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Supplementary Figure 1: Two-way capacity of the amplitude damping channel Edamp with probability p. (a) The two-way
capacity C(Edamp) is contained in the shadowed area identified by the lower bound (LB) and the upper bound (UB) of Eq. (214).
Note the separation from the unassisted quantum capacity Q of the channel (dashed). (b) More precisely, C(Edamp) is contained
in the shadowed area identified by the lower bound (LB) and the upper bound (UB) of Eq. (235). We also plot the unassisted
quantum capacity Q of the channel (dashed), the REE upper bound of Eq. (211) (solid), and the bound of ref. [28] (dotted).
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Supplementary Figure 2: Study of the tightness of our unconstrained upper bound for the lossy channel under the assumption
of energy-constrained inputs. (a) We plot the unconstrained upper bound Φ(η) = − log2(1 − η) (upper red line) and the
constrained lower bound IRC(m̄, η) (lower black line) given by the reverse coherent information in Eq. (247) assuming m̄ = 1
mean photons at the input. Both are plotted in terms of the distance (km) assuming the standard loss rate of 0.2dB/km. The
constrained two-way capacity of the lossy channel is in the middle dark area. (b) Same as in (a) but now with m̄ = 5 mean
photons. We see how the unconstrained upper bound is rapidly reached already with a few photons.
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Supplementary Figure 3: Comparison with previous bounds based on the squashed entanglement. We compare the uncon-
strained upper bound Φ(η) = − log2(1− η) (solid red line) with the unconstrained TGW bound (dotted), and the constrained
TGW bound for m̄ = 5 mean photons (dashed-dotted) and m̄ = 1 mean photons (dashed line). Bounds are plotted in terms
of distance (km) assuming the standard loss rate of 0.2dB/km. Note that Φ(η) remains the tighter upper bound even if we
constrain the input energy down to one mean photon. This is true everywhere, except for short distances (where the energy
constraint is not so interesting since we can efficiently use highly-modulated CV-QKD).
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Supplementary Figure 4: Different approaches to reduce quantum communication. (a) Precursory BDSW reduction argu-
ment [55, Section V], explicitly considered for 2-way CCs. This may be described in 3 steps. (1) Suppose that Alice and
Bob implement a QC protocol for transmitting qubits from system A to system b by means of channel E (red curvy line).
In the upper LO, Alice applies a suitable quantum error correcting code (QECC) Λm→n

enc to encode an m-qubit logical state

|ϕ(m)〉 into an n-qubit codeword which is sent through E⊗n. In the lower LO, Bob applies a decoding operation Λn→m
dec , so

that Λn→m
dec ◦ E⊗n ◦ Λm→n

enc tends to the identity, and the n-use output state ρn
b approximates |ϕ(m)〉〈ϕ(m)|. In the general

case, we assume that the previous LOs are assisted by unlimited two-way CCs between Alice and Bob. By optimizing over
all QECCs and in the limit of infinite channel uses, one defines the two-way quantum capacity Q2(E). (2) Notice that Alice
can use the QECC to send part of m ebits (see the Bell state Φ in the grey box), so that Alice and Bob share an output
state ρn

ab which approximates Φ⊗m. Assuming an asymptotic and optimal QECC, each ebit is reliably shared at the quantum
capacity rate Q2(E). (3) Finally, assume that the channel E can be described by teleportation over the resource state σ. Any
entanglement distribution strategy through channel E can therefore be seen as a specific protocol of entanglement distillation
applied to the copies of σ. This observation leads to Q2(E) ≤ D2(σ). (b) Different re-organization of the quantum operations
in teleportation stretching. When we apply teleportation stretching to a QC protocol, we directly reduce the output state
as follows ρb(E⊗n) = Λ̄(σ⊗n), for a trace-preserving LOCC Λ̄ which is not connected with ED, but collapses the preparation

|ϕ(m)〉〈ϕ(m)|, the encoding/decoding maps, and all the teleportation operations. This is not asymptotic but done for any n.
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Supplementary Note 1. PRELIMINARY TECHNICAL TOOLS

Truncation of infinite-dimensional Hilbert spaces

In the following it will be useful to use truncation tools which enables us to connect continuous-variable (CV) and
discrete-variable (DV) states. Consider m bosonic modes with Hilbert space H⊗m and space of density operators
D(H⊗m). Then, consider the energy operator Ĥ =

∑m
i=1 N̂i (with N̂i being the number operator of mode i) and the

following compact set of energy-constrained states [1]

DE(H⊗m) := {ρ ∈ D(H⊗m) | Tr(ρĤ) ≤ E}. (1)

It is easy to show that every such state is essentially supported on a finite-dimensional Hilbert space.

Lemma 1: Consider an energy-constrained m-mode bosonic state ρ ∈ DE(H⊗m). There exists a finite-dimensional
projector Pd which projects this state onto a d-dimensional support of the m-mode Hilbert space with probability

Tr(ρPd) ≥ 1− γ, γ :=
E

m
√

d− 1
. (2)

Correspondingly, the trace distance between the original state ρ and the d-dimensional truncated state

δ :=
PdρPd

Tr(ρPd)
(3)

satisfies the inequality

D(ρ, δ) :=
1
2
‖ρ− δ‖ ≤ √

γ. (4)

Proof : Let us arrange the degenerate eigenvalues of Ĥ in increasing order as h0 ≤ h1 ≤ . . . ≤ hn ≤ . . .. Each
eigenvalue is computed as

∑m
i=1 Ni where Ni is the photon number of mode i. The corresponding eigenstates are of

the type |h̃n〉 = |N1〉 ⊗ . . .⊗ |Nm〉. For instance

|h̃0〉 = |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉 , (h0 = 0),

|h̃1〉 = |1〉 ⊗ |0〉 ⊗ . . .⊗ |0〉 , (h1 = 1),

|h̃2〉 = |0〉 ⊗ |1〉 ⊗ . . .⊗ |0〉 , (h2 = 1),
...

... (5)

Note that n + 1 counts the dimension of the truncated Hilbert space and we have hn ≤ n, because of the degeneracy
of the eigenvalues. Since hn is the total number of photons in all m modes, we have that each mode can have at most
dimension (hn + 1), so that we may write the upper bound n ≤ n + 1 ≤ (hn + 1)m or, equivalently,

hn ≥ m
√

n− 1 (6)

Then, we proceed as in Refs. [1, 2]. Denote by Pn := |h̃n〉〈h̃n| the eigenprojector associated with |h̃n〉. For dimension
d, we consider the truncation projector

Pd :=
d−1∑
n=0

Pn . (7)

Therefore, for all |ψ〉 ∈ H, we may write

〈ψ|hd(I − Pd)|ψ〉 = 〈ψ|
[
hd

∞∑

n=d

Pn

]
|ψ〉 ≤ 〈ψ|

[ ∞∑

n=d

hnPn

]
|ψ〉 ≤ 〈ψ|Ĥ|ψ〉. (8)

This implies that, for all ρ ∈ DE(H), we have

Tr [ρ(I − Pd)] ≤ 1
hd

Tr(ρĤ) ≤ E

hd
. (9)
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According to Eq. (6), we may write hd ≥ m
√

d− 1, so that

E

hd
≤ γ :=

E
m
√

d− 1
, (10)

which proves Eq. (2). The proof of Eq. (4) is a simple modification of the one given by ref. [2]. ¤

Note that we may derive a similar result in terms of a truncation channel, i.e., by means of a completely positive
trace-preserving (CPTP) map.

