
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

I have reviewed the manuscript entitled “Exploratory Adaptation in Large Random Networks” 

written by Schreier et. al. The authors studied a phenomenological model (known as “circuit” 

equations in the neuron network literature) and explored the impact of ne twork topology on 

the convergence rate of exploratory adaptation. Their key result is that networks with a 

scale-free out-degree distribution are much more likely to converge. This result is consistent 

with some experimental findings.  

 

I find that the research topic is very interesting. And to some extent the presented results are 

compelling. Yet, I do have several comments on the current form of the manuscript. I am 

quite open to looking at a revised version, if the authors can address in a satisfactory fashion 

the issued discussed below:  

 

Model:  

1. It is unclear if the presented results rely heavily on the details of the phenomenological 

model. For example, what happens if the first term, i.e. W \phi(x), in the r.h.s of Eq.(1) is 

replaced by \phi(W x)?  

 

2. What’s the functional form of the saturating function \phi(x)? Will the results depend on 

\phi(x)?  

 

3. The mismatch function M(y-y*) is defined to be zero inside a “comfort zone” around the 

desired phenotype y* and increases sharply beyond this zone. The authors mentioned in the 

SI that the existence of the comfort zone (rather than a well-defined minimum at a point) 

seems to be essential for convergence by exploratory adaptation. What’s the biological 

interpretation of this “comfort zone”? Do we have any experimental evidence for its 

existence?  

 

4. In some other modeling frameworks of gene regulatory networks, e.g. Boolean network, 

cell types and cellular functional states are naturally associated with the intrinsic attractors of 

the Boolean networks (without any exploratory adaptations). Does the gene regulatory 

dynamical model studied in this paper also support various intrinsic attractors in the absence 

of exploratory adaptation?  

 

Results:  

 5. The authors provide neither analytical nor intuitive/qualitative explanations why the 

adaptation processes can in fact converge and why networks with a scale-free topological 

backbone are much more likely to converge.  

 

6. How robust are the stable connections against small perturbations on the interaction 

strengths J and the topology backbone T?  

 

7. It is well known that gene regulatory networks contain certain motifs, e.g. feed-forward 

loop and bi-fan. Will the presence of those motifs enhance the exploratory adaptation? If 

yes, this will make the phenomenological model more appealing. Otherwise, we have to 



rethink the meaning of this model.  

 

 

 

 

 

 

 

Reviewer #2 (Remarks to the Author):  

 

A. In this contribution, the authors consider a network model that couples regulatory genes 

and metabolic genes, to study whether and how such networks could explore a fitness 

landscape in response to an altered environment—but non-genetically, rather, during its 

lifetime. The methods they use are inspired to some extent by cognitive learning algorithms, 

which use similar constructions.  

 

. BTo a large extent, this is a study that explores the feasibility of such a learning algorithm, 

using coupled networks. Within computational biology, the networks the authors use are 

fairly standard, but their coupling is, to my knowledge novel (at least outside this group of 

authors). In essence, the idea is that the fixed point of the network (assuming it exists) must 

move to a new location in response to a changed environment. The authors achieve this by 

implementing a random walk on the network edge weights, and using a fitness function that 

has its maximum near the new fixed point. They find that networks can converge to the new 

fixed point, but that the rate of convergence depends significantly on the backbone 

architecture. In particular, scale-free networks are “best” in this respect.  

 

C. Remarkably, the only evidence that such an algorithm may be at work in biological 

organisms that the authors present is precisely this finding, namely that regulatory networks 

with a scale-free out-degree distribution do this learning best. But even this evidence is, in 

my view, fairly flimsy. The field of systems biology has an odd fascination with scale-free 

distributions, and if they can fit a straight line to a log-log plot even if it only covers a single 

decade, then they declare success. But the data (for example that presented in [22]) can 

really be fit in multiple ways. To make the case for a scale-free distribution really requires at 

least two decades, better 2.5. So for me, the finding that networks with SF out-degree 

distribution and exponential in-degree distribution do best is at best a hint that the model the 

authors present is not necessarily completely wrong.  

 

D. N/A  

 

E. So this is my main problem with this paper: it is completely speculative, with essentially no 

hint given as to why we should believe that this mechanism is active in biology. I am not 

saying that this mechanism can’t exist in biology. It absolutely could. Something like this may 

be going on in cognitive networks but (I also work in that field) this is by no means 

established. Indeed, the ANN abstraction in computational neuroscience is to a large extent 

laughable. The idea that behavioral responses are encoded in fixed points of a high -

dimensional manifold is easily repudiated by finding that small changes in the input pattern in 

brains can create dramatic changes it the response, something that is not possible in the 



ANN picture. The continuous response is, in fact, related to the connectivity pattern of the 

ANNs, something that the present work is changing by using sparse networks, instead. This 

is indeed the correct approach.  

