Supplementary Material

Structural and functional analysis of *Oceanobacillus iheyensis* macrodomain reveals a network of waters involved in substrate binding and catalysis

Authors:

Rubén Zapata-Pérez^{†,⊥}, Fernando Gil-Ortiz^{*,‡,⊥}, Ana Belén Martínez-Moñino[†], Antonio Ginés García-Saura, Jordi Juanhuix[‡], Álvaro Sánchez-Ferrer^{*,†,§}

Affiliations:

[†]Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Campus Espinardo, E-30100 Murcia, Spain

[‡]CELLS-ALBA Synchrotron Light Source, 08290 Barcelona, Spain

[§]Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120 Murcia, Spain

[⊥]These authors contributed equally to this work.

*Correspondence and requests for materials should be addressed to. F.G.-O. (email: <u>fgil@cells.es</u>) or A.S-F (email: <u>alvaro@um.es</u>)

CONTENTS:

Table S1. B-factors of the protein and structural water molecules found in OiMacroD WT, mutants and related structures.

Table S2. Accession codes and organisms used in Figure S2.

Supplementary Figure S1. OiMacroD purification.

Supplementary Figure S2. Unrooted phylogenetic tree illustrating evolutionary relationships between OiMacroD and related macrodomains.

Supplementary Figure S3. Multiple sequence alignment between OiMacroD and related macrodomains

Supplementary Figure S4. Replacement of W5 in OiMacroD by residue Ser302 in the second binding macrodomain of hPARP15.

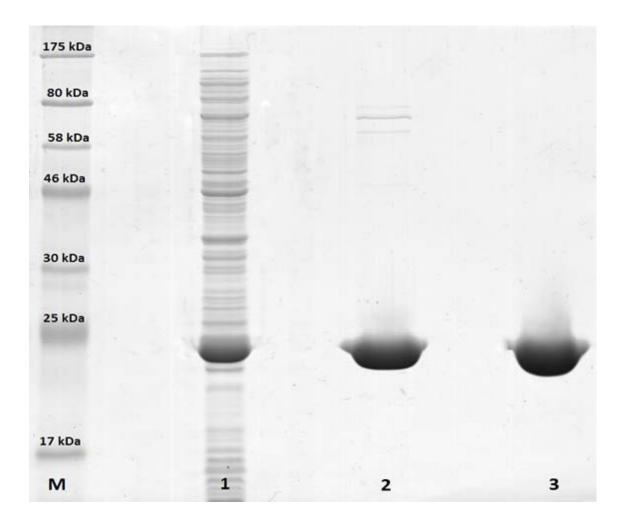
Supplementary Figure S5. F166 active and inactive conformations

Supplementary Figure S6. Stereo view of the dual conformer of the loop $\beta6-\alpha4$. **Supplementary Figure S7.** Dual ADP conformer found in the active centre of the OiMacroD-ADP crystal structure.

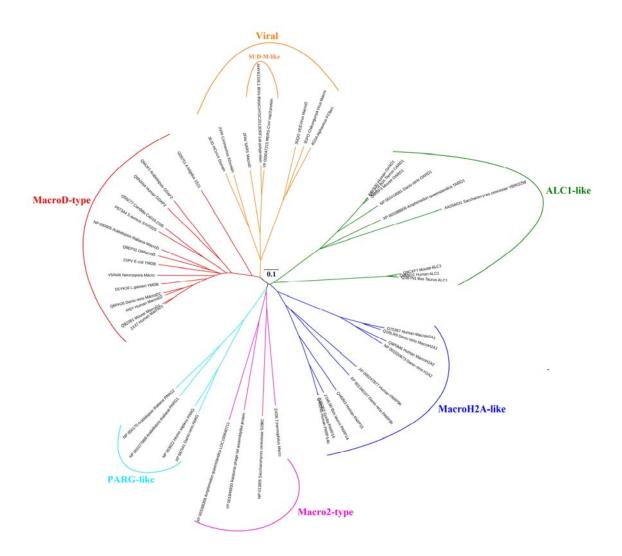
Supplementary Figure S8. Purity and identity of enzymatically synthesized OAADPr.

