). 

• ADRIANA.Code - is a descriptor package provided by Molecular Networks 
GmbH. It contains a series of methods for the generation of 3D structures and 
the calculation of physicochemical descriptors and molecular properties based 
on rapid empirical models (http://docs.ochem.eu/display/MAN/Adriana.CODE). 

• Mera, Mersy12 - descriptor package developed by Prof. V.A. Potemkin, 
ModelChem group (http://docs.ochem.eu/display/MAN/MERA+descriptors). 

• GSfrag13, 14 - a descriptor package that allows to calculate the occurrence 
numbers of certain special fragments on k=2, ...,10 vertices in a molecular graph 
(http://docs.ochem.eu/display/MAN/GSFrag). 

• ISIDA SMF descriptors15 - the ISIDA implementation of the substructural 
molecular fragments (SMF) method, which is based on the splitting of a 
molecule into fragments. The fragment type is then a descriptor, and the 
number of occurrences of this fragment in a molecule is the value for this 
descriptor (http://docs.ochem.eu/display/MAN/ISIDA+Fragments). 

Fragment lengths 2 - 4 were used in the challenge. 

• Dragon6 descriptors16 - a descriptor set from a popular descriptor tool - Dragon 
- developed by Kode s.r.l. (http://docs.ochem.eu/display/MAN/Dragon). 

• CDK descriptors - a set of descriptors implemented in the open-source 
Chemistry Development Kit. The constitutional, topological, geometrical, 
electronic and hybrid descriptor classes were used in the challenge 
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(http://docs.ochem.eu/display/MAN/CDK). 
 
Descriptor selection. Within each individual model, basic unsupervised descriptor 
selection procedure was performed. First, descriptors with constant values for the dataset 
were removed. Next, descriptors with pair-wise correlation of more than 0.95 were 
eliminated. 
Bootstrap aggregation (bagging) meta-learning approach with the bag size of 64 
was used in each individual model. That is, each of the ten individual models in the 
challenge are an ensemble of 64 models, built on different training sets, which were 
obtained from the original one through resampling with replacement 
(http://docs.ochem.eu/display/MAN/Bagging). 
Machine learning method. For all ten of the individual models, the Associative Neural 
Networks17, 18 (ASSN) machine learning method was used. ASNN is the author's 
implementation of the algorithm that uses local error correction in neural network 
ensemble prediction space. 
The approach has a deep neurophysiological background and was inspired by the work 
of Dr. Tetko on the analysis of neuronal coding.19,20 It exploits an idea of ensemble 
learning. The ASNN approach has been used to introduce concepts of local libraries and 
self-learning, property-based similarity, applicability domain of models.4,18,21 The 
models developed with the ASNN were top-ranked in several benchmarking 
studies2,4,5,22 and that is why this method was selected for the EPA challenge. 
In the challenge, neural network ensembles of size 64 were used, with the individual 
neural networks having 3 neurons in a hidden layer, trained by the SuperSAB algorithm. 
These are default parameters, which were optimized in the previous studies. Additional 
info can be also found on the OCHEM manual page -  
http://docs.ochem.eu/display/MAN/ASNN+-+Associative+Neural+Networks. 
It should be noticed that all sub-models were built using default settings as specified on 
Comprehensive Modeling template web page, as illustrated on Figure S3. 
(http://ochem.eu/multiplemodels/create.do). No optimization of parameters was used for 
the challenge. 
 

Figure S3. Comprehensive modeling settings, which were used to develop the models. 
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Obtaining challenge predictions 
The Final EPA ToxCast challenge model (http://ochem.eu/model/174) was applied to the 
full set of 1854 molecules (http://ochem.eu/basket/102518). The calculation results can be 
obtained from the public task profile (http://ochem.eu/pendingtasks/profile.do?id=587790). 
Predictions were exported in CSV format, the file ModelPredictions_1854_compounds.csv 
was obtained. The training set was also exported for convenience reasons, resulting in the 
file LEL_training.csv. 
In the resulting predictions file there are 37 errors (descriptors for these molecules could not 
be calculated for various reasons). Predictions for these molecules were taken as a mean 
value for the training set = 3.2602 -log(M). Finally, 483 values for the training set 
molecules were substituted by their experimental results. The result was converted to the 
required format, LELPredictor.java. 
All manipulations over the exported CSV files were performed using a simple Perl script 
(reader.pl). 
The final model http://ochem.eu/model/174 is freely available from the OCHEM web site 
and can be accessed and used by the EPA as well as any other web users without any 
limitations. The development and publishing models on-line allows their wide 
dissemination to chemical community, allows a rigorous validation of all steps of model 
development and it will be increasingly used in the future.23 
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Table S1. Statistical parameters of models developed using different descriptors, 
machine learning methods and validation protocols using On-line CHEmical database 
and Modeling environment (http://ochem.eu) 
 
A) RMSE errors of cross-validation and bagging models. 
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B) Square of Pearson correlation coefficient of cross-validation and bagging models 
 

 
 
The published models which, contribute to the final consensus model, are shown in 
blue. 
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