Supplemental Experimental Procedures

Description of model space

- Reinforcement learning level

We started with a basic, model-free reinforcement learning algorithm.(1) For each cue
(say A or B), the model estimated the expected value, based on the individual outcome
history, and made a choice between risky and less risky options. The expected values
were set at zero before learning, and after each trial t the value of the ongoing cue (say

A) was updated in proportion to prediction error, according to the 'delta’ rule (2, 3):

QA (D =QaA (M) +ax 4 (1)

where §(t) is the prediction error, defined as the difference between actual and expected
outcome: 6(1)=R, ()~ Qa(?).

Then the probability, or likelihood, of a “Risky” choice was estimated from the expected

value according to the softmax rule:
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The learning rate a and the choice temperature  are free parameters, with the
constraints 0<a<1 and [3>0. The learning rate adjusts the weight assigned to prediction
error in value updating, and the choice temperature the degree of exploration (as

opposed to exploitation of the learned value).

We devised three variants of this reinforcement learning level, following step-by-step
increments from model-free to model-based strategy, i.e. adding pieces of information

about task structure.

In a first variant, the reinforcer Rq was the monetary value of the outcome (1, 0.1, -0.1 or
-1). This variant can be considered as a model-free strategy, in line with the law of effect,
meaning that outcomes increased the probability of repeating the same choice,

depending on their sign and magnitude.

In a second variant, the reinforcer Rq was defined according to outcome valence (Val)
and not its magnitude (i.e. 1 when winning £1 or 10p; -1 when loosing £1 or 10p). This
variant implies that subjects understood that cues determined the outcome valence

(positive or negative) and not its magnitude, which depended on the choice.



In a third variant, the reinforcer Rq was defined according to outcome valence (Val) and

the update of the current cue (say cue A) was transferred to the alternative cue (cue B).

Qe (t+1) =-Qa (t+1)

This variant implies that subjects understood that there were only two cues, with

opposite valence. In other words, the two cue values summed up to zero.
- Meta-learning level

Reinforcement learning models have constant parameters (learning rate and choice
stochasticity). This limits the capacity to optimize the behavioral policy around the end
of learning blocks, once subjects believe themselves to have a reasonably good
estimation of contingencies. At this point, prediction errors should be tempered, and
choices tuned to a more deterministic exploitation of learned contingencies.(4-6)
Conversely, when contingencies suddenly change after reversals, prediction errors
should be given more weight, and choices should be more exploratory. One way to
optimize the behavior is to subordinate the reinforcement learning parameters to a
higher level of control that monitors performance. A second series of models therefore
included a meta-cognitive level consisting in updating confidence so as to down-regulate
contingency learning and choice stochasticity. We compared two ways to monitor

confidence and four ways to use it.
- Confidence monitoring level

In both variants, confidence was monitored using a delta rule. The confidence learning
rate y was a free parameter, with 0<y<1. The initial value of confidence, C(0) was also

fitted as a free parameter, with 0<C(0)<1.

In a first variant, we used the absolute value of the prediction error computed at the

reinforcement learning level to update confidence (7):

Clt+1) = C(1) +y > ((2-18(1)])/2 - C(1))

In a second variant, we used outcome optimality (Op) to update confidence (i.e. 1 for

winning £1 or losing 10p, -1 otherwise):

C(t+1)=C(t) +v < (Op() - C(1))



- Modulation of low-level free parameters

Confidence was used to modulate the free parameters in the reinforcement learning
models. This was done after each outcome, which brought information about how
accurate the reinforcement learning model was, in terms of value estimates or
behavioral policy. We considered four possibilities: modulation of learning rate or

choice temperature, or both with the same weight, or both with a different weight.

The learning rate was modulated on the basis of not only confidence but also the
outcome category. The idea is that to stabilize a representation of learned contingencies,
subjects should increase their sensitivity to confirmation and decrease their sensitivity

to contradiction. The impact of confidence on the learning rate « therefore depended on

whether the outcome was confirmatory (outcome and cue value have the same sign;

Val(t) = sign(Q(t))) or not.

For confirmatory outcomes, « was modulated as follows:

am(t) = (a0 + ke*C(t))/(1+ks*C(t)) where a0 and k., are free parameter
And for contradictory outcomes:
am(t) = a0/(1+ k*C(t))

Therefore, when confidence increased the modified learning rate am got closer to 1 for

confirmatory outcomes and closer to zero for contradictory outcomes.

The choice temperature 3 was modulated such that exploration was reduced when
confidence increased:

Bm(t) = B0/(1+kg*C(t)) where B0 and kg are free parameter

This modulation enables increasing exploitation above matching behavior, i.e. choosing
the risky option more than 80% of the time following a cue that associated to a reward
80% of the time.

To test whether these modulations improved the fit of observed choices, we compared

between models that included or not the free parameters (k, and kg), which could have

or not identical values.

