

Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃

Figure S2-2. Enlarge ¹³C NMR spectrum of compound 1 in CDCl₃

Figure S3. DEPT spectrum of compound 1 in $CDCl_3$

Figure S4. HSQC spectrum of compound 1 in CDCl₃

Figure S5. ¹H-¹H COSY spectrum of compound 1 in CDCl₃

Figure S6. HMBC spectrum of compound 1 in CDCl₃

Figure S7. NOESY spectrum of compound 1 in CDCl₃

Figure S8. HRESIMS spectrum of compound 1

Figure S9. IR spectrum of compound 1

Figure S10. Mo₂(AcO)₄-induced CD spectrum of compound 1

Figure S13. DEPT spectrum of compound 2 in CDCl₃

Figure S14. HSQC spectrum of compound 2 in CDCl₃

Figure S15. ¹H-¹H COSY spectrum of compound **2** in CDCl₃

Figure S16. HMBC spectrum of compound 2 in CDCl₃

Figure S17. NOESY spectrum of compound 2 in CDCl₃

Figure S18. HRESIMS spectrum of compound 2

Figure S19. IR spectrum of compound 2

Figure S20. ¹H NMR spectrum of compound 3 in CDCl₃

Figure S22. DEPT spectrum of compound 3 in CDCl₃

Figure S24. ¹H-¹H COSY spectrum of compound **3** in CDCl₃

Figure S25. HMBC spectrum of compound 3 in CDCl₃

Figure S26. NOESY spectrum of compound 3 in CDCl₃

Figure S27. HRESIMS spectrum of compound 3

Figure S28. IR spectrum of compound 3

Figure S29. ¹H NMR spectrum of compound 4 in CDCl₃

Figure S30. ¹³C NMR spectrum of compound 4 in CDCl₃

Figure S32. HSQC spectrum of compound 4 in CDCl₃

f1 (ppm)

Figure S33. 1 H- 1 H COSY spectrum of compound 4 in CDCl₃

Figure S34. HMBC spectrum of compound 4 in CDCl₃

Figure S35. NOESY spectrum of compound 4 in $CDCl_3$

Figure S36. HRESIMS spectrum of compound 4

Figure S37. IR spectrum of compound 4

Figure S39. ¹H NMR spectrum of compound 5 in CDCl₃

Figure S41. DEPT spectrum of compound 5 in CDCl₃

Figure S43. ¹H-¹H COSY spectrum of compound 5 in CDCl₃

Figure S44. HMBC spectrum of compound 5 in CDCl₃

Figure S45. NOESY spectrum of compound 5 in CDCl₃

Figure S46. HRESIMS spectrum of compound 5

Figure S48. CD spectrum of compound 5

[Comment] Sample Name

Figure S49. ¹H NMR spectrum of compound 6 in CDCl₃

e4421

Figure S50. ¹³C NMR spectrum of compound 6 in CDCl₃

25

20 15 10

35 30

-5 -10

5 0

105 100 95 90 85 80 75 70 65 60 55 50 45 40 fl (ppm)

135 130 125 120

Figure S52. HSQC spectrum of compound 6 in CDCl₃

Figure S54. HMBC spectrum of compound 6 in CDCl₃

VNS-600 NOESY1D e74141221 IN cdcl3 Aug 25 2016

Figure S58. ¹H NMR spectrum of compound 7 in CDCl₃

Figure S60. DEPT spectrum of compound 7 in CDCl₃

2.6 2.4 2.2

2.0 1.8 1.6 1.4

0.6 0.4 0.2 0.0

0.8

1.2 1.0

5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8

Figure S62. ${}^{1}H{}^{-1}H$ COSY spectrum of compound 7 in CDCl₃

Figure S64. NOESY spectrum of compound 7 in CDCl₃

Figure S65. HRESIMS spectrum of compound 7

E741311 #793 RT: 2.68 AV: 1 NL: 2.78E7 T: FTMS + c ESI Full ms [100.00-1000.00]

