	-[TM1	TM2	TM3
VcINDY NaCT NaDC1 NaDC3	MNRNDSVPLPTNTREWFLHR MASALSYVSKFK MATCWQALWAYR MAALAAAAKKVWSARR	NSLIVLADVALFLALYHFI SFVILFVTPLLLLPLVIL SYLIVFFVPILLLPLPILV LLVLLF-TPLALLPVVFAI	LPFEHNVVLGISMLAFIAVLWLT MPAKFVRCAYVIILMAIYWCT VPSKEAYCAYAIILMALFWCT LPPKEGRCLFVILLMAVYWCT	EALHVTVTA70EVIPLAVTS60EALPLAVTA60EALPLSVTA63
	TM3 TM4	a TM4b	H4c	HPin
VcINDY NaCT NaDC1 NaDC3	ILVPVMAVFFGIFETQAALN LMPVLLFPLFQILDSRQVCV LFPLILFPMMGIVDASEVAV LLPIVLFPFMGILPSNKVCP	NFANSIIFLFLGGFALAA QYMKDTNMLFLGGLIVAV EYLKDSNLLFFGGLLVAI QYFLDTNFLFLSGLIMAS	AMHHQGLDKVIADKVLAMAQGKM AVERWNLHKRIALRTLLWVGAKP AVEHWNLHKRIALRVLLIVGVRP AIEEWNLHRRIALKILMLVGVQP	SVAVFMLFG 140 PARLMLGFMG 130 PAPLILGFML 130 PARLILGMMV 133
	HPin HPin		TM5a	TM5b
VcINDY NaCT NaDC1 NaDC3	VTALLSMWISNTATAAMMLP VTALLSMWISNTATTAMMVP VTAFLSMWISNTATSAMMVP TTSFLSMWLSNTASTAMMLP	LVLGVLSKVDADKQRS IVEAILQQMEATSAKI IAHAVLDQLHSSQALI IANAILKSLFGQKERI	STYVFVLLGVAYSASIGGIATLV RLCKAMTLCICYAASIGGTATLT HLTQCMSLCVCYSASIGGIATLT NIWKGFLISIPYSASIGGTATLT	GSPPNAIAA 207 GTGPNVVLL 234 GTAPNLVLQ 247 GTAPNLILL 260 **
		TM6]	TM7a
VcINDY NaCT NaDC1 NaDC3	AEVGLSFTDWM GQMNELFPDSKDLVNFASWF GQINSLFPQNGNVVNFASWF GQLKSFFPQC-DVVNFGSWF	KFGLPTAMMMLPMAIAIL AFAFPNMLVMLLFAWLWL(SFAFPTMVILLLLAWLWL(IFAFPLMLLFLLAGWLWI(YFLLKPTLNGTFELDRAPVNWDK QFVYMRFNFKKSWGCGLESKKNE QILFLGFNFRKNFGIGEKMQEQQ 3FLYGGLSFRGWRKNKSEIRTNA	GKVVTL 265 KEINVL 320 QEKAIS 333 EEQAVF 346
	TM7a TM7b		ТМ8	M9a
VcINDY NaCT NaDC1 NaDC3	GIFGLTVFLWIFSSPINAAL ICFFLLVILWFSRDPGFMPG ILFVILVLLWFTREPGFFLG ILFCMFAILLFTRDPKFIPG	GGFKSFD WLTVAWVEG-ETKYVSDA WGNLAFPNAKGESMVSDG WASLFNPGFLSDA-VTGVA	TLVALGAILMLSFARVVHWK TVAIFVATLLFIVPSLLDWK TVAIFIGIIMFIIPSLLDWK AIVTILFFFPSQRPSLLTWK	EIQKTADWG 321 VTQEKVPWG 409 TVNQKMPWN 420 KAQETVPWN 428
	TM9b	H9c	HPout	HPout
VcINDY NaCT NaDC1 NaDC3	VLLLFGGGLCLSNVLKQTGT IVLLLGGGFALAKGSEASGL IVLLLGGGYALAKGSERSGL IILLLGGGFAMAKGCEESGL	SVFLANALSDMVSHMGIFV SVWMGKQMEPLHAVP-PA SEWLGNKLTPLQSVPAPA SVWIGGQLHPLENVP-PA	VVILVVATFVVFLTEFASNTASA AITLILSLLVAVFTECTSNVATT IA-IILSLLVATFTECTSNVATT LAVLLITVVIAFFTEFASNTATI * * **	ALLIPVFAT 391 TLFLPIFAS 478 TIFLPILAS 489 TIFLPVLAE 497
	TM10a	TM10b	TM11	-
VcINDY NaCT NaDC1 NaDC3	VAEAFGMSPVLLSVLIAVAA MSRSIGLNPLYIMLPCTLSA MAQAICLHPLYVMLPCTLAT LAIRLRVHPLYLMIPGTVGC	SCAFMLPVATPPNAIVFAS SFAFMLPVATPPNAIVFT SLAFMLPVATPPNAIVFSI SFAFMLPVSTPPNSIAFAS	SGHIKQSEMMRVGLYLNIACIGL YGHLKVADMVKTGVIMNIIGVFC FGDLKVLDMARAGFLLNIIGVLI SGHLLVKDMVRTGLLMNLMGVLL	LTAIAMLFW 461 VFLAVNTWG 548 IALAINSWG 559 LSLAMNTWA 567

