
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In this manuscript, Zhou use a DNA-affinity approach to capture and identify proteins that 

bind to DNA designed to contain a large number of transcription factor (TF) response 

elements. They do so in 32 mouse tissues, aiming to generate TF profiles for each individual 

tissue, but more importantly to correlate these to each other to create a hierarchy of TFs that 

are unique to some or shared between several organs. To this end, the authors invoke a 

range of bioinformatic analyses to group and classify their data. Specifically, they link TF 

patterns to tissue functionality, also making use of existing data of TF-TF interactions and TF 

target genes.  

 

This is a nice study, using a methodology previously developed by the same authors to 

identify TFs that bind to a DNA construct containing a large number of concatenated TF-

response elements. They now applied this to a large number of tissues to rank and classify 

TF patterns and correlate this with tissue function. The manuscript is well-structured, clearly 

written, using sound analysis methods, and the figures are of high quality. The limitation of 

the paper resides in the fact that is mainly a descriptive study based on a single (although 

large) data set, where only in the last section the authors try to get closer to functionality by 

monitoring changes in TF profiles after liver regeneration. Yet, this does not lead to a 

concrete set of TFs that could be conclusively/causatively linked to this process.   

 

Other remarks:  

 

1. One of the limitations of the used approach is that it is an in vitro method, with a number 

of associated shortcomings. The authors should address these, and put this in the 

perspective of biologically interpreting their data. For instance, the procedure starts from a 

nuclear extract, thus taking TFs out of their physiological context (e.g. being in its chromatin-

bound or soluble state, which is a dynamic equilibrium for many TFs). Second, the bait is a 

piece of naked DNA, i.e. devoid of nucleosomes or other chromatin constituents. Therefore, 

capture of a particular TF (or failure to do so) does not have a direct biological meaning. As 

a result, the set of TFs that is identified in the end provides a fingerprint that may be used for 

certain classification procedures, however it does not indicate expression level in the 

respective tissues, or propensity to be associated with chromatin in vivo. The authors should 

emphasize this to make the reader aware of this.  

 

2. The authors refer to their method as revealing TF ‘DNA-binding activities’ and 

‘abundance/expression level’ (e.g p. 10 last paragraph). Although they use these terms 

almost interchangeably, neither of them is strictly correct, since there are many reasons why 

the identified proteins are not a representative sampling of the in vivo situation. First, DNA-

binding sonly applies to interaction with naked DNA in an in vitro experiment, as mentioned 

above. Second, no data are provided with regard to the fraction of each TF that is captured 

(which may be different for each TF), and to what extent protein binding to the bait-DNA 

reaches saturation. These factors combined make it very difficult to make any quantitative 

statement on either DNA-binding activity or protein abundance in tissue.  

 

3. To circumvent some of these issues at least in part, the authors should have overlaid their 



data with a proteomic study (PMID 23436904) profiling global protein expression across 28 

mouse tissues. Given the very high similarity between the source material in both studies 

this should provide complementary data where expression levels of at least the most 

abundant TFs can be properly addressed.  

 

4. It is unclear which TF response elements were included, and how many of the identified 

proteins corresponded with these.  

 

5. In addition to the above, the authors only mention the number of TFs that were identified, 

and not the total number of proteins that were co-isolated (as interaction partners or 

contaminants).  

 

6. The clustering of nuclear receptors (Fig 4a) results in a slightly different classification than 

previously proposed (page 9). However these groupings are not mutually exclusive as they 

are assigned by function and location, respectively.  

 

7. Zfp655 was shown to be associated with metabolism and immune-related processes (p11, 

fig 5e) claimed to be similar to Hnf1a/b, Hnf4a and Nr1h4. However, the latter was not 

demonstrated and should be included to allow a direct comparison to what is shown in fig 

5e.  

 

8. The authors mention that ‘expression of the liver ttmTFs was significantly decreased 

compared with that of the non-ttmTFs’ (page 16). They should mention some examples 

explicitly, and discuss how they are related to liver regeneration. Currently, this is a very 

general statement that does not provide a lot of insight.  

 

9. The liver is a highly heterogeneous tissue. Can the effects observed in the liver 

regeneration experiment be ascribed to any particular cell type?  

 

10. I have some hesitation about the terminology described as ‘TF hierarchical networks 

among the tissues’ (p. 16). Hierarchy implies interdependence, which does not apply to the 

large majority of tissues. Instead, repeated identification of the same proteins may indicate 

re-use of TFs for different functionalities, which, from an organism point of view, may be a 

necessity given the large variety of constituent cell types (hundreds) and the limited number 

of TFs encoded in the genome (‘just’ hundreds).  

 

 

 

 

 

 

 

 



Reviewer #2 (Remarks to the Author):  

 

In this paper the authors employ the catTFRE approach recently developed by their group to 

identify the repertoire of TFs active in the nucleus of 24 adult and 8 fetal mouse tissues. This 

approach, that is based on TF enrichment using tandem repeats of binding sites and mass 

spectrometry, is a great improvement from whole cell/tissue proteomics as a large fraction of 

TFs are below the detection limit in these methods, and from expression profiling as there is 

low correlation between TF mRNA levels and TF activity. This dataset, for which the authors 

generated an easy to navigate web page, will certainly be useful for the scientific community 

and serve as a framework to study tissue-specific gene regulatory networks. Having said 

this, there are several analyses that need to be modified or added to support the several 

conclusions made by the authors to be acceptable for publication. Limitations of the method 

should also be discussed.  

 

Major concerns:  

 

1) Some of the numbers referenced in the manuscript don’t match with those in the 

webpage. For instance, in lines 139-140 the authors mention 173 and 447 TF for skeletal 

muscle and thymus, respectively. However, in the TF Atlas webpage these numbers are 167 

and 448. Where are the discrepancies coming from?  

2) The authors should comment on any potential bias in TF abundance due to the method 

(for instance the tandem motif sequences used in the pull down, affinity, saturation, etc). 

Two TFs from the same family could bind to the same sequence so their relative FOTs could 

be influenced by their relative protein abundance and affinity for the motif. Further, TF s from 

different families may compete with a different number of TFs for sites, so their relative FOTs 

may also be influenced by number of family members that recognize a motif. From their 

previous paper, it is clear that using different DNA sequences in the pull down results in 

different enrichments and abundances. The authors should find a way of controlling for this 

factors or clearly specify these limitations.  

3) Is the number of TFs detected in different tissues a property of the number of TFs active 

in the different tissues or could be explained by differences in the amount of protein in the 

nuclear extracts?  

4) Some of the thresholds used seem arbitrary. For instance, why look at the 35 most 

abundant proteins (line 151), 12 tissues (line 166), a median expression >0.5 (line 172), or 

10 times the median (line 178)? A rationale for the thresholds should be included.   

 5) In line 155 the authors “assume” that TFs that are more abundant “regulate the busy and 

important functions of the tissues.” However, there are other factors that influence that such 

as affinity, which genes they regulate (it could be few but important), etc. The authors could 

hypothesize this and then show based on data.  

6) The statement in line 193-194 is not necessarily true. There could be widespread 

transcriptional regulation by ubiquitous TFs or by a few highly expressed/active TFs.   

7) Paragraph 200-206 seems disconnected with the rest and there is no conclusion. In 

addition, in line 202 the authors say that TSG have more ubiquitous tissue distribution, 

however in figure 3e that difference is not significant. The authors should either make a clear 

point or remove the paragraph.  

8) In lines 293-295 the authors state that clusters can shed light on the “dark proteome”. 

However, they do very little effort to validate their predictions besides the example of zfp655. 

The authors should go beyond the anecdotal example. For how many TFs you can make 



functional predictions? For how many of those is the function known in the literature? Does it 

match?  

9) In line 332 the authors reference papers studying protein-protein interactions between 

TFs using Y2H. However, in reference 13 mammalian two-hybrid is used instead (correct 

also in line 500). Other references also use other techniques. Literature should be  properly 

cited.  

10) In paragraph 356-370 the authors comment on the connection between ubiquitous TFs 

and ttrTFs, and then list a number of examples. To make this claim the authors need to do 

statistical analyses. Are interactions between these 2 classes of TFs more frequent than 

expected by chance?  

11) In lines 381-384, how where the TGs determined? This paragraph is unclear.  

12) The criteria used to define ttmTFs is not very stringent as many TFs not involved in 

maintaining tissue identity can be enriched in a tissue and also be coexpressed with its 

targets. Indeed, the authors classify 30% of the TFs they detect as ttmTFs which seem high. 

Besides providing some anecdotal examples, the authors should attempt a more systematic 

analysis to support their claim.  

13) Lines 421-425 are impossible to understand. It is also speculative as there is no 

experiment or analysis showing or suggesting causality between ttmTF concentration and 

function.  

14) Some sentences in the Discussion section are purely speculat ive, and no evidence is 

provided in the paper. For instance, lines 492-494, 495-498, 516-518. Overstatements 

should be avoided.  