 

F. I’m afraid that in the absence of more biological evidence, a paper like this belongs in a 

far more specialized journal. Just as an example, the authors describe a random walk 

procedure that modifies the weights of the network, but no example of a biological 

mechanism that could create this kind of noise is offered. It is true that transcription, e.g., 

can be noisy. But there is no evidence that transcription rates can be shifted to new levels 

when exceeding some threshold, say. This could happen if gene expression was bistable 

(which can happen sometimes). But it is this kind of molecular evidence that the kind of 

dynamics that are being proposed in this paper that needs to be marshaled in order to be 

published in this venue. In the absence of those, a more specialized journal is more 

appropriate.  

 

Signed: C. Adami  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors propose an interesting approach to evolutionary adaptation, were a cell (or any 

other complex system) adapts to perform a new function (phenotype) through gradual 

changes in its interaction strengths. They use this framework to investigate the network 

characteristics that increase or decrease the system's adaptability. Along the way they find, 

rather strikingly in my opinion, that the optimal network structures are precisely those 

exhibited by real gene regulatory networks, namely scale-free out-degree distribution vs. 

bounded in-degree distribution. I find the proposed model, and especially the results 

pertaining to gene-regulatory networks to be very interesting - indeed, exposing another 

hidden role of the commonly observed scale-free property. I also think the paper is clearly 

written and well-motivated, hence I would be very happy to see it published in Nature 

Communications. I include my comments below, to help further improve the paper:  

 

1. The authors exemplify their method on a rather general dynamic equation (1), with the 

main restriction being that the interaction function $phi(x)$ asymptotically saturates for large 

x. While this is a rather common assumption in the context of gene-regulation, as the 

authors clearly note and appropriately cite, one still wishes to better understand the 

implications of such restriction. What would happen in case we implement non-saturating 

interaction dynamics? Would that harm the reported findings? It seems to me that saturating 

vs. divergent dynamics represents an essential distinction, with likely significant implications 

on the system's behavior, which may potentially enrich the picture currently portrayed.   

 

2. On that note, seems that the main motivation in the presented analysis relates to gene 

regulation, which follows the combined scale-free/bounded degree distribution, and likely the 

saturating $phi(x)$. Cellular function, however is also driven by protein interactions - an un-

directed scale-free biochemical interaction network with potentially non-saturating interaction 

terms. I do not feel that the paper needs a full-scale analysis of such interactions, it is rather 

rich and comprehensive in its current form, but, the authors may consider addressing this 



issue briefly, to better put their results in context.  

 

3. In Eq. (3) it seems that the phenotype y(t) is time dependent, namely that the function to 

which the cell should evolve is not just a point in "phenotype-space", but a complete 

temporal function. Upon first reading I could not fathom how a system could ever 

successfully adapt to such a requirement, seeking a target network that not only satisfies a 

desired fixed point, but also features a specific temporal pattern. Reading on, I realized, that 

this was not the authors' intention, and indeed, the adaptation leads the system to a desired 

fixed point. This point should be made clear in the paper, and especially in the presentation 

of Eq. (3).  

 

4. The exploration follows a form of diffusion, depending on the square-root of the 

discrepancy from the desired phenotype. How important is this assumption to the 

convergence? The other arbitrary dependence is on the value of D, which the authors 

analyse comprehensively later on.  

 

5. The one major issue that begs for additional insight is the way in which the degree 

distribution affects the adaptation process. The finding that a combined scale-free out-

degree and bounded in-degree increases the probability of successful adaptation is central 

to this paper, and truly important. Hence rather than an intriguing empirical fact, the reader 

expects to gain more insight into the microscopic/mechanistic exchanges that enable this. 

This can probably be done through extensive numerical analysis, tracking the specific 

exploration steps that led to successful adaptation, and observing their relationship to the 

hubs. Even in the absence of an analytical explanation, I am certain, that such an analysis 

will also, along the way, shed light on the presented adaptation model and expose new 

facets and directions for researching this problem.  

 

6. Minor corrections: Two citations misplaced (3,19) below Eq. (4); Page 3: "...substantially 

more abundant thant" - should be that.  