B-factors	Protein Overall B-factor	W1	W2	W3	W4	W5	W6
MES	16.0	10.9	13.6	17.9	15.9	6.6	-
ADP-ribose	24.0	14.0	16.0	_ ^a	17.4	16.1	16.8 ^b
ADP	19.6	10.7	11.8	17.5	19.2	20.7	-
G37V	18.4	27.2	35.7	28.7	13.1	10.8	-
D40A	42.8	38.4	43.4	44.9	35.7	43.6	-
N30A	15.4	6.4	6.9	27.5	12.7	8.6	-
2X47	12.3	17.7	15.9	13.9	18.3	19.9	-
2BFQ	23.4	15.5	16.8	31.0	16.1	15.0	28.9
4IQY	20.8	13.1	17.0	16.9	10.6	11.0	13.6
3GPO	19.2	18.0	29.7	_ ^c	16.7	15.8	

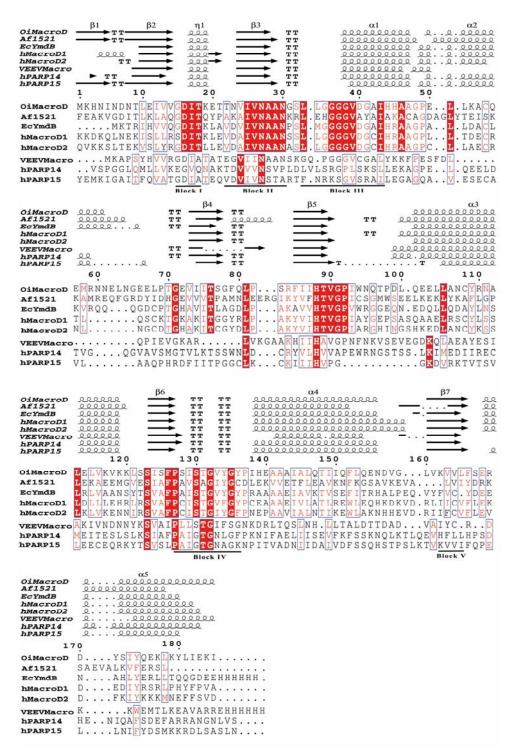
Table S1. B-factors of the protein and structural water molecules found in OiMacroDWT, its mutants and related structures.


^a W3 is absent in the OiMacroD-ADPr complex and is replaced by a glycerol molecule from the cryoprotectant, which carries out the same interactions.

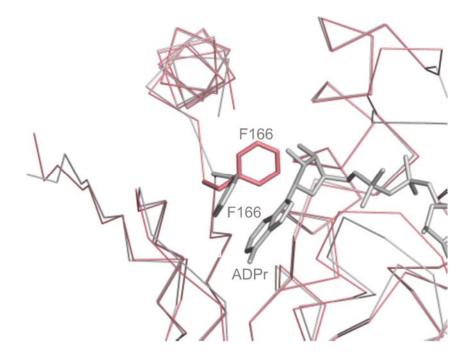
^b When an oligomer is present in the asymmetric unit, the data shown correspond to the average between all subunits

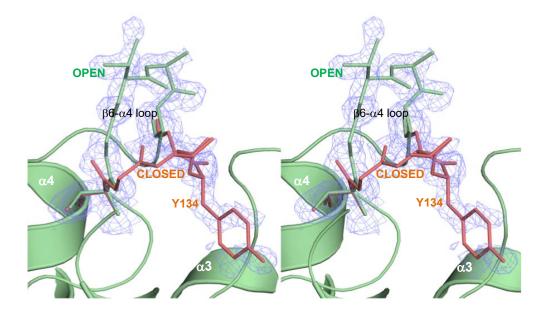

^c W3 is absent in PDB 3GPO due to the presence of the side chain of residue W148, which hampers its binding. This residue shows low conservation and in other related structures is replaced by residues with shorter side chains that allow W3 binding. The O3''-ribose atom in this structure interacts directly with residue T111.