15) The authors should comment on the limitations of the method in the Discussion section.   

 

 

Minor concerns:  

 

1) Line 49: “TFs interacting with the promoters of…” Enhancers and silencers also play an 

important role in gene regulation.  

2) Paragraphs lines 62-87: Other methods that study TFs and GRNs should also be 

mentioned such as yeast one-hybrid assays (PMID 25910213, 23917988), genome-wide 

DNase footprints (PMID: 22955618), etc.  

3) The authors filter the proteins they detect by mass spectrometry based on DBDs. To have 

a sense of the specificity of the approach, the authors should also mention, at least in the 

methods section, which proportion of the proteins they detect (in number and in abundance) 

correspond to TFs.  

4) Line 130: DBTF is not defined.  

5) In line 142: FOT is not defined.  

6) In line the 155 the authors mention nuclear receptors (NRs) but in line 133 they talk  about 

NHRs. Consistency should be kept throughout the manuscript.  

7) What is the difference between ttrTFs and ubiquitous-non-uniform TFs? Some of the 

definitions are confusing and there are many acronyms in the paper making it hard to read.   

8) Some figures lack appropriate labels, and larger fonts would benefit reading. Figure 2f: 

MaxValue and MedianValue of what? Figure 3c needs a label in the y-axis. Figure 4a, 4d, 

6c, 6e, 6f, 7c need a label for the color gradients. What are the axis in figure 5a? Figure 5e: 

label missing in top graph. Figure 6f: what is it being clustered? A label is missing in the y -

axis of fig 7g.  

9) In line 223 the authors say they detected 47 NRs from 32 tissues. But in the following 



sentence they talk about half of adult tissues (24 in total). This is confusing.  

10) In paragraph 277-284 the authors use cosine similarity. The way it is defined is not very 

intuitive and it doesn’t scale linearly with the overlap in the set of tissues shared by two TFs. 

The authors should explore other more intuitive measures of similarity such as the Jaccard 

index or PCC.  

11) In paragraph 312-325 the authors mention the correlation coefficient for the expression 

of TF pairs. Is this based on catTFRE or mRNA expression? Why do the authors use PCC in 

this case and cosine for figure 5a?  

12) Line 352-354: The correlation coefficient and the p-value should be included.  

13) Line 382: TG is not defined.  



Reviewer #1: 

In this manuscript, Zhou use a DNA-affinity approach to capture and identify proteins that bind 

to DNA designed to contain a large number of transcription factor (TF) response elements. They 

do so in 32 mouse tissues, aiming to generate TF profiles for each individual tissue, but more 

importantly to correlate these to each other to create a hierarchy of TFs that are unique to some 

or shared between several organs. To this end, the authors invoke a range of bioinformatic 

analyses to group and classify their data. Specifically, they link TF patterns to tissue functionality, 

also making use of existing data of TF-TF interactions and TF target genes. 

 

This is a nice study, using a methodology previously developed by the same authors to identify 

TFs that bind to a DNA construct containing a large number of concatenated TF-response 

elements. They now applied this to a large number of tissues to rank and classify TF patterns and 

correlate this with tissue function. The manuscript is well-structured, clearly written, using sound 

analysis methods, and the figures are of high quality. The limitation of the paper resides in the 

fact that is mainly a descriptive study based on a single (although large) data set, where only in 

the last section the authors try to get closer to functionality by monitoring changes in TF profiles 

after liver regeneration. Yet, this does not lead to a concrete set of TFs that could be 

conclusively/causatively linked to this process. 

 

Q1: One of the limitations of the used approach is that it is an in vitro method, with a number 

of associated shortcomings. The authors should address these, and put this in the perspective 

of biologically interpreting their data. For instance, the procedure starts from a nuclear extract, 

thus taking TFs out of their physiological context (e.g. being in its chromatin-bound or soluble 

state, which is a dynamic equilibrium for many TFs). Second, the bait is a piece of naked DNA, 

i.e. devoid of nucleosomes or other chromatin constituents. Therefore, capture of a particular 

TF (or failure to do so) does not have a direct biological meaning. As a result, the set of TFs that 

is identified in the end provides a fingerprint that may be used for certain classification 

procedures; however it does not indicate expression level in the respective tissues, or 

propensity to be associated with chromatin in vivo. The authors should emphasize this to make 

the reader aware of this. 



 

Reply: Indeed, catTFRE is an in vitro method and has the limitations mentioned by the reviewer 

mentioned. In order to demonstrate the feasibility and accuracy of catTFRE approach in 

dissecting the endogenous TF activity and biological features in proteome scale, we have 

performed the following procedures and evaluations: 

 

1. While we acknowledge that catTFRE is an in vitro binding method, our previous data 

demonstrated that our approach is able to monitor the biological response of TF dynamic 

changes. For instance, we utilized the catTFRE approach to analyze dynamic changes of 

global TF-DNA binding patterns after TNF-α treatment studies (Proc Natl Acad Sci U S A. 2013, 

PMID: 23553833). Consistent with previous studies, TFs in NF-κB family and JNK/P38 

pathways were activated within 15 minutes (Figure CL1). Also, catTFRE pull-downs in K562 

cells treated with phorbol myristate acetate (PMA) or imatinib mesylate (Gleevec), 

demonstrated that the catTFRE can correctly identify the dynamic of the TF activity patterns 

(Figure CL1). More recently (Anal. Chem., 2016, DOI: 10.1021/acs.analchem.6b03150), we 

performed the catTFRE approach to measure the dynamics of TF patterns in response to EGF 

treatments. The activation of 14 representative TFs were detected by catTFRE including many 

well-characterized responders of EGF, such as FOS, JUN, NR4A and MYC. The above data 

indicated that the catTFRE is able to dissect cellular signaling pathways in the form of 

transcription factors DNA binding activity changes. 



 

 

Figure CL1 Systematical and quantitative analysis of TF profiling after TNF-α and EGF stimulation. 

A: Kinetic TF activation pattern of 293T cells after TNF-α stimulation. (Proc Natl Acad Sci U S A. 

2013, PMID: 23553833)  

B: Bioinformatics analysis of TF regulations induced by drugs. Functional classification of altered 

TFs in PMA (left) and Gleevec (right). Down-regulation groups are indicated in blue and 

up-regulation groups are in brown. (Proc Natl Acad Sci U S A. 2013, PMID: 23553833)  

C: Dynamic of TF patterns in HeLa cells treated with EGF and temporal profiles of the 

representative 14 TFs induced by EGF. (Anal. Chem., 2016, DOI: 10.1021/acs.analchem.6b03150)  

 

2. We agree that naked DNA does not represent the natural state of DNA in a living cell as 

compared to a nucleosome template. We have investigated the difference between naked 

DNA and nucleosomes in our previous paper in Molecular Cell (PMID: 23850489). We 



performed DNA-pulldown with naked DNA or nucleosome assembled with core histone 

octamers and tested them on CoR-ERα-ERE complex formation. On nucleosomal EREs, we 

were able to detect 16 of the 18 CoRs seen on the naked EREs (Figure CL2). The main effect 

of the nucleasomal DNA seemed to decrease the amount of TFs bound on the DNA, and thus 

decrease the signal in mass spectrometry. This makes sense as nucleosomes are known to 

inhibit TF DNA binding. Considering that we want to construct a TF atlas in mouse tissues 

with the deep TF coverage, we used naked DNA instead of nucleosomes. In addition to our 

studies, utilizing naked DNA as bait to survey protein-DNA interactions was a conventional 

method, which was widely used in many publications (Proc Natl Acad Sci U S A. 2013, PMID: 

23388641, Cell Rep. 2013 PMID: 24139795 and Cell. 2011, PMID: 22153072). 

 

To make the readers aware of these limitations, we added the statement above and the 

references in the discussions. 

 

 

 

Figure CL2 CoRs from MCF-7 and HeLa S3 NEs bound with E2-liganded ERα on naked 4xERE-E4 

and 4xERE-E4 assembled with Hela core octamers. (Mol Cell. 2013, PMID: 23850489) 

A: MS identifies at least 17 CoRs from MCF-7 and HeLa S3 NEs. Number of identified peptides, 



peptide amount, and fold E2-change (as a heatmap with color scale defined below; same scale is 

used in later figures) are indicated. 

B: MS data (in heatmap format for fold change in the presence of HeLa core histones) show that 

HeLa core nucleosomes (+hist) decrease binding of CoR-ERE complexes from MCF-7 NE. 

 

 

Q2: The authors refer to their method as revealing TF ‘DNA-binding activities’ and 

‘abundance/expression level’ (e.g p. 10 last paragraph). Although they use these terms almost 

interchangeably, neither of them is strictly correct, since there are many reasons why the 

identified proteins are not a representative sampling of the in vivo situation. First, DNA-binding 

sonly applies to interaction with naked DNA in an in vitro experiment, as mentioned above. 