Supplementary Figure 1. Amino-acid sequence alignment of relevant DASS proteins.

Residues conserved among VcINDY and three human orthologues are colored magenta, regions of secondary structural elements in VcINDY are outlined. Red and blue dots highlight amino acids that bind succinate/citrate and Na⁺, respectively. Positions for humanizing mutations carried by MT5, which include S200T, P201G, V322I, T379V, A376T, S381T, A382T and A383T, are marked by asterisks. For clarity, some residues in the human DASS proteins were omitted and indicated by "…". Notably, the amino-acid sequence identity between VcINDY and NaCT is 23%, but the degree of sequence conservation in and around the citrate- and Na⁺- binding sites is substantially higher, suggesting that the VcINDY structure provides a useful model for studying the mechanism of NaCT.

а

b

Supplementary Figure 2. Structure of the Na⁺-binding sites in VcINDY.

Stereo view of the fitting of structural model to the electron density for the Na⁺-binding sites Na1 (a) and Na2 (b). The experimental electron density map (cyan mesh, 1.2 σ) was calculated to 2.8 Å resolution using solvent-flattened MIRAS phases and overlaid onto the final model, whereas the F_o-F_c omit map was calculated to 2.8 Å resolution (magenta wire, 5 σ) using a VcINDY model that had never been refined with the bound Na⁺ ion. Relevant amino acids and Na⁺ ions are drawn as sticks models and green spheres, respectively.

Supplementary Figure 3. Stereo views of the VcINDY models.

The experimental electron density map (magenta mesh, 1.2 σ) was calculated to 2.8 Å resolution using solvent-flattened MIRAS phases and overlaid onto the current model (**a**), or an earlier structure (**b**). Relevant amino acids and Na⁺ are drawn as sticks models and a green sphere, respectively. This analysis suggested that residues 368-378 in PDB 4F35 were incorrectly modeled, which likely precluded the identification of Na2 in the previous work.

Supplementary Figure 4. Comparison of the structural models for VcINDY.

The current model for residues 363-379 is superimposed onto that of the previous work. Relevant amino acids and Na⁺ (in Na2) are drawn as sticks models and a green sphere, respectively. The current model is colored cyan whereas the previous one is shown in yellow. Residues 368-378 in the current model are labeled in red to highlight the difference. The structural models are oriented similarly to those in Supplementary Figure 3.

Supplementary Figure 5. Stereo view of the bound succinate in VcINDY.

The experimental electron density map (magenta mesh, 1.5 σ) was calculated to 2.8 Å resolution using solvent-flattened MIRAS phases and overlaid onto the final model of succinate (grey sticks). VcINDY is shown in ribbon rendition and two Na⁺ ions are drawn as green spheres, respectively. Importantly, the quality of the experimental electron density map was sufficient for accurate placement of succinate.

Supplementary Figure 6. Stereo view of the bound citrate in VcINDY.

The experimental electron density map (magenta mesh, 1.2 σ) was calculated to 2.8 Å resolution using solvent-flattened MIRAS phases and overlaid onto the final model of citrate (green sticks). VcINDY is displayed in ribbon diagram and two Na⁺ ions are shown as green spheres, respectively. Notably, the high quality of the experimental electron density map allowed the placement of citrate with confidence.