Lemma 2: Consider an energy-constrained m-mode bosonic state ρ ∈ DE(H⊗m). There exists a truncation channel
Td which maps the state ρ into a truncated state ρ̃ defined over a d-dimensional support of the m-mode Hilbert space,
such that

D(ρ, ρ̃) ≤ √
γ + γ, (11)

where γ is defined in Eq. (2).

Proof: For any multimode energy-constrained bosonic state ρ ∈ DE(H⊗m), we may define the following (non-local)
truncation map

ρ̃ := Td(ρ) =
∑

i=0,1

Ei

(
ΠiρΠ†i

)
, (12)

where Π0 := Pd and Π1 := I − Pd, while for any projected state σ we have either the identity channel E0(σ) = σ
or the collapsing map E1(σ) = ρ0, where ρ0 is an arbitrary fixed state within the d-dimensional support. Setting
p := Tr(ρPd), we may write

ρ̃ = pδ + (1− p)ρ0, (13)

where δ is defined in Eq. (3). Note that S0 := ‖ρ− ρ0‖ ≤ 2. Then, by exploiting the convexity of the trace norm, we
may write

D(ρ, ρ̃) =
1
2
‖ρ− ρ̃‖ ≤ p

2
‖ρ− δ‖+

1− p

2
S0 ≤ p

√
γ + 1− p ≤ √

γ + γ, (14)

where we have also used p ≤ 1 and Lemma 1. ¤

Local CV-DV mappings

It is easy to modify the previous truncation tools to make them bipartite and local, i.e., based on LOs assisted by
(generally two-way) CCs. Suppose that Alice and Bob share a CV bipartite state ρab, where Alice’s local system a
contains ma modes and Bob’s local system b contains mb modes. Then, we may analyze how this state is transformed
by a truncation channel which is based on LOCC. In fact, we may state the following.

Lemma 3: Consider an energy-constrained bosonic state ρab ∈ DE(H⊗ma ⊗H⊗mb) where Alice (Bob) has ma (mb)
modes. There is an LOCC truncation channel T⊗d (local with respect to the bipartition ma + mb) which maps ρab

into a truncated state ρ̃ab defined over a d× d-dimensional support and such that

D(ρab, ρ̃ab) ≤ √
γ + γ, γ :=

E√
d− 1

. (15)

The implementation of such truncation channel needs two bits of CC between Alice and Bob.

Proof: Assuming the bipartition of modes m = mA +mB , let us write the energy operator as Ĥ = ĤA + ĤB , where

ĤA =
mA∑

i=1

N̂i, ĤB =
mA+mB∑

i=1+mA

N̂i, (16)
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with N̂i being the number operator of the i-th mode, with eigenstates |Ni〉. Let us arrange the eigenvalues hn of Ĥ

in increasing order h0 ≤ h1 ≤ . . . The corresponding eigenstates are of the type |h̃n〉 = |N1〉 ⊗ . . . ⊗ |Nm〉. Call hA
k

(hB
l ) the eigenvalues of ĤA (ĤB). Correspondingly, we have eigenstates of the type

|h̃A
k 〉 = |N1〉 ⊗ . . .⊗ |NmA

〉 , (17)

|h̃B
l 〉 = |N1+mA

〉 ⊗ . . .⊗ ∣∣NmA+mB

〉
. (18)

It is clear that, given an arbitrary |h̃n〉, we may always decompose it as |h̃n〉 = |h̃A
k 〉⊗ |h̃B

l 〉 for some pair of labels k

and l. For this reason, any set of d states {|h̃n〉} for the m modes can certainly be represented by a tensor product of
d×d states suitably chosen within the local sets {|h̃A

k 〉} and {|h̃B
l 〉}. As a consequence, the support of a d-dimensional

projector as in Eq. (7) is always contained in the support of a local d× d projector P⊗d = PA
d ⊗ PB

d , where

PA
d :=

d−1∑

k=0

|h̃A
k 〉〈h̃A

k |, PB
d :=

d−1∑

l=0

|h̃B
l 〉〈h̃B

l |, (19)

for some suitable choice of {|h̃A
k 〉} and {|h̃B

l 〉}.
This implies that there always exists a local projector P⊗d for which we may write

Tr(ρabP⊗d ) ≥ Tr(ρabPd) ≥ 1− γ, γ =
E

2
√

d− 1
, (20)

where we have also used Lemma 1. Set p := Tr(ρabPd) and p′ := Tr(ρabP⊗d ), so that we have truncated states

δab = p−1PdρabPd, δ′ab = p′−1P⊗d ρabP⊗d . (21)

Because of the wider support of P⊗d , it is easy to check that

‖ρab − δ′ab‖ ≤ ‖ρab − δab‖ ≤ 2
√

γ, (22)

where we have used Lemma 1 in the last inequality.
In order to construct the LOCC truncation channel, let us consider the local POVM Πij := Πa

i ⊗Πb
j where

Πa(b)
0 = P

a(b)
d , Πa(b)

1 = Ia(b) − P
a(b)
d . (23)

The parties apply these projections and then they communicate their outcomes to each other, employing one bit of
classical information for each one-way CC. If both parties project onto the local d-dimensional support then they
apply an identity channel; if one of them projects outside this local support, they both apply a damping channel
which maps any input into a fixed state within the support (which can always be chosen as the vacuum state).

More precisely, we define the LOCC truncation channel

T⊗d (ρab) =
∑

i,j=0,1

Eij

(
ΠijρabΠ†ij

)
, (24)

where Πij is the local POVM defined above and

Eij =




Ia ⊗ Ib for i = j = 0

E∗a ⊗ E∗b otherwise,
(25)

where channel E∗a(b) provides an ma- (mb-) mode vacuum state for any input.
It is clear that the result is a truncated state ρ̃ab := T⊗d (ρab) where each set of modes a and b is supported in a

d-dimensional Hilbert space. In particular, we have

ρ̃ab = p′δ′ab + (1− p′) |0〉ab 〈0| . (26)

Using the convexity of the trace norm, we get

D(ρab, ρ̃ab) =
1
2
‖ρab − ρ̃ab‖ ≤ p′

2
‖ρab − δ′ab‖+

1− p′

2
‖ρab − |0〉ab 〈0|‖ ≤ p′

√
γ + 1− p′ ≤ √

γ + γ, (27)
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which concludes the proof. ¤

Finally, note that LOCC channels from DVs to CVs can be constructed by using hybrid quantum teleportation [3].
For instance, a polarisation qubit α |↑〉a + β |↓〉a can be teleported onto a single-rail qubit, which is the bosonic
subspace spanned by the vacuum |0〉b and the single-photon state |1〉b. It is sufficient to build a hyper-entangled Bell
state |↑〉a′ |1〉b + |↓〉a′ |0〉b and apply a discrete variable Bell detection on qubits a and a′. This teleports a onto the
bosonic mode b, up to Pauli operators (suitably re-written in terms of the ladder operators) that can be undone from
the output state. Such procedure can be readily extended to teleport qudits into bosonic modes in a LOCC fashion.