Second, no data are provided with regard to the fraction of each TF that is captured (which may 

be different for each TF), and to what extent protein binding to the bait-DNA reaches 

saturation. These factors combined make it very difficult to make any quantitative statement 

on either DNA-binding activity or protein abundance in tissue. 

 

Reply: To eliminate the ambiguity, we uniformly use “TF DNA-binding activity” in the revision. 

To evaluate the quantification capability of catTFRE, we measured the saturation curve of catTFRE. 

We performed serial dilution experiments with 3 pmol of catTFRE DNA (the exact amount used 

throughout the study) with different amount of NE (200ug, 500ug, 1mg, 2mg and 5mg) from 

mouse brain tissue. As shown in the figure CL3, the total MS signal of TFs (chromatographic peak 

area) has high correlation coefficient (R2=0.959) with the total NE amounts. Notably, an excellent 

linear response was obtained when NE amount ranged from 1mg to 5mg. Based on these results, 

we used 3 pmol of DNA and 2mg of total NE for screening the TF atlas of mouse tissues.  

We also surveyed individual TFs in the dilution experiments and found good linear response 

characters (Figure CL4).  

 

 



 
Figure CL3 Quantitative feasibility and linearity of catTFRE strategy evaluated by dilution analysis. 

Different amounts of NE extracted in brain were used as shown. Total peptide AUC (area under 

curve) was calculated. 

 

 

Figure CL4 Quantitative feasibility and linearity of individual DBTFs. Total peptide AUC from 20 

TFs selected in Figure CL3 were calculated. 

 

Taken together, we have demonstrated that the catTFRE approach can sensitively and accurately 

monitor the abundance and DNA-binding activity dynamics of TFs with dilution and many “proof 



of principle” experiments. Also, we evaluated the saturation curve to set up optimized conditions 

for DNA pull-down MS pipeline. Please see Supplementary Fig. 1 in the revision. 

 

We appreciate the reviewer’s comment for precisely pointing out the shortcomings of the 

catTFRE. We added this limitation to the discussion section in the revision. 

 

 

Q3: To circumvent some of these issues at least in part, the authors should have overlaid their 

data with a proteomic study (PMID 23436904) profiling global protein expression across 28 

mouse tissues. Given the very high similarity between the source material in both studies this 

should provide complementary data where expression levels of at least the most abundant TFs 

can be properly addressed. 

 

Reply: We compared our catTFRE dataset with Geiger et al.’s protein profiling dataset (Mol Cell 

Proteomics. 2013, PMID: 23436904). It is clear that catTFRE is able to capture more TFs compared 

with protein profiling (941 TFs in our dataset vs 151 TFs by Geiger et al.). The 10 TFs that were 

exclusively identified in the Geiger et al.’s dataset were observed in special development stages of 

tissues, which were not included in our study.  

 

Figure CL5 Venn diagram shows our data covers most of TFs that Geiger et al. identified. 

 

As expected, TFs detected by proteome profiling tend to be the high abundant ones in the 

catTFRE dataset (Figure CL6). We also calculated correlation coefficients for the 13 overlap 

tissues in both datasets (Table CL 1) and found that the Spearman’s rank correlation coefficient 



ranged from 0.046 (liver) to 0.401 (spleen), suggesting a poor correlation between TF expression 

levels and their DNA-binding activities.  

 

Figure CL6 TFs detected in profiling data are in higher abundance part of TFRE data. Y-axis 

showed TF rank in TFRE data. Red boxes are overlapped TFs by profiling data and TFRE data. P 

value was calculate using Wilcoxon rank-sum test. 

 

Table CL1 Comparison of dataset with catTFRE approach to Geiger et al.’s dataset with profiling 

approach. Correlation coefficient was calculated by Spearman’s rank correlation analysis. 

Tissue #TF (catTFRE) #TF (Geiger et al) Overlap 
Correlation 
coefficient 

Adrenal gland 357 85 72 0.179 
Brown fat 297 66 53 0.227 

Colon 305 94 74 0.272 
Eye 403 70 51 0.314 



Heart 272 62 43 0.131 
Liver 316 80 59 0.0463 
Lung 326 77 60 0.277 

Muscle 173 32 14 0.147 
Pancreas 295 62 49 0.327 
Spleen 346 76 61 0.401 

Stomach 311 51 45 0.273 
Thymus 407 86 76 0.246 

White fat 307 77 54 0.116 
     

Total 804 138 134  

 

Furthermore, we mined hundreds of published literatures (Supplementary Data 1 in the revision) 

to examine some of the “important” TFs in the 13 overlapped tissues. As showed in table CL2, 

the catTFRE approach detected most of the “important” TFs in tissues (76 out of 85), while the 

profiling data only identified few of them (6 out of 85).  

 

Table CL2 Summary of tissue “important TFs” in the 13 overlap tissues between the two datasets. 

Tissue Important TF catTFRE Geiger et al Overlap 

Eye 10 9 0 0 

Lung 5 5 0 0 

Pancreases 9 5 0 0 

Adrenal gland 4 3 0 0 

Thymus 8 6 1 1 

Heart 10 10 0 0 

WAT 7 3 1 1 

Liver 8 8 3 3 

BAT 6 4 0 0 

Colon 4 4 1 1 

Muscle 4 2 0 0 

Spleen 6 6 0 0 

Stomach 4 4 0 0 

 



In summary, comparison between the catTFRE and the profiling datasets indicated that the 

catTFRE could more accurately monitor the TF binding activities and represent the biological 

features of endogenous TFs in the tissues. We acknowledge that the comparison is not entirely 

fair as the mass spectrometry technique has made great advancement and the profiling data was 

collected with last generation mass spectrometer. Nevertheless, we added the comparison 

between catTFRE and profiling results in the revision and pointed out the differences in 

technology used. Please see Supplementary Fig. 1 and Supplementary Data 1 in the revision.  

 

Q4: It is unclear which TF response elements were included, and how many of the identified 

proteins corresponded with these. 

 

Reply: We referred to TF binding database JASPAR to select consensus TFREs for different TF 

families. To design the catTFRE construct, we used 100 selected TFREs and placed two tandem 

copies of each sequence with a spacer of three nucleotides in between, resulting in a total DNA 

length of 2.8 kb. In the mouse TF atlas, we identified 87 identified TFs whose response elements 

correspond to the designed TFREs. Moreover, we also identified large number of additional TFs 

whose response elements were not included in the catTFRE sequence. In the previous work (Proc 

Natl Acad Sci U S A. 2013, PMID: 23553833), we have speculated the possible reasons why the 

number of TFs identified by catTFRE greatly exceeded the original design of 100 TF families: (i) 

the 3-bp linkers may create additional binding sites; (ii) the tandem TFRE may also create 

additional binding sites, and (iii) the flexibility of TFs in TFRE recognition. 

 

 

Q5: In addition to the above, the authors only mention the number of TFs that were identified, 

and not the total number of proteins that were co-isolated (as interaction partners or 

contaminants). 

 

Reply: Indeed the catTFRE pulled down many transcriptional co-regulators (TCs) and other DNA 

binding proteins (DBP). In the mouse TF atlas, we identified 523 TCs, ranging from 63 in skeletal 

muscle to 366 in thymus (Table CL3). Figure CL7 summarizes the distribution of TCs detected in 



the 32 mouse tissues. Similar to TF’s pattern, an L-shaped distribution pattern was observed 

among the 32 tissues. Interestingly, TC showed a lower tissue-specificity score (TSPS) than the TFs 

(P = 3.86E-16), indicating their ubiquitous distribution (Figure CL8). Among them, six subunits of 

Mi-2/NuRD complex (Rbbp7, Hdac1, Hdac2, Mbd2, Rbbp4 and Mbd3) were identified. 

Mi-2/NuRD is an important protein complex coupling chromatin remodeling ATPase and 

chromatin deacetylation functions, and plays an essential role in gene expression through 

epigenetic regulation. We added the description of TCs in Supplementary Fig. 2 in the revision. 

 

Figure CL7 A: Number of tissues in which the TCs are expressed. B: Comparison of TSPS between 

TF and TC.  

 

Figure CL8 Heatmap for TCs in the 32 mouse tissues. 

 

Table CL3 The number of DNA binding protein, transcription cofactor, DNA binding transcription 



factor and their proportions in 32 mouse tissues. 