Supplementary Figure 7. Stereo views of the citrate models.

The F_o - F_c omit map (magenta mesh, 4 σ) was calculated using the published data (PDB 4F35) to 3.2 Å resolution and overlaid onto the citrate model either from the current structure (**a**), or from the previous structure (**b**). VcINDY is displayed in ribbon diagram and two Na⁺ ions are drawn as green spheres, respectively. The VcINDY model used for the map calculation had never been refined with citrate in order to minimize model bias. This structural comparison highlighted that the citrate in PDB 4F35 was incorrectly modeled.

Supplementary Figure 8. Stereo view of the bound citrate in MT5.

The experimental electron density map (magenta mesh, 2.0 σ) was calculated to 2.8 Å resolution using solvent-flattened MIRAS phases and overlaid onto the final model of citrate (green sticks). Protein is displayed in ribbon diagram and two Na⁺ ions are shown as green spheres, respectively. Of note, the high quality of the experimental electron density map enabled the accurate placement of citrate into the mutant, which is markedly different from that seen in VcINDY.

Supplementary Figure 9. Succinate transport activity of MT5.

Initial rates of succinate transport at 200 mM external Na⁺ and pH 7.4 were plotted against the external succinate concentrations. Data were averaged to fit to the Michaelis-Menten equation, yielding a K_M of 0.26 mM and a V_{max} of 355 nmol mg⁻¹ min⁻¹, respectively. Error bars represent s.d.. Notably, the K_M of MT5 is almost identical to that of VcINDY, whereas the V_{max} of MT5 is ~40% larger than that of VcINDY. This slight increase in V_{max} may be attributed to the experimental errors and/or the observation that MT5 makes fewer interactions with succinate than VcINDY, the latter of which implies that succinate may dissociate more readily from the inward-facing MT5 than VcINDY and thus gives rise to a higher transport rate. Error bars indicate standard deviations from at least 3 independent experiments.

	Native	EMTS ^a	$K_2Pt(NO_2)_4$	K ₂ PtCl ₄	K ₂ Pt(NO ₂) ₄
					+ EMTS
Wavelength	1.033 Å	1.008 Å	1.069 Å	1.069 Å	1.069 Å
Space Group	P2 ₁	P2 ₁	P2 ₁	P2 ₁	P2 ₁
	106.68,	106.43,	105.22,	106.38,	105.08,
a,b,c (Å)	101.91,	101.99,	101.84,	102.09,	102.85,
	167.74	166.95	165.59	166.28	166.99
Resolution	100-2.80 Å	100-3.10 Å	100-3.20 Å	100-3.40 Å	100-3.30 Å
Observations	1067123	1357219	1232535	694883	388792
Unique reflections	82858	64179	57620	48918	50425
Completeness	99.9%	98.9%	99.8%	99.8%	96.7%
(last shell)	(99.8%)	(85.4%)	(96.8%)	(97.9%)	(67.2%)
R _{sym} ^b	10.2%	11.7%	11.3%	10.7%	11.4%
(last shell)	(51.1%)	(55.9%)	(48.6%)	(53.2%)	(57.8%)
l/σ	21.0	22.6	24.9	21.0	18.0
(last shell)	(2.0)	(1.6)	(1.8)	(2.1)	(1.9)
Phasing power ^c					
(iso/ano)	N.A.	1.09/0.76	1.18/0.77	1.07/0.66	1.02/0.72
R _{cullis} ^d	N.A.	0.69/0.86	0.61/0.82	0.67/0.92	0.74/0.88
(iso/ano)					

Supplementary Table 1. Data collection and phasing statistics for succinate-bound VcINDY.

Overall MIRAS figure of merit^e (20-3.10 Å): 0.57 (acentric), 0.56 (centric).

^aEMTS: thimerosal.

 ${}^{b}R_{sym} = \Sigma |I - \langle I \rangle | / \Sigma I$, where I is the observed intensity of symmetry-related reflections.

^cPhasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-ofclosure.

 ${}^{d}R_{cullis}(iso) = \Sigma(||FPH - FP| - |FH(calc)||) / \Sigma(|FPH - FP|)$, where FPH and FP are structure factors for derivative and native data, respectively. $R_{cullis}(iso)$ is valid for centric reflections only.