Figure S67. ¹H NMR spectrum of compound 4-Benzoyl-ganodermanol G in CDCl₃

Figure S68. ¹³C NMR spectrum of compound 4-Benzoyl-ganodermanol H in CDCl₃

Figure S69. HMBC spectrum of compound 4-Benzoyl-ganodermanol G in CDCl₃

Figure S70. ¹H NMR spectrum of compound 8 in CDCl₃

Figure S71. ¹³C NMR spectrum of compound 8 in CDCl₃

Figure S72. DEPT spectrum of compound 8 in CDCl₃

Figure S73. HSQC spectrum of compound 8 in CDCl₃

Figure S74. ¹H-¹H COSY spectrum of compound 8 in CDCl₃

Figure S77. HRESIMS spectrum of compound 8

-5

-10

扫描次数: 100

分辨率: 8.000

3000

日期: 星期五 8月 26 11:19:57 2016 (GMT+08:00) Sample Name: e 7416102

2000

1000

800

(显微镜透射法 FT- IR Microscope Transmission)

1500

傅里叶变换显微镜红外(FT-IR Microscope): Centaurus

美国热电公司(Thermo)傅里叶变换红外光谱仪:Nicolet 5700

Wavenumbers (cm-1)

ÓН

Figure S79. ¹H NMR spectrum of compound 9 in CDCl₃

Figure S83. $^{1}H^{-1}H$ COSY spectrum of compound 9 in CDCl₃

Figure S85. NOESY spectrum of compound 9 in CDCl₃

Figure S86. HRESIMS spectrum of compound 9

E741413 #1474 RT: 3.01 AV: 1 NL: 2.98E8 T: FTMS + c ESI Full ms [100.00-1000.00] 237.1852 C₁₅ H₂₅ O₂ = 237.1849 3.5 RDBE 1.0914 ppm OH 40-35-Ĥ / Ь ОH ΗÒ 30-219.1747 273.2062 C₁₅ H₂₃ O = 219.1743 25 C₁₅ H₂₉ O₄ = 273.2060 4.5 RDBE 1.5 RDBE 1.6242 ppm 0.7391 ppm 20-201.1640 $C_{15} H_{21} = 201.1638$ 15-5.5 RDBE 1.2664 ppm 255.1954 $C_{15} H_{27} O_3 = 255.1955$ 10-2.5 RDBE 191.1796 C₁₅ H₁₁ = 191.0855 -0.2632 ppm 5-10.5 RDBE 492.2846 ppm 0-180 190 200 210 220 230 240 250 260 270 280 m/z

Figure S87. IR spectrum of compound 9

Figure S88. ¹H NMR spectrum of compound **10** in CDCl₃

Figure S92. ¹H-¹H COSY spectrum of compound **10** in CDCl₃

Figure S93. HMBC spectrum of compound 10 in CDCl₃

Figure S94. NOESY spectrum of compound 10 in CDCl₃

Figure S95. HRESIMS spectrum of compound 10

Figure S97. ¹H NMR spectrum of compound 11 in CDCl₃

Figure S99. DEPT spectrum of compound 11 in CDCl₃

Figure S100. HSQC spectrum of compound 11 in CDCl₃

Figure S101. ${}^{1}H{}^{-1}H$ COSY spectrum of compound 11 in CDCl₃

Figure S102. HMBC spectrum of compound 11 in CDCl₃

Figure S103. NOESY spectrum of compound 11 in $CDCl_3$

VNS-600 NOESY1D e74153 IN cdcl3 May 13 2016)

)