Tissue 
DNA binding 

Protein 
TC TF Total* Total Protein 

Ratio 

(Protein ID) 

Ratio  

(Abundance)# 

MEF 479 180 224 601 2418 24.9% 11.9% 

fBrain_18.5 591 171 366 719 1893 38.0% 23.0% 

fBrain_13.5 661 263 371 849 2705 31.4% 17.0% 

fLiver_13.5 531 182 261 643 1734 37.1% 17.9% 

fLiver_18.5 388 97 185 440 1492 29.5% 12.9% 

Uterus_1.5 364 105 177 423 1457 29.0% 13.7% 

Embryo_6.5 450 140 232 544 1792 30.4% 13.9% 

Placenta_18.5 453 134 229 540 2204 24.5% 11.4% 

Brain 593 235 310 754 3669 20.6% 8.1% 

Eye 730 261 403 903 3309 27.3% 11.7% 

WAT 608 217 307 750 3735 20.1% 6.2% 

Liver 601 231 316 762 3827 19.9% 8.3% 

Lung 674 260 326 850 4435 19.2% 6.6% 

Pancreas 676 282 295 885 5463 16.2% 3.8% 

Testis 731 319 339 962 4560 21.1% 7.7% 

Spinal cord 721 300 359 947 5235 18.1% 5.6% 

Thymus 866 366 447 1138 4865 23.4% 7.3% 

Thyroid 415 99 201 474 2629 18.0% 8.1% 

Adrenal gland 721 290 357 923 4862 19.0% 6.1% 

BAT 603 249 297 780 4344 18.0% 6.2% 

Blood 455 199 175 596 4389 13.6% 2.0% 

Seminal_vesicle 557 245 228 730 4542 16.1% 3.5% 

Kidney 731 286 377 928 4629 20.0% 7.7% 

Skeletal_muscle 346 63 173 380 1704 22.3% 8.2% 

Spleen 761 303 346 980 4814 20.4% 6.0% 

Colon 697 320 305 918 5620 16.3% 4.2% 

Skin 754 279 390 960 4927 19.5% 6.5% 

Small_intestine 692 263 340 868 3779 23.0% 10.6% 

Heart 539 174 272 650 3179 20.4% 8.8% 

Bladder 808 339 396 1056 6030 17.5% 6.2% 

Stomach 650 264 311 832 5099 16.3% 4.7% 

Tongue 426 107 212 488 2825 17.3% 5.1% 

Liver_Profiling  126 37 17 152 2175 7.0% 0.1% 

 * Total includes DNA binding protein, TC and TF; there were some overlap among them. 

 # The ratio of abundance was the amount of TFs in total proteins. 

 

 

Q6: The clustering of nuclear receptors (Fig 4a) results in a slightly different classification than 



previously proposed (page 9). However these groupings are not mutually exclusive as they are 

assigned by function and location, respectively. 

 

Reply: The slightly different classification between our dataset and previously proposed (Cell. 

2006, PMID: 16923397) has revealed the diversity and complementary information provided by 

TF DNA binding activity and gene expression at mRNA level. Also, the similar conclusions 

between Bookout AL et al.’s work and the catTFRE results further demonstrated that the catTFRE 

approach could quantitatively detect the TF DNA binding activities at proteome scale and is 

applicable to study the biological features of the TFs. We have added this discussion in the 

revision. 

 

Q7: Zfp655 was shown to be associated with metabolism and immune-related processes (p11, 

fig 5e) claimed to be similar to Hnf1a/b, Hnf4a and Nr1h4. However, the latter was not 

demonstrated and should be included to allow a direct comparison to what is shown in fig 5e. 

 

Reply: We apologize for not explaining it clearly. The module #12 includes 5 members, Hnf1b, 

Hnf1a, Hnf4a, Nr1h4, and Zfp655. Using GSEA approach, we examined the correlation coefficient 

between Zfp655 of TFRE data and gene expression of microarray data and predicted that the 

function of the Zfp655 were significantly related to metabolism (such as retinol metabolism, 

PPAR signaling pathway, fatty acid metabolism) and immune process. In the revision, as 

suggested by the reviewer, we performed the GSEA approach to investigate the function 

enrichment for the other members in module #12, including Hnf1a, Hnf1b, Hnf4a, and Nr1h4. 

Similarly, as shown in the figure CL9, these 4 members were also significantly associated with 

retinol metabolism, lipid metabolism, and PPAR signaling pathway, consistent with the previous 

literatures (Mol Cell Biol. 2001, PMID: 11158324 , Science. 2004, PMID: 14988562 and Hepatology. 

2008, PMID: 18972444), suggesting that the TFs in the same co-expression module tend to have 

similar biological functions. We have added the function enrichment of other 4 members to 

Supplementary Fig. 4 in the revision. 

 



 

Figure CL9. GSEA terms of other four TFs in Module #12 suggest their functions in metabolism 

and immunity. 

 

Q8: The authors mention that ‘expression of the liver ttmTFs was significantly decreased 

compared with that of the non-ttmTFs’ (page 16). They should mention some examples 

explicitly, and discuss how they are related to liver regeneration. Currently, this is a very 

general statement that does not provide a lot of insight. 

 

Reply: We thank reviewer for the suggestion. In the previous version, we only performed very 

superficial analysis on the changes of TF patterns in liver regeneration. In the revision, we 

investigated the TF dynamics in liver regeneration in more details. 

 

As PHx is a dynamic process and prone to experimental variations, we decided to include more 

initial experimental conditions to define a more accurate reference state. We combined 26 

datasets of liver TFs obtained by catTFRE in physiology conditions in our database. These 26 

experiments can be considered as the control experiment, and calculated the range for each TF 

to construct a TF reference map of the liver organ. To find changed TFs during PHX, we identified 

a total of 188 outlier proteins that were greater than the upper quartile (Q3) of the TF reference 

map in at least two out of the three biological repeat experiments. We summarized 4 distinct 

temporal TF functional groups in the 4 representative stages in the process of liver regeneration 

from day 0.5 to day 7 (12-24h, priming stage; 24-48h, early progression stage; 3-5d, later 

progression stage; 5-7d, terminating stage). The TF related to immune response and NF-kB 



activation pathways were immediately stimulated after partial hepatectomy within 12 hours. TFs 

regulating development constituted the 2nd wave. Cell cycle signaling were activated in the 

progression phase and down regulated in the terminating phase when the Wnt/beta-catenin 

pathway was repressed and TGF-beta-Smad pathway was upregulated (Figure CL10). We were 

able to assign 1/3 of the 188 outliers into four major functions categories, including immune and 

stimulus response, development and differentiation, nuclear receptors and metabolism, 

repressors and brakes. Immune and developmental TFs are overexpressed in the earlier/middle, 

while nuclear receptor and repressors were dominant in the middle/later stage (Figure CL10).  

 

Myc/Max/Mad network, which is formed by the oncogene Myc, MYC associated factor X (MAX), 

and mitotic arrest deficient protein (MAD) regulates gene activation and repression by switching 

between antagonistic interaction pairs of Myc–Max and Max–Mad. We found that 

Myc/Max/Mad behaved as a switch in liver regeneration. Myc was stimulated in the priming 

stage while its antagonist Mad was upregulated in the terminating stage, suggesting that 

Myc/Max/Mad network plays a role in regulating liver regeneration (Figure CL10). 



 

Figure CL10 Landscape of TF dynamics after PHx.  

A: Four major up regulated TF groups and their accordingly GO pathways in different stages 

during liver regeneration. 

B: Four major functions categories of outlier TFs, namely immune and stimulus response, 

development and differentiation, nuclear receptors and metabolism, repressors and brakes. 

C: Myc/Max/Mad network in regulating liver regeneration. 

 

Focusing on ttmTFs, we found that expression of the liver ttmTFs was significantly decreased 

compared with that of the non-ttmTFs after PHx, indicating liver cells lost their identity 

undergoing drastic perturbations like PHx. Six members of hepatocyte nuclear factor family in 

liver ttmTF group were markedly down regulated in 12h and 3 days after PHx, and displayed a 

tendency to return to the original and stable state in the terminating phase (Figure CL11).  



 

Figure CL11 Dynamic change of six hepatocyte nuclear factors in ttmTF group during liver 

regeneration. 

 

In another published study (Mol Cell Proteomics. 2016, PMID: 27562671), we monitored the 

proteome alteration in the whole process of the ex vivo culturing of primary hepatocytes. We 

found that dominant liver functions such as lipid metabolism and drug metabolism were down 

regulated during the process of ex vivo culturing, and the down regulated proteins were mostly 

the gene products of the ttmTFs of the liver (Figure CL12), suggesting that the tissue loses its 

ttmTFs when the fate is altered. The changes of the ttmTFs in PHx and ex vivo culturing revealed 

a similar feature and regulation of the ttmTFs.   

 

 

Figure CL12. Downregulated proteins in cultured HC supernatants were enriched in target gene 

groups of liver ttmTFs. (Mol Cell Proteomics. 2016, PMID: 27562671) 



 

We have added the new analysis and the reference above in the revision. Please see Fig. 7 and 

Supplementary Fig. 7 in the revision for more details. 

 

Q9: The liver is a highly heterogeneous tissue. Can the effects observed in the liver 

regeneration experiment be ascribed to any particular cell type? 