Supplementary Note 2. LOWER BOUND AT ANY DIMENSION

Coherent and reverse coherent information of a quantum channel

Consider a quantum channel E applied to some input state ρA of system A. Let us introduce the purification |ψ〉RA

of ρA by means of an auxiliary system R. We can therefore consider the output ρRB = I⊗E(|ψ〉RA〈ψ|). By definition,
the coherent information is [4, 5]

IC(E , ρA) = I(A〉B)ρRB
= S(ρB)− S(ρRB) , (28)

where ρB := TrR(ρRB) and S(ρ) := −Tr(ρ log2 ρ) is the von Neumann entropy. Similarly, the reverse coherent
information is given by [6, 7]

IRC(E , ρA) = I(A〈B)ρRB
= S(ρR)− S(ρRB) , (29)

where ρR := TrB(ρRB).
When the input state ρA is a maximally-mixed state, its purification is a maximally-entangled state ΦRA, so that

ρRB is the Choi matrix of the channel, i.e., ρE . We then define the coherent information of the channel as

IC(E) = I(A〉B)ρE . (30)

Similarly, its reverse coherent information is

IRC(E) = I(A〈B)ρE . (31)

Note that for unital channels, i.e., channels preserving the identity E(I) = I, we have IC(E) = IRC(E). This is just a
consequence of the fact that, the reduced states ρA and ρR of a maximally entangled state ΦRA is a maximally-mixed
state I/d, where d is the dimension of the Hilbert space (including the limit for d → +∞). If the channel is unital,
also the reduced state ρB = E(ρA) is maximally-mixed. As a result, S(ρB) = S(ρA) = S(ρR) and we may write
IC(E) = IRC(E) := I(R)C(E).

In the specific case of discrete-variable systems (d < +∞), we have S(ρR) = log2 d and therefore

I(R)C(E) = log2 d− S(ρE) . (32)

In particular, for unital qubit channels (d = 2), one has

I(R)C(E) = 1− S(ρE) . (33)

The latter two formulas will be exploited to compute the coherent information of discrete-variable channels.
The coherent information is an achievable rate for forward one-way entanglement distillation. Similarly, the reverse

coherent information is an achievable rate for backward one-way entanglement distillation (i.e., assisted by a single
and final CC from Bob to Alice). In fact, thanks to the hashing inequality [8], we may write

max{IC(E), IRC(E)} = max{I(A〉B)ρE , I(A〈B)ρE} ≤ D1(ρE). (34)

Hashing inequality in infinite dimension

The hashing inequality is known to be valid for finite-dimensional quantum systems. It is easy to extend this
inequality to energy-constrained bosonic states by exploiting the continuity of the (reverse) coherent information in
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the limit of infinite dimension. Consider the state ρAB of two bosonic modes, each mode having ≤ n̄ mean photons.
Then, we may apply a projector Pd generating a d-dimensional truncated state δAB such that (see Lemma 1)

D(ρAB , δAB) ≤ √
γ, γ =

2n̄√
d− 1

. (35)

According to ref. [9, Lemma 17], the trace-distance condition D(ρ, δ) ≤ √
γ < 1/6 implies that the coherent

information I(A〉B) = −S(A|B) satisfies

|I(A〉B)ρ − I(A〉B)δ| ≤ 16
√

γ log2

[
2e(n̄ + 1)
1−√γ

]
+ 32H2(3

√
γ) , (36)

where H2 the binary Shannon entropy

H2(p) := −p log2 p− (1− p) log2(1− p). (37)

For any n̄, the limit d → +∞ implies that γ → 0 and therefore

|I(A〉B)ρ − I(A〉B)δ| → 0 . (38)

An equivalent result holds for the reverse coherent information I(A〈B) = −S(B|A).
Thus for any n̄, the coherent and reverse coherent information are continuous in the limit of infinite dimension.

This means that the hashing inequality [8] is extended to bosonic systems with constrained energy. In other words,
I(A〉B)ρ (I(A〈B)ρ) represents an achievable rate for the distillable entanglement of the energy-bounded bosonic state
ρ via forward (backward) CCs.

Extension to energy-unbounded Choi matrices of bosonic Gaussian channels

For bosonic systems, the ideal EPR state Φ is defined as the limit of two-mode squeezed vacuum (TMSV) states Φµ,
where µ = n̄ + 1/2 is sent to infinity (here n̄ is the mean photon number in each mode) [10]. Thus, the Choi matrix
of a Gaussian channel is defined as the asymptotic operator ρE := limµ ρµ

E where ρµ
E := I ⊗ E(Φµ). Correspondingly,

the computation of the (reverse) coherent information of the channel is performed as a limit, i.e., we have

IC(E) = I(A〉B)ρE := lim
µ

I(A〉B)ρµ
E

, (39)

IRC(E) = I(A〈B)ρE := lim
µ

I(A〈B)ρµ
E

. (40)

As we will see afterwards in the technical derivations of Supplementary Note 4, for bosonic Gaussian channels the
functionals I(A〉B)ρµ

E
and I(A〈B)ρµ

E
are continuous, monotonic and bounded in µ. Therefore, the previous limits

are finite and we can continuously extend the hashing inequality of Eq. (34) to the asymptotic Choi matrix ρE of a
Gaussian channel, for which we may set D1(ρE) := limµ D1(ρ

µ
E).

Supplementary Note 3. UPPER BOUND AT ANY DIMENSION

We provide alternate proofs of the weak converse theorem (Theorem 1 in the main paper). The first proof relies
on an exponential growth for the total dimension of the private state [11–13] (which is justified by well-known
arguments [14, 15]). The second proof relies on an exponential growth for the total energy. Finally, the third proof
does not have any of the previous assumptions; in particular, it only depends on the “key part” of the private state.
The first and third proofs are first given for DV channels and then extended to CV channels by means of truncation
arguments (see Supplementary Note 1 for full details). The second proof simultaneously applies to both DV and CV
channels, by means of embedding arguments. Besides truncation and embedding, the other main ingredients are basic
properties of the trace norm and the relative entropy of entanglement (REE) [16], the “asymptotic continuity” of the
REE [17, 18], and the REE upper bound for the distillable key of a quantum state [11, 12].
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First proof of the weak converse theorem

Let us start by assuming that the output state ρn
ab in Alice and Bob’s registers has total finite dimension dab.

Given ρn
ab and φn such that ‖ρn

ab − φn‖ ≤ ε ≤ 1/3, we may write the Fannes-type inequality [17]

ER(φn) ≤ ER(ρn
ab) + 2ε log2 dab + f(ε) , (41)

where f(ε) := 4ε − 2ε log2 ε. This result is also known as asymptotic continuity of the REE. An alternate version
states that ‖ρn

ab − φn‖ ≤ ε ≤ 1/2 implies [18]

ER(φn) ≤ ER(ρn
ab) + 4ε log2 dab + 2H2(ε) , (42)

where H2 is the binary Shannon entropy. Note that the total dimension dab of the output state may always be
considered to be greater than or equal to the dimension dP of the private state. The latter involves two key systems
(with total dimension d2

K) and a shield system (with total dimension dS), so that dP = d2
KdS. The logarithm of the

dimension dK determines the key rate, while the extra dimension dS is needed to shield the key and can be assumed
to grow exponentially in n (see the next subsection “Private states and size of the shield system” for full details on
this secondary technical issue).