Figure S104. HRESIMS spectrum of compound 11

Figure S107. ¹³C NMR spectrum of compound **11** in DMSO- d_6

Figure S108. HMBC spectrum of compound 11 in DMSO-d₆

 ^1H NMR and ^{13}C NMR data of Compounds 11

		11 ^a	11	b
positio	$\delta_{ m C}$ type	$\delta_{\!\scriptscriptstyle H}$ (J in Hz)	$\delta_{\!C}$ type	$\delta_{\!$
n				
1	74.3, CH	3.88, dd (11.3, 4.9)	71.8, CH	3.63, dt (11.3, 4.8)
2	26.5, CH ₂	1.66, m, H $lpha$	26.4, CH ₂	1.57, m, H $lpha^{\mathrm{c}}$
		1.71, m, H eta		1.59, m, H eta^{c}
3	26.9, CH ₂	2.20, m, H $lpha$	26.6, CH ₂	2.10, m, H <i>α</i>
		1.37, m, H eta		1.07, m, H β^{c}
4	41.4, CH	1.53, m	40.2, CH	1.47, m
5	77.6, C		75.4, C	
6	33.8, CH ₂	1.84, m, H $lpha$	33.1, CH ₂	1.74, m, H α^{c}
		1.30, m, H eta		1.20, m, Hβ ^c
7	43.3 <i>,</i> CH	1.85, m	42.3, CH	1.77, m
8	21.7, CH ₂	1.65, m, H $lpha$	21.1, CH ₂	1.55, m, H α^{c}
		1.32, m, H eta		1.22, m, Hβ ^c
9	33.3, CH ₂	1.72, m, H $lpha$	32.8, CH ₂	1.78, m, Hα
		1.57, m, H eta		1.49, m, H β^{c}
10	42.7, C		41.2, C	
11	72.9 <i>,</i> C		70.7, C	
12	$28.0, CH_3$	1.22, s	27.6, CH ₃	1.04, s
13	27.0, CH ₃	1.20, s	27.4, CH ₃	1.02, s
14	15.6, CH₃	1.00, s	15.5, CH₃	0.82, s
15	16.9, CH₃	1.04, d (7.7)	16.8, CH ₃	0.93, d (7.7)
1-OH				3.92, d (5.3)
5-OH				3.32, s
11-OH				3.86, s

^aData were recorded at 400 MHz for proton and at 100 MHz for carbon in CDCl₃.

 $^{\rm b}$ Data were recorded at 400 MHz for proton and at 100 MHz for carbon in DMSO- $d_6.$ $^{\rm c}$ Overlapped with other signals.

Figure S109. NOESY spectrum of compound 11 in DMSO- d_6

Table S1Cytotoxicities of isolated compounds against five human cancer cell lines (IC_{50} , μM).

Compounds	IC ₅₀				
	HCT116	NCI-H1650	BGC823	Daoy	HepG2
1	>50.0	>50.0	>50.0	>50.0	>50.0
2	>50.0	>50.0	>50.0	>50.0	>50.0
3	24.5	>50.0	>50.0	>50.0	>50.0
4	16.6	>50.0	49.9	31.1	27.9
5	>50.0	>50.0	>50.0	>50.0	>50.0
6	>50.0	28.9	>50.0	35.5	>50.0
7	>50.0	>50.0	>50.0	>50.0	>50.0
8	>50.0	>50.0	>50.0	>50.0	>50.0
9	12.2	>50.0	>50.0	>50.0	>50.0
10	>50.0	>50.0	>50.0	>50.0	>50.0
11	>50.0	>50.0	>50.0	>50.0	>50.0
12	>50.0	>50.0	>50.0	>50.0	>50.0
13	>50.0	>50.0	>50.0	>50.0	>50.0
14	>50.0	>50.0	>50.0	>50.0	>50.0
Paclitaxel	0.000809	0.945	0.00177	0.00933	0.0249

Table S2Anti-HIV-1 activity of isolated compounds (IC50, μ M).

Compounds	HIV-1	
1	NA	
2	NA	
3	NA	
4	37.9	
5	NA	
6	NA	
7	NA	
8	NA	
9	NA	
10	NA	
11	NA	
12	NA	
13	NA	
14	NA	
Efavirenz	0.002	

NA=No activity