

Figure S1. Media additives and oxygen conditions. MRC5 cells were converted to i5HT neurons in various media and oxygen conditions. (**a-d**) Basal Medium (BM) without or with (+) the indicated additive, or all of the additives (IM, Induction Medium). Y27632, Rock inhibitor (10 μ M), DM, dorsomorphin (0.5 mM), SB, SB431542 (5 μ M), PD, PD-0332991 (1 μ M). (**e-h**) Induction Medium minus the indicated additive, or minus all additive (i.e. BM, Basal Medium). (**i-I**) Basal Medium without or with the indicated additive that was found to be ineffective or detrimental. CHIR, CHIR99021; PURM, Purmorphamine; NAC, N-Acetyl-L-cysteine; VitC, ascorbic acid; NB, DMEM/F12 in Induction Medium (IM) was replaced with Neurobasal. (**m**-**p**) Reprogramming in Induction Medium with 5% or 21% O₂. *, #, *p* < 0.05, vs. 21% oxygen for 5HT⁺ or Tuj1⁺ cells respectively. (**q-t**) The effects of various mitotic inhibitors replacing PD (PD-0332991) in Induction Medium. +SU (SU9516 replacing PD in IM), +AraA (AraA replacing PD in IM), +AraC (AraA replacing PD in IM). *, #, p < 0.05 vs. IM without PD for 5HT⁺ or Tuj1⁺ respectively.

Figure S2. Representative images of i5HT neurons generated with different media conditions. MRC5 cells were converted to i5HT neurons in Induction Medium minus or plus the indicated additive. Quantification of the data was shown in Figure S1. bar, 50 μ m.

Figure S3. Long-term survival of i5HT neurons. Conversion efficiency (a) and yield (b-d) at 12 or 30 days after MRC5 cells were transduced with lentiviruses expressing AFLVp. *, # p < 0.05, vs. 5HT⁺ or TuJ1⁺ at day 12, respectively, n= 3 independent experiments. Scale bar, 20 μ m.

Figure S4. Separate channels of Fig. 4a-h. Scale bar, 20 μm

Figure S5. **Silencing of viral transgenes.** Expression levels of viral transgenes in MRC5 cells transduced with AFLVp at the indicated days. Arrow, values were according to the Y-axis on the right, n = 4 from 3 independent experiments.

Figure S6. Conversion of additional human fibroblast lines to i5HT neurons. (a-h) Representative images of i5HT neurons derived from human fetal fibroblasts IMR90 cells (a-d) and human adult fibroblasts CCD-19Lu cells (e-h). Bar, 50 μ m. (i-l) Quantification of data on IMR90 and CCD-19Lu cells, in comparison to the data on the human fetal fibroblasts MRC5 cells. *, #, p<0.05 vs. MRC5 for 5HT⁺ or Tuj1⁺ neurons, respectively, n = 3 independent experiments.

Figure S7. **Maturation of electrophysiological properties.** Electrophysiological recordings of i5HT neurons at the indicated days since Dox addition. Voltage dependent Na⁺ currents and K⁺ currents increased from small (**a**) to significant levels (**b**, **c**). Response to current injections changed from one (**d**) to multiple action potentials (**e**, **f**). Spontaneous action potentials were detected at day 34 (**g**) and increased in amplitude and frequency at day 48 (**h**). Spontaneous Excitatory Postsynaptic Currents (EPSCs) were observed at day 38 (**i**) and increased frequency at day 46 (**j**). Detailed quantifications of these electrophysiological parameters are in Supplementary Table 1.

	Day 27	Day 34	Day 48
Resting Membrane Potential (mV)	-20.2 ± 1.8 (n=3)	-33.3 ± 2.1 (n=10)	-42.6 ± 2.3 (n=13)
Na+ Currents (pA) at -20mV	534 ± 24 (n=3)	916 ± 34 (n=8)	1425 ± 86 (n=8)
K+ Currents (pA) at 50mV	1264 ± 112 (n=3)	1648 ± 123 (n=8)	2176 ± 124 (n=8)
Evoked Action Potentials	2/4	8/8	8/8
Spontaneous Action Potentials	n.d.	3/8	3/8
Spontaneous AP Frequency (Hz)	n.d.	0.7 ± 0.1	1.1 ± 0.2
Spontaneous AP Amplitude (mV)	n.d.	61.7 ± 3.3	78.3 ± 6.0
Spontaneous EPSC	n.d.	2/7 (Day 38)	2/6 (Day 46)
Spontaneous EPSC Frequency (Hz)	n.d.	0.3 ± 0.1	1.3 ± 0.2
Spontenous EPSC Amplitude (pA)	n.d.	8.3 ± 1.2	7.6 ± 1.4