 

To summarize, I believe this is a very good paper, that can be further improved through few 

"adaptations", if the authors expand on the points above.  
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Response to Reviewer’s comments 

Reviewer #1: 

Model: 

1. It is unclear if the presented results rely heavily on the details of the

phenomenological model. For example, what happens if the first term, i.e. W \phi(x), 

in the r.h.s of Eq.(1) is replaced by \phi(Wx)  

2. What’s the functional form of the saturating function \phi(x)? Will the results

depend on \phi(x)? 

We addressed these two related comments with new simulations evaluating the effects 

of different saturating functions and their placement in equation 1. As shown in new 

Supplementary Figures S4 and S5 (new Supplementary Sections 2.1 and 2.2), these 

modifications do not alter the conclusions of the paper, thus providing support to the 

model's robustness to details. 
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3. The mismatch function M(y-y*) is defined to be zero inside a “comfort zone”

around the desired phenotype y* and increases sharply beyond this zone. The authors 

mentioned in the SI that the existence of the comfort zone (rather than a well-defined 

minimum at a point) seems to be essential for convergence by exploratory adaptation. 

What’s the biological interpretation of this “comfort zone”? Do we have any 

experimental evidence for its existence? 

Biologically the comfort zone can be interpreted as representing the degeneracy of 

organism’s function or fitness with respect to its phenotype. Although the 

environment imposes a "demand" on a certain phenotype, this demand can be 

satisfied by a non-zero range of phenotypic values before invoking a significant 

stress. Support for this view comes from the broad phenotypic variability in 

populations of indistinguishably-fit cells and multicellular organisms. It is, in fact, 

widely accepted that no living organisms can avoid a certain level of variability 

(regardless of how fit it is). This feature makes the model particularly suitable for 

biological systems and distinguishes it from standard mathematical optimization 

problems. We have revised the manuscript to clarify this point.  

We note also that the mismatch need not be strictly zero inside the comfort zone but 

small enough. In particular in one implementation we used a sharp sigmoid as a 

mismatch function (Supplementary Section 1.4). 

4. In some other modeling frameworks of gene regulatory networks, e.g. Boolean

network, cell types and cellular functional states are naturally associated with the 

intrinsic attractors of the Boolean networks (without any exploratory adaptations). 

Does the gene regulatory dynamical model studied in this paper also support various 

intrinsic attractors in the absence of exploratory adaptation?  

This is a central issue in Boolean networks which is currently at the focus of much 

interest. Our model contributes to this field by showing that attractors do exist in 

certain topological structures of strongly coupled networks in high dimensions.   

It was recently demonstrated [1] that the number of fixed points in Boolean networks 

decreases dramatically as network size increases, reaching a tiny fraction (~10
-3

) for

sizes of few thousand, relevant to small regulatory networks (e.g. of bacteria) and an 

even smaller fractions for larger networks (e.g. mammalian cell). Beyond Boolean 

networks, it is known that application of our equation (1) to large homogeneous 

networks with strong enough coupling leads to chaotic motion without attractors [2]; 

thus the number of attractors decreases to zero in the limit of large networks.  

Our current findings (Fig. 5) indicate that this does not necessarily hold for arbitrary 

topological network structure. Specifically, we show that in the absence of 

exploration, the number of attractors in an ensemble is strongly dependent on its 

topology and decreases extremely slowly or reaches a plateau for heterogeneous out-

going degree distributions.  

For our context, these results show that the number of attractors correlates positively 

with the ability of the ensemble to support exploratory adaptation.  

Following the reviewer's remark, we revised the text to emphasize and discuss this 

finding and its relation to other modeling frameworks (e.g. Boolean networks). 



3

Results: 

5. The authors provide neither analytical nor intuitive/qualitative explanations why

the adaptation processes can in fact converge and why networks with a scale-free 

topological backbone are much more likely to converge. 

Following the reviewer's suggestion, we include a plausible intuitive/qualitative 

explanation in the revised manuscript. It is based on the differential ability of hubs to 

coordinate changes in the state of nodes with lower out-degrees. Without hubs (e.g. in 

a network with a narrow distribution of out-degrees), each node has the same small 

influence as any other node. Under irregular dynamics, the states of these nodes are 

expected to undergo random changes, and in a large enough network they are highly 

unlikely to move coherently towards a stable alteration in a (macroscopic) phenotype. 

On the other hand, the existence of a small number of nodes with a much broader 

influence (hubs) promotes correlations between many downstream nodes, leading to a 

substantial increase in the ability to encounter a coherent change in a given direction. 