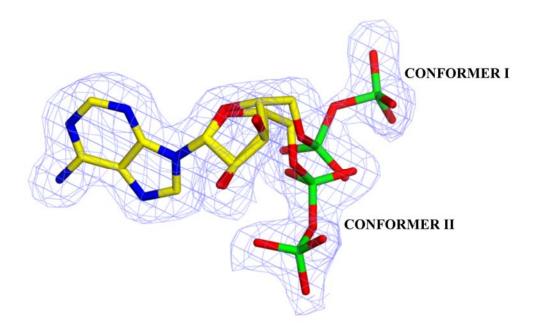
Accesion code	Organism and protein designation				
4GUA	Alphavirus P23 polyprotein				
XP_003388308	Amphimedon queenslandica LOC100640713				
XP 003386606	Amphimedon queenslandica OARD1				
Q94JV1	Arabidopsis thaliana GDAP2				
NP 030605	Arabidopsis thaliana macrodomain				
NP 001077989	Arabidopsis thaliana PARG1				
NP 850175	Arabidopsis thaliana PARG2				
028751	Archaeoglobus fulgidus 1521				
Q3B7N1	Bos taurus ALC1				
Q1LZ74	Bos taurus OARD1				
F1ML90	Bos taurus PARP14				
AHY61336	BtVs-BetaCoV/SC2013 ORF1ab polyprotein				
Q59Z77	Candida albicans Ca019.2285				
3GPO	Chikungunya virus (CHIKV) macrodomain				
Q6PHJ5	Danio rerio MacroD2				
Q1RLR9	Danio rerio Macro-H2A.1				
NP 001020673	Danio rerio Macro-H2A.2				
NP 001018591	Danio rerio OARD1				
XP 687541	Danio rerio PARG				
XP 001340167	Danio rerio PARP9b				
1SPV	Escherichia coli YmdB				
G3S362	Gorilla gorilla PARP14				
Q86WJ1	Human ALC1				
3EJG	Human coronavirus 229E macrodomain				
2VRI	Human coronavirus NL63 NSP3 X-Domain				
Q9NXN4	Human GDAP2				
2X47	Human MacroD1				
4IQY	Human MacroD2				
075367	Human Macro-H2A.1				
Q9P0M6	Human Macro-H2A.2				
Q9Y530	Human OARD1				
NP 003622	Human PARG				
Q460N5	Human PARP14b				
Q460N3	Human PARP15				
XP_005247877	Human PARP9b				
D1YK16	Lactobacillus gasseri YmdB				
YP_009047215	MERS-CoV NSP3 protein				
Q9CXF7	Mus musculus ALC1				
Q922B1	Mus musculus MacroD1				
Q8R5F3	Mus musculus OARD1				
V5IN46	Neurospora crassa macrodomain				
Q8EP31	Oceanobacillus iheyensis macrodomain				
YP_001949930	Ralstonia phage tail assembly-like protein				
NP_013805	Saccharomyces cerevisiae S288C				
AAS56031	Saccharomyces cerevisiae YBR022W				
2FAV	SARS-CoV virus macrodomain				
P67344	Staphylococcus aureus SAV0325 macrodomain				
2XD6	Thermus thermophilus macrodomain				
3GQO	Venezuelan Equine Encephalitis Virus (VEEV) Macrodomain				

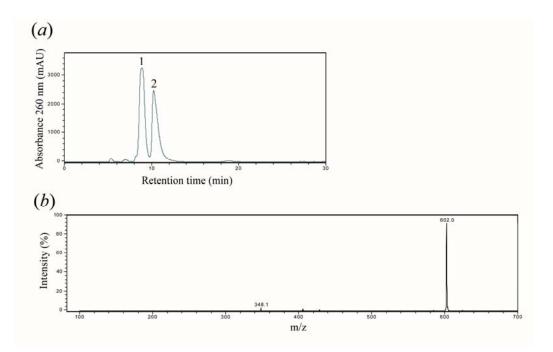

 Table S2. Accession codes and organisms used in Figure S2


Supplementary Figure S1. OiMacroD purification. Each lane of the SDS-PAGE gel contains 10 μ g protein. M: Molecular weight standards (NEB: P7708S). Lane 1: Cell extract after disruption and DNase treatment. Lane 2: Desalted HisTrap fraction. Lane 3: HiLoad Superdex fraction


Supplementary Figure S2. Unrooted phylogenetic tree illustrating evolutionary relationships between OiMacroD and related macrodomains. Sequences selected for generating the tree are summarized in table S2.


Supplementary Figure S3. Multiple sequence alignment between OiMacroD and related macrodomains. Strictly conserved residues have a red background and similar residues are marked with a blue square. Springs and arrows represent helices and strands of the secondary structure, respectively. Strict β -turns are represented as TT. Conserved blocks are underlined.


Supplementary Figure S4. Replacement of W5 in OiMacroD by residue Ser302 in the second binding macrodomain of hPARP15. Protein residues in hPARP15 and OiMacroD are coloured in green and grey, respectively. The ADPr molecule is in yellow (hPARP15) or orange (OiMacroD). Interactions are represented as dashed lines in red (hPARP15) or grey (OiMacroD). Water molecules are shown in cyan


Supplementary Figure S5. F166 active and inactive conformations. Superimposition of mutant D40A (salmon) and ADPr complex (grey) crystal structures comparing the active (grey) and inactive (salmon) rotamer of residue F166. The ADPr molecule is shown in grey.

Supplementary Figure S6. Stereo view of the dual conformer of the loop $\beta6-\alpha4$ as found in a subunit of the crystal structure of mutant N30A. The 2Fo-Fc ED map (1.0 σ ; blue) is shown for the open conformer (green; occupancy 0.55) and for the closed conformer (salmon; occupancy 0.45). Residue Y134 is only observed in the closed conformation (salmon).

Supplementary Figure S7. Dual ADP conformer found in the active centre of the OiMacroD-ADP crystal structure (subunit A; 50% occupancy each). The *2Fo–Fc* ED map (1.0 σ ; blue) is shown around the ADP molecule.

Supplementary Figure S8. Purity and identity of enzymatically synthesized OAADPr. (*a*) HPLC chromatogram at 260 nm showing the 3' (peak 1) and 2 ' (peak 2) isomers of OAADPr. (*b*) MS analysis of both OAADPr peaks. The 602.0 m/z peak corresponds to the expected mass for this compound.