Supplementary Table 1: Maturation of Electrophysiological Properties

Protein	Species	Company(Catalog Number) D	
5-HT	Rabbit	Sigma-Aldrich (S5545)	1:2000
5-HT	Rat	Millipore (MAB352)	1:500
TPH2	Rabbit	Novus Biological Inc. (NB100-74555)	1:1000
SERT	Mouse	MAb technologies (ST51-2)	1:1000
TuJ1	Mouse	Civabce(MMS-435P-250)	1:1000
MAP2	Mouse	Santa Cruz (sc-74421)	1:500
NeuroN	Mouse	Millipore (MAB377)	1:500
AADC	Rabbit	Millipore (AB1569)	1:1000
ALDH1A1	Rabbit	Abcam (ab23375)	1:2000
VMAT2	Rabbit	Millipore (AB1598p)	1:500
Syntaxin-1	Mouse	Life Technologies (P21943)	1:1000
AlexaFluor 488	Anti-Rabbit IgG	Life Technologies (A11008)	1:2000
AlexaFluor 594	Anti-Rabbit IgG	Life Technologies (A11012)	1:2000
AlexaFluor 488	Anti-mouse IgG	Life Technologies (A21202)	1:2000
AlexaFluor 594	Anti-mouse IgG2a	Life Technologies (A21135)	1:2000
AlexaFluor594	Anti-Rat IgG	Life Technologies (A11007)	1:2000

Supplementary Table 2: Antibodies Used in the Study

Gene	Accession	Primer Sequences	
hASCL1	NM_004316	Forward: TACTCGTCGGACGAGGGCTCTTA	
transgenic		Reverse: AAAGCAGCGTATCCACATAGCGTA	
hFOXA2	NM_021784.4	Forward: GTCACGAACAAAACGGGCCT	
transgenic		Reverse: AAAGCAGCGTATCCACATAGCGTA	
hLMX1b	NM_002316.3	Forward: CTCTACTCCATGCAGAGTTCCT	
transgenic		Reverse: AAAGCAGCGTATCCACATAGCGTA	
hFEV	NM_017521.2	Forward: TCTACCCCAGTCCCAGCTTGCA	
transgenic		Reverse: AAAGCAGCGTATCCACATAGCGTA	
hp53shRNA	NM_000546	Forward: TACAGGGACAGCAGAGATCCACTT	
transgenic		Reverse: AACCGCAAGGAACCTTCCCGACTT	
hASCL1	NM_004316	Forward: TACTCGTCGGACGAGGGCTCTTA	
endogenous		Reverse: GCACTAAAGATGCAGGTTGTGCGA	
hFOXA2	NM_021784.4	Forward: CTACGAACAGGTGATGCACTAC	
endogenous		Reverse: TTGCTCTCTCACTTGTCCTCGA	
hLMX1b	NM_002316.3	Forward: GGCCTCACGCCGCCCCAAAT	
endogenous		Reverse: TGGCTGGCTCTCAGGAGGCGAA	
hFEV	NM_017521.2	Forward: TCTACCCCAGTCCCAGCTTGCA	
endogenous		Reverse: CTCTGGATTAGAGGACGGTTGAC	
hMAP2	NM_031845	Forward: CAGGTGGCGGACGTGTGAAAATTGAGAGTG	
endogenous		Reverse: CACGCTGGATCTGCCTGGGGACTGTG	
hTUBB3	NM_001197181	Forward: TTTGGACATCTCTTCAGGCCTGACA	
endogenous		Reverse: AGCGAGTGGGTCAGCTGGAAGC	
hSYN1	NM_006950	Forward: TGAAGCCGGATTTTGTGCTGA	
endogenous		Reverse: GACCAAACTGCGGTAGTCTCC	
hPCLO	NM_033026	Forward: CAGACACTTTCAGGTCAGAGC	
endogenous		Reverse: AGGCATCATACTAGACTTGTGCT	
hALDH1A1	NM_000689.4	Forward: GAATTTCCCGTTGGTTATGCT	
endogenous		Reverse: TGTAGGCCCATAACCAGGAA	
hAADC	NM_001082971	Forward: AGAACAGACTTAACGGGAGCCT	
endogenous		Reverse: CTGGACATGCTTGCGGATATAA	
hVMAT2	NM_003054	Forward: CTTTGGAGTTGGTTTTGC	
endogenous		Reverse: GCAGTTGTGATCCATGAG	
hGAPDH	NM_002046.3	Forward: GACAACAGCCTCAAGATCATCAG	
endogenous		Reverse: ATGGCATGGACTGTGGTCATGAG	
hCACNA1C	NM_001167625	Forward: TCCGCTGCTTCTGAAGATGA	
endogenous		Reverse: GGCCGTCGCTTTGGTAGTA	
hSCN1A	NM_001165963	Forward: TGGGGAGTGGATAGAGACCA	
endogenous		Reverse: GAAAGAGATTCAGGACCACTAGG	
hTPH1	NM_004179.2	Forward: CCCTTTGATCCCAAGATTAC	
endogenous		Reverse: CATTCATGGCACTGGTTATG	
hTPH2	NM_173353.3	Forward: GGTTCCCTCGGAAGATCTCTGAGTTAGACA	
endogenous		Reverse: AGAGCTCCCGGAATACAACACCCCAAGT	
hSERT	NM_001045.4	Forward: CAGCGTGTGAAGATGGAGAAG	
endogenous		Reverse: TGGGATAGAGTGCCGTGTGT	

Supplementary Table 3: Sequence of PCR Primers