Convergence to a new phenotype which satisfies the demand can then be achieved if 

the state of one or few hubs changes in an extent and direction that are compatible 

with this demand.  

Preliminary support in this argument is obtained by computing the Pearson correlation 

between pairs of variable during the irregular dynamics that precedes convergence. 

Below are shown the distributions of values obtained from the two opposite 

ensembles, Binom-SF and SF-Binom (out-in). It can be seen that the latter shows a 

broader range of correlation coefficients, and particularly a subset of variables show 

extremely high (-1 or 1) correlation. Further work is required to establish the role of 

hubs in this process and to characterize the nonlinear dynamics quantitatively. This 

work is currently under way. 

6. How robust are the stable connections against small perturbations on the

interaction strengths J and the topology backbone T? 

We addressed this important question with new data displayed in 3 supplementary 

figures (Figs. S11-S13) and described in a dedicated Supplementary section 2.8. 

Altogether, these data demonstrate the existence of a large basin of attraction for 

convergence in both J and T space, indicating that the connections are indeed stable 

for small perturbations in connection strength and topology backbone. We also note 

this important insight in the revised manuscript (p. 5, l. 129). 
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7. It is well known that gene regulatory networks contain certain motifs, e.g. feed-

forward loop and bi-fan. Will the presence of those motifs enhance the exploratory 

adaptation? If yes, this will make the phenomenological model more appealing. 

Otherwise, we have to rethink the meaning of this model.  

This is again a very important issue which we have addressed with extensive analysis. 

We tested the effect of adding common types of network motifs to a random network 

ensemble (this was done with special care to compare the results to an appropriately-

defined null model). The most significant results were obtained for the auto-

regulatory feedback loop motifs. We found that even a single auto-regulatory loops 

acting on the largest hub can lead to a significance enhancement of convergence! This 

enhancement is further increased by adding such loops to additional hubs. These 

results are now presented in a new figure panel in the revised version, Fig. 2F. 

Addition of a sufficient number of loops to random elements can also improve the 

convergence of small enough networks with narrow degree distributions, but this 

improvement vanishes in larger networks (new Supplementary Fig. S15). 

These new findings are not only consistent with recent results on the contribution of 

auto-regulation to stability in Boolean networks [3]; they offer an important, but 

hitherto unrealized, rationale for the overwhelming abundance of positive 

autoregulation of master regulatory transcription factors (summarized in [3]). Due to 

the large number of downstream targets of these regulators, they provide an example 

of hubs in gene regulatory networks. Our results show that autoregulation of such 

hubs leads to a dramatic improvement in their ability to drive the network into a stable 

state that is compatible with a phenotypic demand. This is now highlighted in the 

revised paper.   

In contrast to this remarkable impact, we found that addition of Feed-Forward Loops 

(FFL) has only a mild influence on the convergence fraction and that Bifans have no 

detectable effect. This is possibly because this ensemble has a scale-free outgoing 

connection distribution, which already favors both of these motifs [4, 5].  

A detailed account of the motif analysis is given in a new Supplementary Section, 2.9. 

We are grateful to this reviewer for his/her constructive comments and suggestions 

which have greatly improved our paper. 

Reviewer #2: 

C. Remarkably, the only evidence that such an algorithm may be at work in biological 

organisms that the authors present is precisely this finding, namely that regulatory 

networks with a scale-free out-degree distribution do this learning best. But even this 

evidence is, in my view, fairly flimsy. The field of systems biology has an odd 

fascination with scale-free distributions, and if they can fit a straight line to a log-log 

plot even if it only covers a single decade, then they declare success. But the data (for 

example that presented in [22]) can really be fit in multiple ways. To make the case 

for a scale-free distribution really requires at least two decades, better 2.5. So for me, 

the finding that networks with SF out-degree distribution and exponential in-degree 

distribution do best is at best a hint that the model the authors present is not 

necessarily completely wrong.  
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We agree with the reviewer's point that power-laws are sometimes inferred without 

sufficient empirical data. Our model, however, does not assume an underlying power-

law distribution of real gene-regulatory networks. We only use the Scale-Free 

ensemble as a mathematical tool to compare different network statistical properties in 

a controlled way. In our simulations, as in real networks, the sample of ~1500 

connectivity values within a network clearly cannot follow precisely a power-law. 

The relation of our work to the claimed power-law distributions in experiments may 

have been overstated and we modified this in the revised text. 