Other hierarchical models




Other hierarchical models have been developed to implement a form of second-level
confidence that modulates first-level estimates. For instance, one hierarchical Bayesian
architecture models the behavior in a probabilistic reversal learning task, with a second-
level inference that tracks the occurrence of contingency reversals.(8) However,
reversals were numerous in this task and participants were extensively trained, so they
had built an internal model of the task (including the possibility of a reversal) before
entering the scanner. In our paradigm, participants were not informed about the
presence of reversals and they encountered only three of them, which was not enough to
build and integrate an explicit notion of reversal at the meta-cognitive level
Unsurprisingly, we found no evidence that the behavior was more easily reversed the
last time compared to the first one: if anything, performance in the last block was worst.
For similar reasons, we did not include the possibility of re-using contingencies that
were learned in previous blocks, as was done in another hierarchical model with task-
set monitoring on top of Q-learning.(9) Indeed, there was no evidence that the second
and third reversals, after which subjects could have returned to previous contingency
sets, were learned faster than the first one. In addition, none of the existing models
implemented the differential impact of the meta-cognitive level on the first-level
learning rule, which enables participants to specifically ignore contradictory outcomes
(probabilistic errors), a key way to stabilize behavior at the end of blocks. It is important
to keep in mind that our paradigm was not designed to investigate reversal processes

per se, but to examine how behavior is optimized between reversals.

Supplemental data

Family analyses

Family model comparison (10) was used to test whether each level of complexity added
to the basic reinforcement learning model was necessary for explaining choice data. In a
first comparison, the model space was divided into three families, depending on RL-variant

(i.e. whether the monetary value or the outcome valence was integrated in the delta-rule and



whether the two cues or only the current cue was updated). Results confirmed that
participants integrated the two aspects of task structure (xp =0.97 and 0.93 for placebo
and ketamine sessions, respectively): first that only the outcome valence, and not
monetary amount, was informative about cue value, and second that the two cues
always had opposite valence such that they could both be updated after every outcome.
In a second comparison, we divided the model space into three families, according to the way
confidence was updated (see Fig 3: no confidence monitoring (and therefore no modulation),
prediction error-based and optimality-based confidence updating. Evidence was higher for
optimality-based confidence updating (xp=1 and 0.74 for placebo and ketamine
sessions, respectively). In a third comparison, we divided the model space into five families,
according to the way confidence was used (see Fig 3): no modulation (and therefore no
confidence monitoring), modulation of learning rate, choice temperature, both with the same
weight, or both with different weights. Results indicated that confidence was used to
modulate both learning rate and choice temperature, with the same weight (xp=1 and

0.76 for placebo and ketamine sessions, respectively).

Correlation with psychotic-like symptoms

As our ultimate goal is to model delusion formation, we looked for correlations between
psychotic-like symptoms induced by ketamine and our behavioural and imaging
findings. For each of the 3 scales (RSPS, CADS, BPRS), the difference between placebo
and ketamine sessions was computed for each subject and correlated to our behavioural
markers of ketamine effect (decreased performance in the last bin and decreased weight
of confidence on learning rate and choice temperature). No significant correlation was
found. As far as imaging results are concerned, we also searched to correlate the
increase of psychological symptoms to the reduction of the positive correlation with fm
induced by ketamine. Scores were entered as a covariant in second-level GLM. No

significant cluster was found.

Supplementary tables

Table S1

Exceedance probabilities table for Placebo sessions.

Table S2



Exceedance probabilities table for Ketamine sessions.

Table S3

Parameter estimates for the best computational model

Table S1
Placebo
RL - Variant

Confidence — | Modulation 1 2 3
Monitoring of free
Variant parameters -

Variant
0 0 0.00 0.00 0.00
1 1 0.00 0.00 0.00
1 2 0.00 0.00 0.00
1 3 0.00 0.00 0.00
1 4 0.00 0.00 0.00
2 1 0.00 0.00 0.00
2 2 0.00 0.00 0.00
2 3 0.00 0.00 0.00
2 4 0.00 0.02 0.96

Table S2




Ketamine

RL - Variant
Confidence — | Modulation 1 2 3
Monitoring of free
Variant parameters —
Variant
0 0 0.01 0.03 0.03
1 1 0.01 0.01 0.10
1 2 0.01 0.02 0.04
1 3 0.01 0.01 0.01
1 4 0.01 0.01 0.10
2 1 0.01 0.01 0.01
2 2 0.00 0.03 0.02
2 3 0.01 0.01 0.01
2 4 0.01 0.05 0.45
Table S3
a0 B0 Co Y K
Placebo 0.34 (0.12) 0.89 (0.74) 0.51 (0.04) 0.45 (0.15) 0.95 (0.39)
Ketamine 0.29 (0.16) 0.97 (1.17) 0.50 (0.04) 0.50 (0.16) 0.62 (0.53)
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