 

Reply: This is a very importantly issue – cell type resolved proteomics. Indeed, the liver consists 

of 4 major cell types, including hepatocytes (HCs), hepatic stellate cells (HSCs), Kupffer cells (KCs), 

and liver sinusoidal endothelial cells (LSECs). In liver regeneration, how the 4 cell types behave is 

not completely clear and will be the subject of study in the future. 

 

We recently published “A Cell-type-resolved Liver Proteome” on Molecular & Cellular Proteomics 

(PMID: 27562671). In that study, we have purified 4 major cell types from mouse liver and 

performed deep proteome coverage for each cell type. In-depth proteomics identified 6000 to 

8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This 

dataset could serve as an ideal background library to investigate the enrichment of the 

up-regulated TFs of different stages in the 4 particular cell types. We tentatively assigned cell 

type enriched TFs from the proteome profiling data of the 4 major liver cell types when 

expression of a TF in a certain cell type is 3 times above the average value in the 4 cell types. We 

then mapped the up-regulated outlier TFs with the cell type enriched TFs during PHx. Only 1 to 6 

cell-type enriched TFs were observed to be up-regulated in the process (Table CL4). It seemed 

that more LSEC enriched TFs were up-regulated in the process. Since LSEC also expressed more 

TFs than the other cell types, we normalized the number of up-regulated cell type enriched TFs 

with the number of TFs detected in the cell and displayed the result in Figure CL13. LSEC and KC 

seemed to the cell types that displayed more dynamic regulation in the process. 

 

Table CL4 Number of up regulated cell type enriched TFs of different stages, all TFs and cell type 

enriched TFs in four major cell types. 



Number of TFs HC HSC KC LSEC 

All TF 125 279 239 307 

Cell type 
enriched TF 

14 39 31 79 

0.5d  2 2 4 5 

1d 1 1 0 6 

2d-3d 2 1 2 5 

5d-7d 1 1 2 0 

 

 

Figure CL13 Normalized ratio of up regulated cell type enriched TFs of different stages in four 

major liver cell types during liver regeneration. The numbers are the original number of up 

regulated cell type enriched TFs. 

 

Q10: I have some hesitation about the terminology described as ‘TF hierarchical networks among 

the tissues’ (p. 16). Hierarchy implies interdependence, which does not apply to the large 

majority of tissues. Instead, repeated identification of the same proteins may indicate re-use of 

TFs for different functionalities, which, from an organism point of view, may be a necessity given 

the large variety of constituent cell types (hundreds) and the limited number of TFs encoded in 

the genome (‘just’ hundreds). 

 

Reply: We agree with the reviewer’s point and understand his/her hesitation about using the 



word “hierarchical networks”. We used the term for lacking of a better or more precise word. We 

thus removed the adjective “hierarchical” in the revision. 
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Reviewer #2: 

In this paper the authors employ the catTFRE approach recently developed by their group to 

identify the repertoire of TFs active in the nucleus of 24 adult and 8 fetal mouse tissues. This 

approach, that is based on TF enrichment using tandem repeats of binding sites and mass 

spectrometry, is a great improvement from whole cell/tissue proteomics as a large fraction of TFs 

are below the detection limit in these methods, and from expression profiling as there is low 

correlation between TF mRNA levels and TF activity. This dataset, for which the authors 

generated an easy to navigate web page, will certainly be useful for the scientific community and 

serve as a framework to study tissue-specific gene regulatory networks. Having said this, there 

are several analyses that need to be modified or added to support the several conclusions made 

by the authors to be acceptable for publication. Limitations of the method should also be 

discussed. 

 

Reply: Many thanks for reviewer’s positive comments. We have added the limitations of catTFRE 

approach in the discussion section.  

 

Major concerns: 

Q1: Some of the numbers referenced in the manuscript don’t match with those in the webpage. 

For instance, in lines 139-140 the authors mention 173 and 447 TF for skeletal muscle and 

thymus, respectively. However, in the TF Atlas webpage these numbers are 167 and 448. Where 

are the discrepancies coming from? 

 

Reply: We apology for making the mistakes when updating the dataset to the website. We have 

reloaded the dataset and checked manually to ensure the correctness.  

 

Q2: The authors should comment on any potential bias in TF abundance due to the method (for 

instance the tandem motif sequences used in the pull down, affinity, saturation, etc). Two TFs 

from the same family could bind to the same sequence so their relative FOTs could be 

influenced by their relative protein abundance and affinity for the motif. Further, TFs from 

different families may compete with a different number of TFs for sites, so their relative FOTs 



may also be influenced by number of family members that recognize a motif. From their 

previous paper, it is clear that using different DNA sequences in the pull down results in 

different enrichments and abundances. The authors should find a way of controlling for this 

factors or clearly specify these limitations. 

 

Reply: Indeed, the catTFRE may have some shortcomings as the reviewer mentioned. For 

example, (1) the bindings between TFs and DNA follow the affinity curves, only the optimized 

experimental condition with the proper TF-DNA molar ratio can better represent the relative TF 

abundances; (2) the flexibility of TFs in TFRE recognition could result in two TFs from the same 

family or different families compete with each other in binding the catTFRE. 

 

To avoid the (1) potential bias and competition of TF binding from the same or different families, 

and (2) the saturation of the TF - catTFRE binding, we performed serial dilution experiment with 

3pmol of catTFRE DNA (the exact amount used in the whole study) with different amount of total 

NE (200ug, 500ug, 1mg, 2mg and 5mg) from brain tissue. As shown in the figure CL3, the total 

MS signal of TFs (chromatographic peak area) has high correlation coefficient (R2=0.959) with the 

total NE amounts. Notably, we got an excellent linear response when NE amount ranged from 

1mg to 5mg. To this end, we used 3 pmol of DNA and 2mg of total NE for screening the TF atlas of 

mouse tissues. We also surveyed individual TFs in the dilution experiments and found good linear 

response characters (Figure CL4).  

 



 
Figure CL3 Quantitative feasibility and linearity of catTFRE strategy evaluated by dilution analysis. 

Different amounts of NE extracted in thymus were used as shown. Total peptide AUC (area under 

curve) was calculated. 

 

 

Figure CL4 Quantitative feasibility and linearity of individual DBTFs. Total peptide AUC from 20 

TFs selected in Figure CL3 were calculated. 

 

In our previous studies (Proc Natl Acad Sci U S A. 2013, PMID: 23553833), a “proof of principal” 

experiment was applied to validate the sensitivity and accuracy of catTFRE in monitoring the 



biological response of TF dynamic changes. Deserve to be mentioned, TFs from the same family 

behaved quite consistently in response to TNF-α treatment (ATF2, ATF3, ATF7; JUND, JUNB, JUN; 

NF-κB, REL, RELA; etc.) under the experimental conditions used. 

 

 
Figure CL1 Systematical and quantitative analysis of TF profiling after TNF-α and EGF stimulation.  

A: Kinetic TF activation pattern of 293T cells after TNF-α stimulation. (Proc Natl Acad Sci U S A. 

2013, PMID: 23553833) 

B: Dynamic of TF patterns in HeLa cells treated with EGF and temporal profiles of the 

representative 14 TFs induced by EGF. (Anal. Chem., 2016, DOI: 10.1021/acs.analchem.6b03150) 

 

In another work we published recently (Anal. Chem., 2016, DOI: 10.1021/acs.analchem.6b03150), 

we performed the catTFRE approach to measure the dynamic of TF patterns in response to EGF 

treatments. The activation of 14 representative TFs were detected by catTFRE including many 

well-characterized responders. The members from the bzip family such as FOSB, FOS, FOSL1, 

JUNB, and JUN were up regulated consistently. These results have revealed that with the 

excessive DNA bait and optimized experimental conditions, the potential biases in TF 

identification could be significantly eliminated. The catTFRE could accurately monitor the TF 



binding activities and represent the biological features of endogenous TFs in the tissues.  

 

Taken together, we have demonstrated that the catTFRE approach can sensitively and accurately 

monitor the abundance and DNA-binding activity dynamics of TFs with dilution and many “proof 

of principle” experiments. Also, we evaluated the saturation curve to set up optimized conditions 

for DNA pull-down MS pipeline. 

 

To make the readers aware of these potential biases, we have emphasized the limitations in the 

discussion section. 

 

Q3: Is the number of TFs detected in different tissues a property of the number of TFs active in 

the different tissues or could be explained by differences in the amount of protein in the 

nuclear extracts? 

 

Reply: In the TF atlas experiments, we uniformly utilized 2mg of total nuclear extracts for catTFRE 

pulldown. To further explore whether the number of TFs detected was based on the amount of 

protein (protein number) in different tissue nuclear extracts, we chose brain, liver, and thymus 

organs and performed the NE profiling and catTFRE experiments. As shown in the table CL5, 

different number of TFs was identified with the same amount of proteins (nuclear extracts) in 3 

tissues. And a positive correlation exists between the amount of protein number in NE and the 

corresponding TF number identified by catTFRE. 

 

Table CL5 Summary of the NE profiling and catTFRE experiments in brain, liver and thymus. 