According to ref. [11], we may write

ER(φn) ≥ K(φn) = log2 dK := nRε
n, (43)

where K(φn) is the distillable key of φn. Therefore, from Eq. (42), we find

Rε
n ≤

ER(ρn
ab) + 4ε log2 dab + 2H2(ε)

n
. (44)

For some sufficiently high α ≥ 2, let us set

log2 dab ≤ αnRε
n . (45)

Then the previous inequality becomes

Rε
n ≤

ER(ρn
ab) + 2H2(ε)

n(1− 4εα)
. (46)

Asymptotically in n, we therefore get

lim
n

Rε
n ≤

1
1− 4εα

limn−1ER(ρn
ab) . (47)

For ε → 0, we derive

lim
n

Rn ≤ lim n−1ER(ρn
ab) , (48)

whose optimization over adaptive protocols leads to the following weak converse bound for the key generation capacity

K(E) := sup
L

lim
n

Rn ≤ EF
R (E) := sup

L
limn−1ER(ρn

ab) . (49)

When ρn
ab is a CV bosonic state, we may consider an LOCC truncation channel T⊗ which maps the state into

a DV state ρ̃n
ab = T⊗(ρn

ab) supported in a subspace with cut-off α, so that the effective dimension is 2αnRε
n as

in Eq. (45). This CV-to-DV mapping is large enough to leave the private state φn invariant, i.e., φn = T⊗(φn).
Because ‖ρ̃n

ab − φn‖ ≤ ‖ρn
ab − φn‖ ≤ ε, we can then repeat the previous derivation and write Eq. (49) for ρ̃n

ab.
Then, we introduce the upper-bound ER(ρ̃n

ab) ≤ ER(ρn
ab), which derives from the monotonicity of the REE under

trace-preserving LOCCs (such as T⊗). For clarity, this derivation can be broken down into the following steps

ER(ρ̃n
ab)

(1)
= S(ρ̃n

ab||σ̃opt
s )

(2)

≤ S(ρ̃n
ab||σ′s)

(3)

≤ S(ρn
ab||σopt

s ) = ER(ρn
ab) , (50)

where (1) we use the optimal separable state σ̃opt
s which is the closest to ρ̃n

ab in terms of relative entropy; (2) we
introduce the non-optimal separable state σ′s = T⊗(σopt

s ), where σopt
s is the separable state closest to ρn

ab (because T⊗

is a LOCC, it preserves the separability of input states); and (3) we exploit the fact that the relative entropy cannot
increase under trace-preserving LOCCs, which holds in arbitrary dimension [16, 19]. Thus, we may write Eq. (49)
where ER(ρn

ab) is directly computed on the bosonic state ρn
ab.
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Private states and size of the shield system

Let us discuss here the secondary technical detail related with the size of the shield system which appears in the
definition of a private state. Consider a finite dimensional system of dimension dK and basis {|i〉}dK−1

i=0 . A private
state between Alice and Bob can be written in the form [11, 12]

φABA′B′ = U(ΦAB ⊗ χA′B′)U†, (51)

where AB is the total key system in the maximally entangled state

ΦAB = |Φ〉AB 〈Φ| , |Φ〉AB := d
−1/2
K

dK−1∑

i=0

|i〉A |i〉B , (52)

while A′B′ is the shield system in a state χA′B′ protecting the key from eavesdropping. In Eq. (51), the unitary U is
a controlled-unitary known as “twisting unitary” which takes the form [12]

U =
dK−1∑

i,j=0

|i〉A 〈i| ⊗ |j〉B 〈j| ⊗ U ij
A′B′ , (53)

with U ij
A′B′ being arbitrary unitary operators.

One can prove that a dilation of a private state into an environment E (owned by Eve) must take the form [12]

φABA′B′E = (U ⊗ IE)(ΦAB ⊗ χA′B′E)(U ⊗ IE)†, (54)

with χA′B′ = TrE(χA′B′E). Note that one can also equivalently write

φABA′B′E = d−1
K

dK−1∑

i,j=0

|ii〉AB 〈jj| ⊗ U ii
A′B′χA′B′E(U jj

A′B′)
†. (55)

By making local measurements on the key system AB and tracing out the shield system A′B′, Alice and Bob retrieve
the ideal classical-classical-quantum (ccq) state [12]

τABE = d−1
K

dK−1∑

i=0

|i〉A 〈i| ⊗ |i〉B 〈i| ⊗ τE , (56)

with τE arbitrary. More precisely, one shows [12] that τ i
E = τE for any i in Eq. (56). The shared randomness in the

final classical AB system provides log2 dK secret-key bits. Thus, the dimension dK of each key system defines the
number of secret-key bits (i.e., the rate of the protocol), while the dimension dS of the shield system can in principle
be arbitrary. The total dimension of the private state is dP = d2

KdS.
In a key distillation protocol, where Alice and Bob start from n shared copies ρ⊗n

AB and apply LOCCs to approximate
a private state, the size of the shield dS grows with the number of classical bits exchanged in their CCs. In fact,
Eve may store all these bits in her local register and a private state can be approximated by the parties only if the
dimension of Eve’s register is smaller than the dimension of the shield system. This is implied by Eq. (56) as explained
in ref. [12, Section III].

Now we may ask: Is the shield size dS super-exponential in n? The answer is no for DV systems.

This was originally proven in ref. [14] and also discussed in ref. [15]. This result also holds for key distribution
through memoryless channels at any dimension (finite or infinite). Let us remark that, despite the proof may appear
involved, it is actually a trivial modification of the one in ref. [14, Appendix A (arXiv v3 version)]. It is based on the
fact that one can always design an approximate protocol where key distribution through n uses of a finite- or infinite-
dimensional channel is broken down into m identical and independent n0-long sub-protocols. These sub-protocols
provide m copies, which are truncated, measured and whose shields may be discarded. The effective increase of the
shield size will then come from one-way key distillation of these output copies, which has an exponential contribution
in m < n. In the following, we report this adaptation (with all details) only for the sake of completeness.
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Lemma 4 (Shield size. Trivially adapted from ref. [14]): Consider n uses of an adaptive key generation protocol
through a quantum channel at any dimension (finite or infinite). Without loss of generality, we can assume that
the effective dimension of the shield system dS grows in such a way that lim infn(dS/cn) is a constant for some c ≥ 1.