Notwithstanding this point, the reviewer's comment motivated us to address the 

question whether our main findings are sensitive to having exact power-law 

connectivity.  For that, we investigated in more detail the influence of one or few hubs 

alone. Since hubs are unquestionably abundant in gene-regulatory networks, a 

significant contribution of a few hubs to exploratory adaptation can provide evidence 

for biological relevance. To distinguish the effects of hubs from the strict requirement 

of scale-free topology, we analyzed the effect of adding a small number of hubs to a 

network with an otherwise narrow distributions of out-degrees. As shown in the new 

Fig. 2E, the existence of a small number of hubs is sufficient to confer substantial 

convergence on an otherwise non-converging ensemble. This shows that the 

feasibility of adaptation by random exploration is not dependent on the exact 

distribution shape. Rather it is robustly promoted by the existence of outgoing hubs, 

whose biological existence and importance is beyond any doubt.  

E. So this is my main problem with this paper: it is completely speculative, with 

essentially no hint given as to why we should believe that this mechanism is active in 

biology. I am not saying that this mechanism can’t exist in biology. It absolutely 

could. Something like this may be going on in cognitive networks but (I also work in 

that field) this is by no means established. Indeed, the ANN abstraction in 

computational neuroscience is to a large extent laughable. The idea that behavioral 

responses are encoded in fixed points of a high-dimensional manifold is easily 

repudiated by finding that small changes in the input pattern in brains can create 

dramatic changes it the response, something that is not possible in the ANN picture. 

The continuous response is, in fact, related to the connectivity pattern of the ANNs, 

something that the present work is changing by using sparse networks, instead. This is 

indeed the correct approach.  

The revised manuscript includes new findings, demonstrating that the (well-known) 

existence of a few hubs is sufficient to facilitate exploratory adaptation (new Fig. 2E) 

and that this adaptation is further enhanced by autoregulation, an abundant feature of 

gene regulatory hubs (new Fig. 2F; new Supplementary section 2.9). These results are 

completely free of speculation, thus eliminating any potential doubt about the 

biological relevance of our model.  

Beyond this demonstration of biological relevance, we would like to emphasize that 

the purpose of this work is to suggest the first conceptual explanation for a class of 

currently unexplained biological phenomena. This is the main novelty of our work 

and accordingly this is how it should be judged. Establishing this model with 

sufficient phenomenological evidence requires experimental effort, which is clearly 

beyond the aim or scope of this theoretical work.  
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We agree with the reviewer that this work may have implication to learning theory 

beyond the standard ANN (as indeed is reflected by the interest we receive from 

colleagues in the Neuroscience community). Rather than encoding responses in 

attractors, the system finds a different attractor state each new encounter; a nontrivial 

task in high dimensions. This could be compatible with the described behavior.  

F. I’m afraid that in the absence of more biological evidence, a paper like this 

belongs in a far more specialized journal. Just as an example, the authors describe a 

random walk procedure that modifies the weights of the network, but no example of a 

biological mechanism that could create this kind of noise is offered. It is true that 

transcription, e.g., can be noisy. But there is no evidence that transcription rates can 

be shifted to new levels when exceeding some threshold, say. This could happen if 

gene expression was bistable (which can happen sometimes). But it is this kind of 

molecular evidence that the kind of dynamics that are being proposed in this paper 

that needs to be marshaled in order to be published in this venue. In the absence of 

those, a more specialized journal is more appropriate.  

There is in fact ample evidence for irregular (random) activity in gene regulatory 

networks that can support the type of random walk that we model. Transcriptional 

noise is only part of the picture: it can providing changes in regulation through 

modifying the expression of transcription factors. Additionally, context-dependence 

regulation, implemented by intrinsically disordered transcription factors; the 

practically endless combinatorics of alternative splicing; and multiple post-

translational modifications are important mechanisms that can support changes in 

regulatory interaction strength. The experimental evidence and implications to genetic 

regulatory interactions of these processes are summarized, for example, in a recent 

review [6]. These mechanisms confer gene regulatory interactions with the capacity to 

be modified and modulated; this is the substrate required for the random walk. Such 

variations are not only well-documented, they have in fact been directly implicated in 

coping with novel conditions. Examples include the case of cellular reprogramming 

[7,8] and adaptation to artificial gene rewiring [9,10].  

We believe this biological evidence was not emphasized enough in the paper. This 

was modified in the revised version, with the appropriate references cited. 