NE source 
Protein#  

in NE profiling 
TF# in NE 
profiling 

TF# in catTFRE* TF# in Atlas 

Brain 3097 56 283 310 
Liver 2716 50 210 316 

Thymus 3247 144 315 447 

* TF#s identified from one catTFRE MS run. 

 

Q4: Some of the thresholds used seem arbitrary. For instance, why look at the 35 most 



abundant proteins (line 151), 12 tissues (line 166), a median expression >0.5 (line 172), or 10 

times the median (line 178)? A rationale for the thresholds should be included. 

 

Reply:  

1. As shown in the TF abundance cumulative curve (Figure CL15), the top 28 TFs (among the top 

3% of TFs in abundance) account for 90% of total TF abundance/mass. In the revision, we chose 

28 as the threshold of the high abundant TFs instead of 35. Among top 28 high abundant TFs, 

Nfia/b/c/x are ubiquitous transcription regulators, Arntl is one of the core circadian TFs in 

mammals (Cell. 2014, PMID: 25416951), Esrra, Nr2f2, Nr2f6 and Rxra are nuclear receptors (NRs) 

that regulate metabolism and other functions (Cell. 2006, PMID: 16923397), Max is an important 

component in the Myc/Max/Mad TF network that controls cell cycle progression and 

differentiation (Curr Opin Genet Dev. 1994, PMID: 8193530).  

 

 

Figure CL15 Cumulative curve of TFs’ DNA binding activities. 

 

2. As for the number of 12 issues selected: We used TSPS (tissue-specificity score) to examine TF 

specificity (Cell. 2010, PMID: 20211142). Previous study used the threshold of TSPS =1 to 

separate TFs that are wide-spread expressed and TFs with higher specificity. The correlation 

coefficient between TSPS and number of tissues was -0.93481 (P < 2.2E-16). TSPS=1 was about 

the number of tissues 12, which is half the number of all 24 adult tissues. In the revision, we have 

explained the details for the selection.  

 



3. As for the number of median 0.5 selected as the threshold for ubiquitous TFs: We defined 

ubiquitous TFs as TFs detected in more than 50% tissues (12 tissues). For TFs expressed in less 

than 12 tissues, the median value was 0. For TFs expressed in 12 tissues, median value ranged 

from 0.16 to 1.02, with most under 0.5. Also the separation line from Fig. 2F was 0.5. So we 

chose the median value of 0.5 as the threshold for ubiquitous TFs. 

 

4. We chose 10 times the median as threshold for ttrTFs, because it was a stringent threshold for 

our TF data. Uhlen et al. used 5 fold of the average as the threshold for tissue enhanced genes 

(Science. 2015, PMID: 25613900). Kim et al. used 10 fold as the threshold for detecting 

fetal-tissue-restricted genes (Nature. 2014, PMID: 24870542).  

 

We added the explanation for the setting of thresholds in the revised manuscript. 

 

Q5: In line 155 the authors “assume” that TFs that are more abundant “regulate the busy and 

important functions of the tissues.” However, there are other factors that influence that such 

as affinity, which genes they regulate (it could be few but important), etc. The authors could 

hypothesize this and then show based on data. 

 

Reply: In the revision, we deleted the overstatements or not-so-accurate statements to ensure 

the integrity of the study. We have deleted this statement “more abundant TFs regulate the busy 

and important functions of the tissues” in the revision, as it is just an assumption. 

 

Q6: The statement in line 193-194 is not necessarily true. There could be widespread 

transcriptional regulation by ubiquitous TFs or by a few highly expressed/active TFs. 

 

Reply: Thanks for the reviewer’s suggestion. We have removed the “overstatement” in this 

version. 

 

Q7: Paragraph 200-206 seems disconnected with the rest and there is no conclusion. In 

addition, in line 202 the authors say that TSG have more ubiquitous tissue distribution, 



however in figure 3e that difference is not significant. The authors should either make a clear 

point or remove the paragraph. 

 

Reply: We thank the reviewer for the comment. We have removed this paragraph in the version. 

 

Q8: In lines 293-295 the authors state that clusters can shed light on the “dark proteome”. 

However, they do very little effort to validate their predictions besides the example of zfp655. 

The authors should go beyond the anecdotal example. For how many TFs you can make 

functional predictions? For how many of those is the function known in the literature? Does it 

match? 

 

Reply: As suggested by the reviewer, we expanded the analysis to 22 out of 37 co-expression 

modules with both number of TFs involved in each module less than 13 TFs and higher tissue 

specificity (z score>1.5).  As indicated in the Supplementary Data 4, we predicted potential 

functions of 22 modules consisting 156 TFs, and 131 of them matched previous reports. The rest 

of the 25 TFs are not reported before shed the light on the disclosing of the “dark proteome” and 

deserve further functional evaluation (Table CL6). For example, Module #1 containing 6 TFs that 

are mainly expressed in tongue and skin is related to muscle contraction and keratinocyte 

differentiation; the functional correlation to nervous system of Tead2, Bach1, Notch3 and Dlx5 in 

Module #5 was also reported, whereas another member Fosl2 was not reported yet. Module #31 

is enriched in brain, eye and spinal cord; its members Nkx2-2, Sox2 and Arnt2 are essential for 

brain development and the central nervous system.  

 

We have added the details in the revision in Page 11 and Supplementary Data 4. 

 

Table CL6 Predicted functions of 25 TFs in 15 modules. 

TF 
TF numbers in 
module (<13) 

Tissue Enrich 
(Zscore>1.5) 

Predicted  
Functions 

Module 
NO. 

Tshz2 5 eye thyroid 
eye development; 

establishment of skin barrier 
Module #4 

Fosl2 5 Brain nervous system Module #5 



Zfp592 5 thymus; colon; intestine immune system process Module #10 

Tsc22d4 5 Blood Thymus immune; haematopoietic Module #11 

Zfp655 5 
Liver Kindey colon 

intestine 
metabolism Module #12 

Hoxc5 7 small intestine; colon 
cholesterol homeostasis; 

intestinal absorption 
Module #13 

Zscan18 6 liver pancreas stomach metabolism Module #14 

Zscan22 5 liver BAT lipid homeostasis Module #15 

Zfp219; Zfp451; 

Hivep1 
12 Testis; thymus 

cell cycle; immune system 

process 
Module #16 

Klf12; Zbtb2; 

Bhlhe41 
7 Eye Thymus 

eye development; nervous 

system 
Module #18 

Foxl2;Tef; Alx4 12 eye nervous system Module #30 

Zfp608; Tgif2 6 brain ;testis hypothalamo-pituitary-gonadal Module #32 

Esrrb 7 eye neural cells; eye development Module #36 

Zfp533; Ikzf2; 

Zfp668; Zfp672 
6 thymus; spleen 

immune system process;  

cell cycle 
Module #20 

Elk3; Elk4; Six1 10 NA immune system process Module #24 

 

Q9: In line 332 the authors reference papers studying protein-protein interactions between TFs 

using Y2H. However, in reference 13 mammalian two-hybrid is used instead (correct also in line 

500). Other references also use other techniques. Literature should be properly cited. 

 

Reply: We apologize for the errors. We have corrected the references and cited the proper 

literature in the revision. 

 

Q10: In paragraph 356-370 the authors comment on the connection between ubiquitous TFs 

and ttrTFs, and then list a number of examples. To make this claim the authors need to do 

statistical analyses. Are interactions between these 2 classes of TFs more frequent than 

expected by chance? 

 

Reply: We investigated the connection between different TFs sub-groups. As shown in figure 

CL16, the connection between ubiquitous TFs and ttrTFs was more frequent than expected by 

chance (ratio = 17.5%, P < 0.001). We think it is better to calculate statistical significance of 



connection between ubiquitous TFs and non-ubiquitous TFs, instead. As shown in the figure CL16, 

connection between ubiquitous TFs and non-ubiquitous TFs was more frequent than expected by 

chance (ratio = 54.5%, P < 0.001) and higher than other two groups (ubiTFs-ubiTFs, non-ubiTFs – 

non-ubiTFs). We have added this in the revision (Fig. 5d).  

 

 

Figure CL16 Statistical significance of different types of protein-protein interaction. (A) Statistical 

significance of ubiquitous TFs and ttrTFs interaction. (B) Statistical significance of ubiquitous TFs 

and non-ubiquitous TFs interaction. 

 

Also, we have updated the item explanation of the TF sub-groups in the Method section.  

ttrTFs: tissue type restricted TFs, TFs that are expressed in a particular tissue at levels that are at 

least 10 times higher than the median value of all adult tissues as tissue type restricted TFs Tissue 

specific TFs: TFs only expressed in one tissue and not in any others. 

ttmTFs: a TF that satisfied two characteristics: (1) specifically enriched in the tissue and (2) 

average Z-scores of TGs’ mRNA expression levels exceeding those of randomly selected TGs. 