Proof : Let us represent Alice’s and Bob’s local registers as a = AA′ and b = BB′, where A and B are the local
key systems, while A′ and B′ are the local shield systems. Denote Eve’s register by E. Even if all these systems
are infinite-dimensional for bosonic channels, the key systems A and B of the private state φn0

AA′BB′E have finite-
dimensional support, as we can see from Eq. (54). Then consider an arbitrary adaptive key generation protocol Pn

key,
with key rate R and communication cost that is not necessarily linear in the number n of channel uses (this cost
may even be singular, i.e., involving an infinite number of classical bits per channel use). For any ε > 0, there is a
sufficiently large integer n0 such that its output ρn0

AA′BB′E satisfies

‖ρn0
AA′BB′E − φn0

AA′BB′E‖ ≤ ε, (57)

where φn0
AA′BB′E is a (dilated) private state with ln0 secret bits such that

Rn0 :=
ln0

n0
≥ R− ε . (58)

Assume that the restricted n0-adaptive protocol is repeated m times, so that the total number of channel uses can be
written as n = n0m. Correspondingly, Alice and Bob’s output state will be equal to the tensor product (ρn0

AA′BB′)
⊗m

with ρn0
AA′BB′ = TrE(ρn0

AA′BB′E). Now, assume that the parties measure their key systems in the computational basis
|i〉A⊗ |j〉B while truncating any outcome outside the finite-dimensional 2ln0 × 2ln0 support Skey of the private state’s
key system. They then discard their shield systems. This means that they apply the LOCC channel

L⊗(ρn0
AA′BB′) = TrA′B′


∑

i,j

Eij

(
Πijρ

n0
AA′BB′Π

†
ij

)

 , (59)

where Πij := ΠA
i ⊗ΠB

j projects onto the local computational bases, while the conditional channel Eij is

Eij =




IAB for i, j ∈ [0, 2ln0 − 1]

EA
e ⊗ EB

e otherwise,
(60)

where Ee is a map replacing any input with an erasure state |e〉 orthogonal to the support Skey. (Note that the
contribution of the extra dimension of |e〉 to the output state is completely negligible since 2ln0 is very large).

The action of L⊗ on the (dilated) output state ρn0
AA′BB′E is such that we achieve a truncated ccq state ρ̃n0

ABE :=
(L⊗ ⊗ IE)(ρn0

AA′BB′E), where the key systems A and B are classical and finite-dimensional. Similarly, the action on
the (dilated) private state provides the ideal ccq target state τn0

ABE := (L⊗ ⊗ IE)(φn0
AA′BB′E) which corresponds to

Eq. (56) with log2 dK = ln0 . Also note that this classicalization and truncation step just needs two bits of CC to
be implemented: These bits are needed to identify those instances where the measurement of the other party falls
outside the support (this classical overhead is clearly linear in the number m of blocks).

All the procedure is a trivial modification of the one in ref. [14, Appendix A (arXiv v3 version)]. Here we implement
it in a coherent way and we include CV systems, for which L⊗ measures the key systems within the finite-dimensional
support of the private state, while collapsing any contribution from the remaining part of the infinite-dimensional
Hilbert space. It is easy to check that L⊗ can also be implemented in two subsequent steps: First a truncation channel
into a (2ln0 + 1)× (2ln0 + 1) subspace and then a measurement channel in the computational bases.

Using the monotonicity of the trace distance under channels (at any dimension), from Eq. (57) we may write

‖ρ̃n0
ABE − τn0

ABE‖ ≤ ε. (61)

Let us consider the reduced state ρ̃n0
AB = TrE(ρ̃n0

ABE). Given many copies (ρ̃n0
AB)⊗m, Alice and Bob may apply one-way

key distillation at an achievable rate (secret bits per block) given by the Devetak-Winter (DW) rate [8]

RDW
ρ̃ := I(A : B)− I(A : E) = S(A|E)− S(A|B), (62)

where I(:) is the quantum mutual information (equal to the classical mutual information on classical systems A and
B), and S(|) is the conditional von Neumann entropy, with all quantities being computed on the extended output
ρ̃ := ρ̃n0

ABE . Note that the DW rates are achievable rates at any dimension (finite or infinite).



11

Let us set τ := τn0
ABE . We then compute the difference

RDW
τ −RDW

ρ̃ ≤ |S(A|E)τ − S(A|E)ρ̃|+ |S(A|B)ρ̃ − S(A|B)τ | ≤ 8ε log2 dimHA + 4H2(ε), (63)

where H2 is the binary Shannon entropy. In Eq. (63), we have used the Alicki-Fannes’ inequality for the conditional
quantum entropy [20] which is valid for any ||ρ̃− τ || ≤ ε < 1 as in Eq. (61).

Note that Eq. (63) only contains the dimension of Alice’s Hilbert space HA (truncated in each sub-protocol), while
the Hilbert spaces of Bob and Eve do not have any restriction of their dimensionality. Because RDW

τ = ln0 and
dimHA = 2ln0 , we may then write

RDW
ρ̃ ≥ (1− 8ε)ln0 − 4H2(ε), (64)

exactly as in ref. [14, Appendix A (arXiv v3 version)]. Therefore, by dividing the latter equation by n0, one gets the
average rate (per channel use)

R̃ :=
1
n0

RDW
ρ̃ ≥ (1− 8ε)(R− ε)− 4H2(ε)

n0
. (65)

It is now important to note that Alice and Bob can achieve the average DW rate R̃ using an amount of one-way
CC which is linear in the block number m < n. In fact, the communication cost (bits per block) associated with the
one-way key distillation of Alice and Bob’s copies (ρ̃n0

AB)⊗m is equal to the conditional (Shannon) entropy S(A|B)
between the two classical finite-dimensional systems A and B [8]. This overhead is bounded by log2 dimHA,B = ln0

classical bits per block, so that it scales at most linearly as mln0 . Therefore, by decreasing ε, we get a sequence
of protocols whose classical communication scales linearly in m while their rates approach R according to Eq. (65).
Correspondingly, the size of the shield grows at most exponentially in m.

Let us take a closer look at the dynamics of the shield. Within each block, the shield size may increase super-
exponentially (even to infinite) but then this size collapses to zero at the end of each block (after n0 uses) once the
parties have generated their finite-dimensional cc-state ρ̃n0

AB . For this reason, there is no surviving contribution to
shield coming from the m sub-protocols. The only contribution to the shield size is that (exponential) coming from
the protocol of one-way key distillation on the output finite-dimensional copies. Thus, at values of n = n0m for
integer m, the dimension dS scales as an exponential function, i.e., it is bounded by cn for some c ≥ 1. If we look at
the shield dynamics for every n, then we may always replace the limit by an inferior limit, i.e., we may always say
that lim infn(dS/cn) is a constant (with the infimum reached by the sequence of points n = n0m). ¤

Second proof of the weak converse theorem

This second proof simultaneously applies to DV and CV systems, and relies on the physical assumption that the
energy of the output state grows at most exponentially in the number of channel uses. Consider bosonic modes, since
any DV system can be unitarily embedded into a CV system (operation which does not change the trace distance).
In general, we assume ma modes at Alice’s side and mb modes at Bob’s side (recall that the parties’ local registers
may be composed of a countable set of quantum systems). Assume that the output state ρn

ab and the target state
φn
ab have mean photon numbers bounded by En, where we may set En ≤ 2cn for some constant c.
Let us apply a LOCC truncation channel T⊗d , local with respect to Alice and Bob’s bipartition of modes ma + mb,

which truncates Alice’s and Bob’s local Hilbert spaces to finite dimension d = E4
n (other choices are possible). This

means that the truncated states ρn,d
ab := T⊗d (ρn

ab) and φn,d
ab := T⊗d (φn

ab) satisfies (see Lemma 3)

||ρn,d
ab − ρn

ab||, ||φn,d
ab − φn

ab|| ≤ 2(
√

γ + γ), γ =
En

E2
n − 1

. (66)