^dR_{cullis}(ano)= $\Sigma(||\Delta FPH(obs)| - |\Delta FPH(calc)||) / \Sigma|\Delta FPH(obs)|$, where $\Delta FPH(obs)$ and $\Delta FPH(calc)$ are the observed and calculated structure factor differences between Bijvoet pairs, respectively.

	Native	EMTS ^a	$K_2Pt(NO_2)_4$	K ₂ PtCl ₄	$K_2Pt(NO_2)_4$
					+ EMTS
Wavelength	1.000 Å	1.000 Å	1.000 Å	1.000 Å	1.000 Å
Space Group	P2 ₁	P2 ₁	P2 ₁	P2 ₁	P2 ₁
	106.13,	106.55,	105.38,	105.19,	105.28,
a,b,c (Å)	102.11,	102.27,	102.47,	101.84,	102.57,
	167.99	169.07	167.46	167.62	166.94
Resolution	100-2.80 Å	100-3.50 Å	100-3.00 Å	100-3.50 Å	100-3.50 Å
Observations	1248542	283548	367824	446051	339764
Unique reflections	82226	43489	58342	44526	43493
Completeness	92.5%	97.3%	81.7%	96.0%	98.1%
(last shell)	(58.1%)	(82.5%)	(30.8%)	(68.6%)	(89.2%)
R _{sym} ^b	10.3%	11.5%	8.8%	10.7%	10.2%
(last shell)	(48.8%)	(47.5%)	(38.0%)	(51.1%)	(46.2%)
l/σ	19.7	24.3	18.0	24.5	21.3
(last shell)	(1.8)	(1.8)	(1.5)	(2.1)	(1.7)
Phasing power ^c					
(iso/ano)	N.A.	1.21/0.81	1.08/0.67	1.01/0.76	1.04/0.73
R _{cullis} ^d	N.A.	0.57/0.82	0.68/0.92	0.63/0.87	0.66/0.89
(iso/ano)					

Supplementary Table 2. Data collection and phasing statistics for citrate-bound VcINDY.

Overall MIRAS figure of merit^e (20-3.00 Å): 0.51 (acentric), 0.49 (centric).

^aEMTS: thimerosal.

 ${}^{b}R_{sym} = \Sigma |I - \langle I \rangle | / \Sigma I$, where I is the observed intensity of symmetry-related reflections.

^cPhasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-ofclosure.

 ${}^{d}R_{cullis}(iso) = \Sigma(||FPH - FP| - |FH(calc)||) / \Sigma(|FPH - FP|)$, where FPH and FP are structure factors for derivative and native data, respectively. $R_{cullis}(iso)$ is valid for centric reflections only.

^dR_{cullis}(ano)= $\Sigma(||\Delta FPH(obs)| - |\Delta FPH(calc)||) / \Sigma|\Delta FPH(obs)|$, where $\Delta FPH(obs)$ and $\Delta FPH(calc)$ are the observed and calculated structure factor differences between Bijvoet pairs, respectively.

	Native	EMTS ^a	K ₂ Pt(NO ₂) ₄	K ₂ PtCl ₄	K ₂ Pt(NO ₂) ₄	
					+ EMTS	
Wavelength	1.000 Å	1.000 Å	1.000 Å	1.000 Å	1.000 Å	
Space Group	P2 ₁	P21	P21	P2 ₁	P21	
	106.09,	105.23,	105.87,	106.07,	104.69,	
a,b,c (Å)	101.54,	101.33,	101.55,	101.47,	101.84,	
	168.89	168.17	167.01	166.96	166.88	
Resolution	100-2.80 Å	100-3.00 Å	100-3.20 Å	100-3.40 Å	100-3.20 Å	
Observations	2382353	1808948	1232348	423304	1027370	
Unique reflections	87891	66983	57569	47380	57968	
Completeness	99.5%	95.0%	99.9%	96.8%	99.1%	
	(92.5%)	(59.1%)	(98.4%)	(85.0%)	(84.1%)	
R _{sym} ^b	11.1%	13.8%	13.4%	12.2%	14.0%	
(last shell)	(53.6%)	(61.0%)	(71.6%)	(65.3%)	(62.0%)	
l/σ	27.6	18.2	23.9	19.9	24.2	
(last shell)	(2.1)	(1.4)	(1.6)	(1.2)	(1.8)	
Phasing power ^c						
(iso/ano)	N.A.	1.03/0.71	1.11/0.77	1.00/0.66	1.01/0.70	
R_{cullis}^{d}	N.A.	0.67/0.87	0.63/0.84	0.73/0.97	0.69/0.83	
(iso/ano)						

Supplementary Table 3. Data collection and phasing statistics for citrate-bound MT5.