Not Ubiquitous TFs: TFs with a transformed median expression value of < 0.5 and without much 

restriction of the maximum value were non-ubiquitous TFs. 

Ubiquitous TFs: TFs with a transformed median expression value of > 0.5 were considered 

ubiquitous TFs. 

Ubiquitous-not-uniform TFs: Among ubiquitous TFs, the expression of twenty-seven TFs 

exhibited a maximum value of less than 10 times the median value, indicating a 

ubiquitous-uniform distribution. 

Ubiquitous-uniform TFs: the rest of the TFs can be classified as ubiquitous-non-uniform (230 TFs, 



25.6%), with a maximum expression value exceeding 10 times the medium value. 

 

Q11: In lines 381-384, how where the TGs determined? This paragraph is unclear. 

 

Reply: We apologize for not explaining it clearly. The target genes (TG) of TFs were downloaded 

from the previous literature of CellNet (Cell. 2014, PMID: 25126793). The TF-TG regulations were 

inferred through thousands of mouse gene expression profiling data. We have added the details 

in the revision in the Materials and Methods section.  

 

Q12: The criteria used to define ttmTFs is not very stringent as many TFs not involved in 

maintaining tissue identity can be enriched in a tissue and also be coexpressed with its targets. 

Indeed, the authors classify 30% of the TFs they detect as ttmTFs which seem high. Besides 

providing some anecdotal examples, the authors should attempt a more systematic analysis to 

support their claim. 

 

Reply: We nominated ttmTFs of a tissue that should satisfy with two characteristics, (1) 

specifically enriched in this tissue compared to other tissues; (2) the significantly over-expression 

of its target gene group in this tissue. With these criteria, we are able to determine TF groups 

that may have critical roles in a certain tissue. Importantly, one of the hot topic in TF studies in 

recent years was using particular TFs to convert MEF cells to a specified tissue or major tissue cell 

types, such as liver, heart, and neuron cells (Nature. 2011, PMID: 21716291, Cell. 2010, PMID: 

20691899 and Nature. 2010, PMID: 20107439). These TFs that can be used for tissue direct 

conversion is called master TFs of a tissue. Our nominated ttmTF list has covered almost half of 

them known to date (Table 1), further revealing the value of the nominated ttmTF list.  

 

We also use other analysis strategy to evaluate the correlation between the ttmTF function and 

the tissue features. For example, we submitted target genes co-regulated by two ttmTFs for 

Reactome analysis. Reactome terms that are enriched in dual-ttmTF target genes represent the 

major function of the tissue (Fig. 7c), suggesting ttmTFs that we nominated may carry out 

essential functions in the tissue. 



 

We apologize for not explaining the number of ttmTFs properly. The ttmTF groups behave quite 

diverse among different tissue. Even though a total of 286 ttmTF were nominated, accounting for 

30% of total identified TFs, the percentage of ttmTF in a particular tissue is low – an average of 18 

(only take up 10% of identified TFs) in each tissue.  

 

Q13: Lines 421-425 are impossible to understand. It is also speculative as there is no 

experiment or analysis showing or suggesting causality between ttmTF concentration and 

function. 

 

Reply: We have deleted this statement in the revision. 

 

Q14: Some sentences in the Discussion section are purely speculative, and no evidence is 

provided in the paper. For instance, lines 492-494, 495-498, 516-518. Overstatements should be 

avoided. 

 

Reply: We removed these overstatements in the revision.  

 

Q15: The authors should comment on the limitations of the method in the Discussion section. 

 

Reply: We have added the limitations of the catTFRE approach mentioned above in the 

discussion section to make the readers aware of them. 

 

Page 20 in the revision: “We wanted to point out the limitations of the catTFRE approach. The 

catTFRE is an in vitro approach and the naked DNA template does not fully represent the natural 

state of DNA in a living cell or tissue. Even though we have demonstrated the sensitivity and 

accuracy of catTFRE in monitoring biological responses of TFs by the proof-of-principal type of 

experiments and we have shown that the naked DNA used in catTFRE has advantage in TF 

identification than the nucleosome, there are caveats. The flexibility of TFs in TFRE recognition 

could result in two TFs from the same family or different families compete with each other in 



binding the catTFRE. Thus, the catTFRE experimental condition should be optimized to use proper 

NE and DNA incubating ratio to ensure the linearity of the TF abundance quantification. As naked 

DNA was used to measure the potential DNA binding activities of TFs, and the response elements 

in the cell may be blocked in a nucleosome context or other histone/DNA modifications, the 

“activity” of a TF as measured by catTFRE may not work in all loci in the chromosome.” 

 

Minor concerns: 

 

Q1: Line 49: “TFs interacting with the promoters of…” Enhancers and silencers also play an 

important role in gene regulation. 

 

Reply: Thanks for the comment. We have updated the sentence to “such as DNA-binding TFs 

interacting with the cis-elements, including promoters, enhancers and silencers, of the genes 

they activate or repress.” 

 

Q2: Paragraphs lines 62-87: Other methods that study TFs and GRNs should also be mentioned 

such as yeast one-hybrid assays (PMID 25910213, 23917988), genome-wide DNase footprints 

(PMID: 22955618), etc. 

 

Reply: Thanks for the suggestion. We have cited these references in the revision. 

 

Q3: The authors filter the proteins they detect by mass spectrometry based on DBDs. To have a 

sense of the specificity of the approach, the authors should also mention, at least in the 

methods section, which proportion of the proteins they detect (in number and in abundance) 

correspond to TFs. 

 

Reply: The catTFRE approach identified quite a lot of transcriptional co-regulators and other DNA 

binding proteins. We combined all DNA binding proteins (DBP), including TFs and transcriptional 

co-regulators (TC), to calculate the ratio of DNA related proteins in the total protein 

identifications. The results showed that DNA related proteins account for an average of 22% in all 



protein identifications (ranging from 13.6% (Blood) to 38% (Fetal Brain_E18.5) and about 10% in 

all protein abundance (ranging from 2% in Blood to 23% in fetal brain_E18.5) with catTFRE 

approach (Table CL4). 

 

Table CL4 The number of DNA binding protein, transcription cofactor, DNA binding transcription 

factor and their proportions in 32 mouse tissues. 

Tissue 
DNA 

binding 
TC TF Total* 

Total 

Protein 

Ratio 

(Protein ID) 

Ratio 

(Abundance)# 

MEF 479 180 224 601 2418 24.9% 11.9% 

fBrain_18.5 591 171 366 719 1893 38.0% 23.0% 

fBrain_13.5 661 263 371 849 2705 31.4% 17.0% 

fLiver_13.5 531 182 261 643 1734 37.1% 17.9% 

fLiver_18.5 388 97 185 440 1492 29.5% 12.9% 

Uterus_1.5 364 105 177 423 1457 29.0% 13.7% 

Embryo_6.5 450 140 232 544 1792 30.4% 13.9% 

Placenta_18.5 453 134 229 540 2204 24.5% 11.4% 

Brain 593 235 310 754 3669 20.6% 8.1% 

Eye 730 261 403 903 3309 27.3% 11.7% 

WAT 608 217 307 750 3735 20.1% 6.2% 

Liver 601 231 316 762 3827 19.9% 8.3% 

Lung 674 260 326 850 4435 19.2% 6.6% 

Pancreas 676 282 295 885 5463 16.2% 3.8% 

Testis 731 319 339 962 4560 21.1% 7.7% 

Spinal cord 721 300 359 947 5235 18.1% 5.6% 

Thymus 866 366 447 1138 4865 23.4% 7.3% 

Thyroid 415 99 201 474 2629 18.0% 8.1% 

Adrenal gland 721 290 357 923 4862 19.0% 6.1% 

BAT 603 249 297 780 4344 18.0% 6.2% 

Blood 455 199 175 596 4389 13.6% 2.0% 

Seminal vesicle 557 245 228 730 4542 16.1% 3.5% 

Kidney 731 286 377 928 4629 20.0% 7.7% 

Skeletal muscle 346 63 173 380 1704 22.3% 8.2% 

Spleen 761 303 346 980 4814 20.4% 6.0% 

Colon 697 320 305 918 5620 16.3% 4.2% 

Skin 754 279 390 960 4927 19.5% 6.5% 

Small intestine 692 263 340 868 3779 23.0% 10.6% 

Heart 539 174 272 650 3179 20.4% 8.8% 

Bladder 808 339 396 1056 6030 17.5% 6.2% 

Stomach 650 264 311 832 5099 16.3% 4.7% 

Tongue 426 107 212 488 2825 17.3% 5.1% 

Liver Profiling  126 37 17 152 2175 7.0% 0.1% 



 * Total includes DNA binding protein, TC and TF; there were some overlap among them. 

 # The ratio of abundance was the amount of TFs in total proteins. 

 

We have added the TC and DBP quantitative identification and analysis in the revision, and also 

updated them in the TF Atlas website. 