Because ‖ρn
ab − φn

ab‖ ≤ ε, we can apply the triangle inequality and find

||ρn,d
ab − φn,d

ab || ≤ ε + ε′, ε′ := 4(
√

γ + γ) = O(E−1/2
n ). (67)

Now the asymptotic continuity of the REE [18] leads to

ER(φn,d
ab ) ≤ ER(ρn,d

ab ) + 32(ε + ε′) log2 En + 2H2(ε + ε′), (68)

where we use the fact that the total dimension of the truncated states is dab = d2 = E8
n.
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In Eq. (68) we may replace ER(ρn,d
ab ) ≤ ER(ρn

ab) due to the fact that the REE is monotonic under T⊗d and invariant
under embedding local unitaries. We may also replace log2 En ≤ cn and ER(φn,d

ab ) ≥ K(φn,d
ab ) = nRε

n(En), where the
energy-constrained key rate must satisfy limn Rε

n(En) = limn Rε
n, with Rε

n being the (finite) key rate associated with
φn
ab. Therefore, we may write

nRε
n(En) ≤ ER(ρn

ab) + 32(ε + ε′)cn + 2H2(ε + ε′). (69)

Diving by n and taking the limit for n → +∞, we get

lim
n

Rε
n ≤ lim

n
n−1ER(ρn

ab) + 32εc. (70)

Finally, by taking the limit of ε → 0, we find

lim
n

Rn ≤ lim
n

n−1ER(ρn
ab) , (71)

which gives the final result K(E) ≤ EF
R (E) by optimizing over all adaptive protocols.

Third proof of the weak converse theorem

Let us now give a final proof which is completely independent from the dimensionality of the shield system in the
private state. We start from the DV case and then we prove the CV case by resorting to truncation arguments. After
n uses of a DV quantum channel E , an adaptive key-generation protocol has an output ρn

ab = ρab(E⊗n) such that

‖ρn
ab − φn

ab‖ ≤ ε, (72)

where φn
ab is a private state. Let us write the local registers as a = AA′ and b = BB′, with AB being the key part

(with dimension dK × dK) and A′B′ being the shield. By definition of private state, we have

φn
ab = φn

ABA′B′ = U(Φn
AB ⊗ χA′B′)U†, (73)

where U is a twisting unitary, χA′B′ is a state of the shield, and Φn
AB is a Bell state with log dK = nRε

n secret bits.
Let us “untwist” the output state ρn

ab = ρn
ABA′B′ and then take the partial trace over the shield system A′B′. This

means to consider

ρn
AB = TrA′B′

(
U†ρn

ABA′B′U
)

:= W(ρn
ABA′B′). (74)

Trace norm is non-decreasing under partial trace and invariant under unitaries, so that Eq. (72) implies

‖ρn
AB − Φn

AB‖ ≤ ε. (75)

Following ref. [12], let us consider the set T of bipartite states σAB which are defined by σAB = W(σABA′B′) where
σABA′B′ is an arbitrary separable state (with respect to Alice and Bob’s bipartition AA′ and BB′). One may define
the relative entropy distance from this set as

ET
R(ρ) = inf

σ∈T
S(ρ||σ) . (76)

Because the set T is compact, convex and contains the maximally mixed state [12], this distance is asymptotically
continuous, i.e., the condition ‖ρ1 − ρ2‖ ≤ ε < 1/2 implies [18]

∣∣ET
R(ρ1)− ET

R(ρ2)
∣∣ ≤ 4ε log2 d + 2H2(ε) , (77)

where d is the total dimension of the Hilbert space and H2 is the binary Shannon entropy.
By applying this property to Eq. (75) with dAB = d2

K, we then get

ET
R(Φn

AB) ≤ ET
R(ρn

AB) + 8ε log2 dK + 2H2(ε). (78)

Now we exploit two observations. The first is that

ET
R(Φn

AB) ≥ log dK = nRε
n , (79)
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as shown in ref. [12, Lemma 7]. Then, we also have

ET
R(ρn

AB) ≤ ER(ρn
ABA′B′) := ER(ρn

ab) . (80)

In fact, this is proven by the following chain of (in)equalities

ET
R(ρn

AB)
(1)

≤ S[ρn
AB ||W(σABA′B′)]

(2)
= S[W(ρn

ABA′B′)||W(σABA′B′)]
(3)

≤ S(ρn
ABA′B′ |σABA′B′)

(4)
= ER(ρn

ABA′B′), (81)

where (1) we use some arbitrary state σAB ∈ T , (2) we use Eq. (74), (3) we use the fact that the relative entropy is
monotonic under partial trace and invariant under unitaries, and finally (4) we may always choose the separable state
σABA′B′ to be the one which is the closest to ρn

ABA′B′ in relative entropy (so that it defines its REE).
Using Eqs. (79) and (80) into Eq. (78), we find

nRε
n ≤ ER(ρn

ab) + 8ε log2 dK + 2H2(ε). (82)

Because log2 dK = nRε
n, this leads to

Rε
n ≤

ER(ρn
ab) + 2H2(ε)

n(1− 8ε)
, (83)

so that, for large n, we may write

lim
n

Rε
n ≤

1
1− 8ε

lim
n

n−1ER(ρn
ab) . (84)

By taking the limit of ε → 0, we then find

lim
n

Rn ≤ lim
n

n−1ER(ρn
ab). (85)

Finally, by optimizing over all adaptive protocols L, we establish the weak converse bound for the two-way key-
generation capacity of the channel

K(E) := sup
L

lim
n

Rn ≤ sup
L

lim
n

n−1ER(ρn
ab) . (86)

We now consider the CV case, i.e., a bosonic channel E . In this case, the private state φn
ab = φn

ABA′B′ of Eq. (73)
is still built on a finite-dimensional dK × dK Bell state Φn

AB containing log dK = nRε
n secret bits. This Bell state

may equivalently be thought to be embedded into a CV system where it is supported within a dK × dK subspace of
the infinite-dimensional Hilbert space. The shield state χA′B′ can be an arbitrary CV state and the twisting U is an
arbitrary control-unitary as in Eq. (53) but where the target unitaries U ij

A′B′ are defined on a CV state.
Let us apply an LOCC truncation channel T⊗dK

to the key systems A and B, so that their Hilbert spaces are
truncated to finite dimension dK × dK. Clearly, we have the invariance φn

ABA′B′ = T⊗dK
⊗ IA′B′(φn

ABA′B′), while we
set ρn,dK

ABA′B′ := T⊗dK
⊗ IA′B′(ρn

ABA′B′), where IA′B′ is an identity channel acting on the shield systems. By using the
monotonicity of the trace norm under channels, we may write

||ρn,dK
ABA′B′ − φn

ABA′B′ || ≤ ε . (87)

As before, let us define a channel W which untwists and partial-traces the states as in Eq. (74). This channel provides
the dK × dK states ρ̃n