Overall MIRAS figure of merit^e (20-3.00 Å): 0.54 (acentric), 0.51 (centric).

^aEMTS: thimerosal.

 ${}^{b}R_{sym} = \Sigma |I - \langle I \rangle | / \Sigma I$, where I is the observed intensity of symmetry-related reflections.

^cPhasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-ofclosure.

 ${}^{d}R_{cullis}(iso) = \Sigma(||FPH - FP| - |FH(calc)||) / \Sigma(|FPH - FP|)$, where FPH and FP are structure factors for derivative and native data, respectively. $R_{cullis}(iso)$ is valid for centric reflections only.

 ${}^{d}R_{cullis}(ano) = \Sigma(||\Delta FPH(obs)| - |\Delta FPH(calc)||) / \Sigma|\Delta FPH(obs)|$, where $\Delta FPH(obs)$ and $\Delta FPH(calc)$ are the observed and calculated structure factor differences between Bijvoet pairs, respectively.

	Native	EMTS ^a	K ₂ Pt(NO ₂) ₄	K ₂ PtCl ₄	K ₂ Pt(NO ₂) ₄
					+ EMTS
Wavelength	1.000 Å	1.000 Å	1.000 Å	1.000 Å	1.000 Å
Space Group	P2 ₁	P2 ₁	P21	P2 ₁	P21
	107.14,	105.22,	105.16,	107.48,	104.39,
a,b,c (Å)	102.28,	101.98,	102.09,	102.30,	103.56,
	170.86	168.55	169.01	169.38	167.45
Resolution	100-2.80 Å	100-3.20 Å	100-3.40 Å	100-3.50 Å	100-3.50 Å
Observations	2110364	690534	935056	886364	394908
Unique reflections	86060	58462	48650	46191	43921
Completeness	96.4%	99.1%	97.9%	99.5%	98.7%
(last shell)	(61.8%)	(89.7%)	(68.5%)	(92.2%)	(92.3%)
R _{sym} ^b	10.5%	11.9%	13.7%	13.0%	10.7%
(last shell)	(59.6%)	(50.3%)	(65.8%)	(52.3%)	(50.2%)
l/σ	26.2	27.5	23.7	40.6	23.5
(last shell)	(1.9)	(1.7)	(1.8)	(1.3)	(1.4)
Phasing power ^c					
(iso/ano)	N.A.	1.13/0.76	1.11/0.71	1.21/0.96	1.07/0.70
R_{cullis}^{d}	N.A.	0.63/0.87	0.65/0.91	0.54/0.67	0.70/0.92
(iso/ano)					

Supplementary Table 4. Data collection and phasing statistics for succinate-bound MT5.

Overall MIRAS figure of merit^e (20-3.20 Å): 0.57 (acentric), 0.53 (centric).

^aEMTS: thimerosal.

 ${}^{b}R_{sym} = \Sigma |I - \langle I \rangle | / \Sigma I$, where I is the observed intensity of symmetry-related reflections.

^cPhasing power= F_h / E, where F_h is the rms isomorphous/anomalous difference and E the rms residual lack-ofclosure.

 ${}^{d}R_{cullis}(iso) = \Sigma(||FPH - FP| - |FH(calc)||) / \Sigma(|FPH - FP|)$, where FPH and FP are structure factors for derivative and native data, respectively. $R_{cullis}(iso)$ is valid for centric reflections only.

 ${}^{d}R_{cullis}(ano) = \Sigma(||\Delta FPH(obs)| - |\Delta FPH(calc)||) / \Sigma|\Delta FPH(obs)|$, where $\Delta FPH(obs)$ and $\Delta FPH(calc)$ are the observed and calculated structure factor differences between Bijvoet pairs, respectively.