 

Q4: Line 130: DBTF is not defined. 

 

Reply: DBTF is the abbreviation for DNA binding transcription factor. We have annotated this in 

the revision. To eliminate of ambiguity, we have added an abbreviation form in the revision (Table 

CL7). We have added the abbreviation index in the revision. 

 

Table CL7 Abbreviation index 
Abbreviation Full name 

TF Transcription factor 
DBTF DNA binding transcription factor 

ttr TFs Tissue type restricted TFs 
ttm TFs Tissue type maintenance TFs 

FOT Fraction of total 
NR Nuclear receptor 

ubiTFs Ubiquitous TFs 
non-ubiTFs Non-ubiquitous TFs 

TG Target gene 
PHx Partial hepatectomy 

 

 

Q5: In line 142: FOT is not defined. 

 

Reply: FOT is the abbreviation of fraction of total. FOT is defined as a TF’s iBAQ divided by the 

total iBAQ of all identified proteins in a particular tissue. Its definition is included in Table CL7. 

 

Q6: In line the 155 the authors mention nuclear receptors (NRs) but in line 133 they talk about 

NHRs. Consistency should be kept throughout the manuscript. 

 



Reply: Thanks for the comment. To keep the consistency, we uniformly use “nuclear receptor 

(NR)” in the revision. 

 

 

Q7: What is the difference between ttrTFs and ubiquitous-non-uniform TFs? Some of the 

definitions are confusing and there are many acronyms in the paper making it hard to read. 

 

Reply: We apologize for the confusion. In the revision, we have explained the terms used in this 

study, as follows: 

 

TtrTFs: tissue type restricted TFs; TFs that are expressed in a particular tissue at levels that are at 

least 10 times higher than the median value of all adult tissues. 

Ubiquitous TFs: TFs with a transformed median expression value of > 0.5 were considered 

ubiquitous TFs. 

Ubiquitous-non-uniform TFs: Among ubiquitous TFs, the expression of twenty-seven TFs 

exhibited a maximum value of less than 10 times the median value, indicating a 

ubiquitous-uniform distribution. 

Indeed, there is a considerable overlap between these two categories. However, these two 

methods classified TF patterns from a different perspective. 

 

We have updated this item explanation of the TF sub-groups in the Methods section.  

 

Q8: Some figures lack appropriate labels, and larger fonts would benefit reading. Figure 2f: 

MaxValue and MedianValue of what? Figure 3c needs a label in the y-axis. Figure 4a, 4d, 6c, 6e, 

6f, 7c need a label for the color gradients. What are the axis in figure 5a? Figure 5e: label 

missing in top graph. Figure 6f: what is it being clustered? A label is missing in the y-axis of fig 

7g. 

 

Reply: We apologize for not labeling the figures clearly.  

Figure 2f: We plotted the median and max value of TF DNA binding activates, transformed to 



log10 scale.  

Figure 3c: We added the label “Expression FOT(log10)” for the y-axis. 

Figure 5a: The axis was the TFs which expressed in more than four tissues in 24 adult tissues. 

Figure 5e: We added the annotation “Correlation coefficient” in the figure legend. 

Figure 6f: These were top 30 differentially expressed TFs for each system. 

Figure 7g: The y-axis represented the percentage of TFs with DMRs. 

We have updated these figures and made the correct labels in the revision. 

 

Q9: In line 223 the authors say they detected 47 NRs from 32 tissues. But in the following 

sentence they talk about half of adult tissues (24 in total). This is confusing. 

 

Reply: In the “Transcription Network of the NRs” section, we investigated the NR DNA binding 

activities throughout the all tissues that we measured. We have removed the inaccurate words 

“in the adult animal”. 

 

Q10: In paragraph 277-284 the authors use cosine similarity. The way it is defined is not very 

intuitive and it doesn’t scale linearly with the overlap in the set of tissues shared by two TFs. 

The authors should explore other more intuitive measures of similarity such as the Jaccard 

index or PCC. 

 

Reply: Thanks for the comments. In our previous study, we used cosine similarity to evaluate 

protein relationships in core complex across selected IP-MS experiments (Proc Natl Acad Sci U S A. 

2010, PMID: 20133760). So we used the same method to describe TF co-expression patterns. As 

suggested by the reviewer, we have converted the cosine similarity (angle) to Person correlation 

coefficient to make it easier to understand.  

 

Q11: In paragraph 312-325 the authors mention the correlation coefficient for the expression 

of TF pairs. Is this based on catTFRE or mRNA expression? Why do the authors use PCC in this 

case and cosine for figure 5a? 



 

Reply: It was based on catTFRE data. We have uniformly used PCC throughout the manuscript in 

revision.  

 

Q12: Line 352-354: The correlation coefficient and the p-value should be included. 

 

Reply: We have added the correlation and coefficient as suggested (Correlation coefficient was 

0.9802, P = 0.0033, Fig. 5C)”. 

 

Q13: Line 382: TG is not defined. 

 

Reply: The target genes (TG) of the TFs are derived from a previously published paper CellNet 

(Cell. 2014, PMID: 25126793). We have added the details in the revision. 
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REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have done an excellent job responding to the raised concerns. By addressing 

these, they have significantly improved the manuscripts by clarifying some of their 

statements, describing some of the limitations of the used methodology, and including more 

data and comparative analyses to published data. Collectively, this is a comprehensive 

highly valuable data set that will be of great use for the large research community 

investigating transcriptional regulation. Therefore, I recommend acceptance of  this 

manuscript for publication.  

 

 

Reviewer #2 (Remarks to the Author):  

 

In the revised manuscript by Zhou et al, the authors have addressed most of the concerns 

raised by reviewers #1 and #2. Overall this dataset will be of great use to the gene regulation 

scientific community. Some additional comments that would further improve the manuscript:   

 

1) Although the authors added a paragraph in the Discussion about some of the limitations 

of the assay, a more indepth discussion needs to be included about how these limitations 

may or may not impact the results and conclusions obtained throughout the paper.   

2) The full catTFRE sequence must be provided. This is especially important given that 

motifs for some TFs may be overrepresented while motifs may be missing for others.  

3) The www.tfatlas.org URL is not functioning. This needs to be fixed.   

4) Lines 222-225: No evidence is provided for the correlation between TF mRNA levels and 

DNA-binding activity.  

5) Lines 401-403: Statement is unclear.  

6) Lines 409-411: Overstatement  



Reviewer #1 (Remarks to the Author): 

 

The authors have done an excellent job responding to the raised concerns. By addressing these, 

they have significantly improved the manuscripts by clarifying some of their statements, 

describing some of the limitations of the used methodology, and including more data and 

comparative analyses to published data. Collectively, this is a comprehensive highly valuable data 

set that will be of great use for the large research community investigating transcriptional 

regulation. Therefore, I recommend acceptance of this manuscript for publication. 

 

Reply: Many thanks for reviewer’s positive comments.  

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the revised manuscript by Zhou et al, the authors have addressed most of the concerns raised 

by reviewers #1 and #2. Overall this dataset will be of great use to the gene regulation scientific 

community. Some additional comments that would further improve the manuscript: 

 

1) Although the authors added a paragraph in the Discussion about some of the limitations of the 

assay, a more indepth discussion needs to be included about how these limitations may or may 

not impact the results and conclusions obtained throughout the paper. 

 

Reply: We have added the more in-depth discussion about the limitations in the discussion 

section. 

 

In the revision: “As an in vitro approach and being naked DNA template, the catTFRE approach 

does have its limitations. As naked DNA was used to measure the potential DNA binding activities 

of TFs, the response elements in the cell may be blocked in a nucleosome context or by other 

histone/DNA modifications. The “activity” of a TF as measured by catTFRE may not reflect its 



actual activity in all loci on the chromosome. While the multiple TF response elements on 

catTFRE allows for the enrichment and identification of many TFs, this approach cannot 

distinguish the individual TF transcriptional machinery nor dissect the TC-TF complex, prohibiting 

the construction of the regulatory network between TFs and TCs. A more precise approach, for 

example, using single TF response element to purify TF-TC complexes may be applied to further 

validate functional modules drawn in this study.” 

 

2) The full catTFRE sequence must be provided. This is especially important given that motifs for 

some TFs may be overrepresented while motifs may be missing for others. 

Reply: We have added the full catTFRE sequence to the Supplementary Data 1 in the revision. 

 

3) The www.tfatlas.org URL is not functioning. This needs to be fixed. 

Reply: We have restored the website. The website works well now. 

 

4) Lines 222-225: No evidence is provided for the correlation between TF mRNA levels and 

DNA-binding activity. 

Reply: In the revision, we deleted the overstatements or not-so-accurate statements to ensure 

the integrity of the study. 

 

5) Lines 401-403: Statement is unclear. 

Reply: We removed these indistinct statements in the revision. 

 

6) Lines 409-411: Overstatement 

Reply: We removed these overstatements in the revision. 

 