AB = W(ρn,dK
ABA′B′) and Φn

AB = W(φn
ABA′B′), for which we may write (using monotonicity)

||ρ̃n
AB − Φn

AB || ≤ ε . (88)

Consider now the set T of states defined by σAB = W(σABA′B′), where σABA′B′ is an arbitrary separable state
(with respect to the bipartition AA′ and BB′) where the key-part AB has dimension dK × dK while the shield-part
A′B′ is infinite-dimensional. The set T is compact, convex and contains the maximally mixed state. Thus, the relative
entropy distance ET

R(ρ) = infσ∈T S(ρ||σ) is asymptotically continuous. This means that we may write

ET
R(Φn

AB) ≤ ET
R(ρ̃n

AB) + 8ε log2 dK + 2H2(ε). (89)

Now we derive

ET
R(ρ̃n

AB)
(1)

≤ ER(ρn,dK
ABA′B′)

(2)

≤ ER(ρn
ABA′B′) := ER(ρn

ab), (90)

where (1) follows the derivation given in Eq. (81), and (2) comes from the monotonicity of the REE under T⊗dK
⊗IA′B′ .

By replacing Eqs. (79) and (90) into Eq (89), we find Eq. (82) where ρn
ab is a now a CV state. The remainder of the

proof is the same as before.
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Supplementary Note 4. TECHNICAL DERIVATIONS FOR BOSONIC GAUSSIAN CHANNELS

Basic tools for continuous variables

Let us consider n bosonic modes with quadrature operators x̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n)T and canonical commutation
relations [21]

[x̂, x̂T ] = iΩ, Ω :=
(

0 1
−1 0

)
⊗ I , (91)

with I being the n × n identity matrix. An arbitrary multimode Gaussian state ρ(u, V ), with mean value u and
covariance matrix (CM) V , can be written as [22]

ρ =
exp

[− 1
2 (x̂− u)T G(x̂− u)

]

det (V + iΩ/2)1/2
, (92)

where the Gibbs matrix G is specified by

G = 2iΩ coth−1(2V iΩ). (93)

The CM of a Gaussian state can be decomposed by using Williamson’s theorem [10]. This provides the symplectic
spectrum {ν1, . . . , νn} which must satisfy the uncertainty principle νk ≥ 1/2. Similarly, we may write νk = n̄k + 1/2
where n̄k are thermal numbers, i.e., mean number of photons in each mode. The von Neumann entropy of a Gaussian
state can be easily computed as

S(ρ) =
∑

k

s(νk) =
∑

k

h(n̄k), (94)

where




s(ν) :=
(
ν + 1

2

)
log2

(
ν + 1

2

)− (
ν − 1

2

)
log2

(
ν − 1

2

)
,

h(n̄) := (n̄ + 1) log2 (n̄ + 1)− n̄ log2 n̄.
(95)

The most typical Gaussian state of two modes A and B is a two-mode squeezed thermal state. This has zero-mean
and CM of the form

V =
(

a c
c b

)
⊕

(
a −c
−c b

)
, (96)

with arbitrary a, b ≥ 1/2 and c satisfying the condition

c ≤ cmax := min
{√(

a− 1
2

) (
b + 1

2

)
,
√(

a + 1
2

) (
b− 1

2

)}
. (97)

These bona-fide conditions can be checked using the tools in Refs. [23, 24] adapted to our different notation. For a
CM as in Eq. (96), separability corresponds to

c ≤ csep :=
√(

a− 1
2

) (
b− 1

2

)
. (98)

Thus, at any fixed a and b, the maximally-correlated but still separable Gaussian state is given by imposing the
boundary condition c = csep. It is easy to check that this state contains the maximum correlations among the
separable states, e.g., as quantified by its (unrestricted, generally non-Gaussian) quantum discord [25].

For csep < c ≤ cmax in Eq. (96), the Gaussian state is entangled. A specific case is the TMSV state Φµ with CM of
the form

V µ =
(

µ c
c µ

)
⊕

(
µ −c
−c µ

)
, c :=

√
µ2 − 1/4, µ ≥ 1/2. (99)

As already discussed, for µ → ∞, this state describes the asymptotic CV EPR state Φ, realizing the ideal EPR
conditions q̂A = q̂B and p̂A = −p̂B .
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A Gaussian channel is a CPTP map which transforms Gaussian states into Gaussian states. Single-mode Gaussian
channels can be greatly simplified by means of input-output unitaries. In fact, these can always be put in canonical
form [10] whose general action on input quadratures x̂ = (q̂, p̂)T is given by

x̂ → T x̂ + Nx̂E + z , (100)

where T and N are diagonal matrices, E is an environmental mode with n̄ mean photons, and z is a classical
Gaussian variable, with zero mean and CM ξI where ξ ≥ 0. All Gaussian channels are teleportation-covariant and,
therefore, Choi-stretchable (with an asymptotic Choi matrix). Teleportation-covariance is given by the fact that any
displacement of the input x̂ → x̂ + dk is mapped into a displacement Tdk on the output.

Depending on the specific canonical form we have different expressions in Eq. (100). We have:

• The thermal-loss channel Eloss(η, n̄) with transmissivity 0 ≤ η ≤ 1 and n̄ thermal photons. This is described by

x̂ → √
ηx̂ +

√
1− ηx̂E . (101)

For n̄ = 0, the channel Eloss(η) := Eloss(η, 0) is called pure-loss channel or just “lossy channel”.

• The amplifier channel Eamp(η, n̄) with gain η > 1 and n̄ thermal photons (in the main text we use the letter g
for the gain). This corresponds to the transformation

x̂ → √
ηx̂ +

√
η − 1x̂E . (102)

For n̄ = 0, the channel Eamp(η) := Eamp(η, 0) is called “quantum-limited amplifier”.

• The additive-noise Gaussian channel Eadd(ξ), which simply corresponds to

x̂ → x̂ + z. (103)

• Finally, there are other secondary forms. One is the conjugate of the amplifier, which is described by x̂ →√−ηZx̂ +
√

1− ηx̂E , where η < 0 and Z = diag(1,−1) is the reflection matrix. Then, other pathological
forms [10]: The A2-form, which is a ‘half’ depolarising channel and corresponds to x̂ → (q̂, 0)T + x̂E ; and the
B1-form, which is described by x̂ → x̂ + (0, p̂v)T where v is the vacuum.