Reviewer #3 

1. The authors exemplify their method on a rather general dynamic equation (1), with

the main restriction being that the interaction function $phi(x)$ asymptotically 

saturates for large x. While this is a rather common assumption in the context of 

gene-regulation, as the authors clearly note and appropriately cite, one still wishes to 

better understand the implications of such restriction. What would happen in case we 

implement non-saturating interaction dynamics? Would that harm the reported 

findings? It seems to me that saturating vs. divergent dynamics represents an 

essential distinction, with likely significant implications on the system's behavior, 

which may potentially enrich the picture currently portrayed.  
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This question is partly answered by our reply to Reviewer #1, where different 

versions of the nonlinear equations were examined (new Supplementary Sections 2.1, 

2.2). The complete lack of a saturating function results in divergent dynamics of the 

equations of motion and are therefore not included in the analysis.  

2. On that note, seems that the main motivation in the presented analysis relates to

gene regulation, which follows the combined scale-free/bounded degree distribution, 

and likely the saturating $phi(x)$. Cellular function, however is also driven by protein 

interactions - an un-directed scale-free biochemical interaction network with 

potentially non-saturating interaction terms. I do not feel that the paper needs a full-

scale analysis of such interactions, it is rather rich and comprehensive in its current 

form, but, the authors may consider addressing this issue briefly, to better put their 

results in context. 

We have addressed this point as suggested in the revised manuscript. 

3. In Eq. (3) it seems that the phenotype y(t) is time dependent, namely that the

function to which the cell should evolve is not just a point in "phenotype-space", but a 

complete temporal function. Upon first reading I could not fathom how a system could 

ever successfully adapt to such a requirement, seeking a target network that not only 

satisfies a desired fixed point, but also features a specific temporal pattern. Reading 

on, I realized, that this was not the authors' intention, and indeed, the adaptation 

leads the system to a desired fixed point. This point should be made clear in the 

paper, and especially in the presentation of Eq. (3). 

This was clarified and better explained in the revised manuscript. 

4. The exploration follows a form of diffusion, depending on the square-root of the

discrepancy from the desired phenotype. How important is this assumption to the 

convergence? The other arbitrary dependence is on the value of D, which the authors 

analyse comprehensively later on. 

This is not a central assumption but a matter of convention. We have chosen the 

square root to adhere to common formulation of random walk. The important 

ingredient lies in the dependence of the function M(y-y*) which is highly nonlinear 

and discussed in more detail in Supplementary Section 1.4. We have made this 

distinction and the reference to this section more clearly in the revised text. 

5. The one major issue that begs for additional insight is the way in which the degree

distribution affects the adaptation process. The finding that a combined scale-free 

out-degree and bounded in-degree increases the probability of successful adaptation 

is central to this paper, and truly important. Hence rather than an intriguing 

empirical fact, the reader expects to gain more insight into the 

microscopic/mechanistic exchanges that enable this. This can probably be done 

through extensive numerical analysis, tracking the specific exploration steps that led 

to successful adaptation, and observing their relationship to the hubs. Even in the 

absence of an analytical explanation, I am certain, that such an analysis will also, 

along the way, shed light on the presented adaptation model and expose new facets 

and directions for researching this problem. 
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This is closely related to remark 5 of Reviewer #1. As detailed above, we now include 

a qualitative explanation based on the differential ability of hubs to coordinate 

changes in the state of nodes with lower out-degrees. This can explain the existence of 

attracting states in large networks (Fig. 5) and supports the adaptation of networks in 

which one or more of these attractors is compatible with the new demand. Please see 

detailed response above to remark 5 of Reviewer 1. 

6. Minor corrections: Two citations misplaced (3,19) below Eq. (4); Page 3:

"...substantially more abundant thant" - should be that. 

Corrected. 

To summarize, I believe this is a very good paper, that can be further improved 

through few "adaptations", if the authors expand on the points above. 

We thank this reviewer for his/her highly positive review and remarks. 
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REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have addressed all my previous comments in a satisfactory fashion. I have no 

further comments on the revised version.  

 

I highly recommend this paper for publication in Nature Communications. I believe this work 

could trigger a burst of research activities in this area.  

 

 

Reviewer #2 (Remarks to the Author):  

 

In this revised version, the authors responded well not only to my comments, but also to the 

comments of two other reviewers that made pertinent points. They added a significant 

amount of new material that addresses concerns about the generality of the findings, and 

also put the work into more of a biological context. With these revisions, I can advocate 

publication.  

 

 

Reviewer #3 (Remarks to the Author):  

 

I am glad to see that the authors have addressed my comments in a sufficient manner. At 

this stage I recommend publication in Nature Communications.  