Coherent and reverse coherent information of a Gaussian channel

Here we discuss the computation of the (reverse) coherent information for the most important single-mode Gaussian
channels, i.e., the thermal-loss channel, the amplifier channel and the additive-noise Gaussian channel. Compactly,
their action on input quadratures is given by

x̂ → √
ηx̂ +

√
|1− η|x̂E + z, (104)

where η ≥ 0 is the transmission (or gain), E is the environmental mode in a thermal state with n̄ mean photons,
and z is a classical Gaussian variable with CM ξI ≥ 0. The Choi matrix ρE of this Gaussian channel E = E(η, n̄, ξ)
is defined as an asymptotic limit. At the input we consider a sequence of TMSV states Φµ with CM as in Eq. (99).
Then, at the output, we get a sequence of finite-energy Gaussian states

ρµ
E := I ⊗ E(Φµ), (105)

whose limit defines ρE := limµ ρµ
E . The quasi-Choi matrices ρµ

E are zero-mean Gaussian states with CM

V µ(η, n̄, ξ) =
(

µ γ
γ β

)
⊕

(
µ −γ
−γ β

)
, β := ηµ + |1− η|

(
n̄ +

1
2

)
+ ξ, γ :=

√
η(µ2 − 1/4). (106)

Let us consider the symplectic eigenvalues of the output CM in Eq. (106), which are given by [10]

ν± =

√
∆±√∆2 − 4 det V µ

2
, ∆ := µ2 + β2 − 2γ2. (107)
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Using the formula of the von Neumann entropy for Gaussian states and the definitions of the coherent information
IC and reverse coherent information IRC, we may write

IC(E , Φµ) = I(A〉B)ρµ
E

= s(β)− s(ν−)− s(ν+), IRC(E , Φµ) = I(A〈B)ρµ
E

= s(µ)− s(ν−)− s(ν+), (108)

where function s(·) is given in Eq. (95).
It is easy to see that these quantities are continuous and increasing in µ, for any fixed values of η, n̄ and ξ. For

instance, for the lossy channel (0 ≤ η ≤ 1, n̄ = ξ = 0), we simply have

I(A〉B)ρµ
E

= s

[
1− η

2
+ ηµ

]
− s

[η

2
+ (1− η)µ

]
, I(A〈B)ρµ

E
= s(µ)− s

[η

2
+ (1− η)µ

]
. (109)

Thus, the limit for µ → +∞ in the expressions of Eq. (108) is regular and finite. The asymptotic values represent the
coherent and reverse coherent information of the considered Gaussian channels, i.e., we have

IC(E) = I(A〉B)ρE := lim
µ

I(A〉B)ρµ
E
, IRC(E) = I(A〈B)ρE := lim

µ
I(A〈B)ρµ

E
, (110)

as already defined in Eqs. (39) and (40). Correspondingly, the hashing inequality can be safely extended to the limit,
i.e., from

max{I(A〉B)ρµ
E
, I(A〈B)ρµ

E
} ≤ D1(ρ

µ
E), (111)

we may write

max{IC(E), IRC(E)} ≤ D1(ρE) := lim
µ

D1(ρ
µ
E). (112)

For the thermal-loss channel, the best lower bound is the reverse coherent information, given by [7]

IRC(η, n̄) = − log2 (1− η)− h(n̄), (113)

where h(·) is the entropic function defined in Eq. (95). In particular, for a lossy channel (n̄ = 0), one has

IRC(η) = − log2 (1− η) . (114)

For the amplifier channel, the best lower bound is given by the coherent information, which is equal to [7, 26]

IC(η, n̄) = log2

(
η

η − 1

)
− h(n̄), (115)

and becomes

IC(η) = log2

(
η

η − 1

)
, (116)

for the quantum-limited amplifier (n̄ = 0). The coherent information and reverse coherent information of the additive-
noise Gaussian channel coincide. We have [26]

IC(ξ) = IRC(ξ) = − log2 ξ − 1
ln 2

. (117)

Due to the hashing inequality, the quantities IC(E) and IRC(E) are achievable rates for one-way entanglement
distillation. Therefore, they also represent achievable rates for key generation, just because an ebit is a particular
type of secret bit. In particular, ref. [7] proved that IRC(E) is an achievable lower bound for quantum key distribution
(QKD) through a Gaussian channel without the need of preliminary entanglement distillation. In fact, IRC(E) can
be computed as the asymptotic key rate of a coherent protocol where:

(i) Alice prepares TMSV states Φµ
AA′ sending A′ to Bob;

(ii) Bob heterodynes each output mode B and sends final CCs back to Alice;

(iii) Alice measures all her modes A by means of an optimal coherent detection that reaches the Holevo bound.

The achievable rate of this coherent protocol is given by a Devetak-Winter rate RDW [8]. Because Eve holds the
entire purification of Alice and Bob’s Gaussian output state ρµ

E and Bob’s detections are rank-1 measurements, this
rate is equal to the reverse coherent information [7] RDW = I(A〈B)ρµ

E
computed on Alice and Bob’s output. Then,

by taking the limit of µ → +∞, one obtains K(E) ≥ IRC(E).
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How to compute the entanglement flux of a Gaussian channel

Here we discuss how to compute the entanglement flux of a single-mode Gaussian channel (in canonical form).
We provide the general recipe and then we go into details of the specific channels in the next subsections. The
entanglement flux of a Gaussian channel E satisfies

Φ(E) ≤ lim inf
µ→+∞

S(ρµ
E ||σ̃µ

s ) , (118)

where ρµ
E is a sequence of quasi-Choi matrices as defined in Eq. (105) with CMs as in Eq. (106), while σ̃µ

s is a suitable
sequence of separable Gaussian states.

For any µ, we choose a separable Gaussian state σ̃µ
s with CM Ṽ µ(η, n̄, ξ) as in Eq. (106) but with the replacement

γ →
√

(µ− 1/2)(β − 1/2), (119)

for the off-diagonal term. At fixed marginals µ and β, this is the most-correlated separable Gaussian state that we can
build according to Eqs. (96) and (98); it has maximum (non-Gaussian) discord [25] and minimizes the relative entropy
S(ρµ

E ||σ̃µ
s ) as long as ρµ

E is an entangled state. In the specific case where the channel E is entanglement-breaking, then
ρµ
E becomes separable and we can trivially pick σ̃µ

s = ρµ
E , which gives S(ρµ

E ||σ̃µ
s ) = 0.

In general, we are left with the analytical calculation of the relative entropy S(ρµ
E ||σ̃µ

s ) between two Gaussian states.
This can be done in terms of their statistical moments according to our formula for the REE between two arbitrary
multimode Gaussian states, which is given in the “Methods” section of our paper. For S(ρµ

E ||σ̃µ
s ) we find regular

expressions with a well-defined limit, so that we can put lim infµ = limµ in Eq. (118). We provide full algebraic
details below for the various Gaussian channels.

Entanglement flux of a thermal-loss channel

Consider a thermal-loss channel Eloss(η, n̄) with transmissivity 0 ≤ η ≤ 1 and thermal number n̄, so that thermal
noise has variance ω = n̄ + 1/2. For n̄ ≥ η(1− η)−1, this channel is entanglement-breaking and we have Φ(η, n̄) = 0.
For n̄ < η(1−η)−1 we compute the relative entropy Sµ := S (ρµ

E ||σ̃µ
s ) from the CMs V µ(η ≤ 1, n̄, 0) and Ṽ µ(η ≤ 1, n̄, 0)

of the zero-mean Gaussian states ρµ
E and σ̃µ

s . Using our formula for the relative entropy between Gaussian states, we
get

Sµ = −S1 +
∆

2 ln 2
+

1
2

log2

{
2µ− 1

4
[2ω − 1 + 2η(µ− ω)]

}
, (120)

where S1 is the contribution of the von Neumann entropy, while the other two terms come from the entropic functional
Σ(V µ, Ṽ µ, 0) (see Methods for its definition). Term ∆ is analytical but too cumbersome to be reported here.

By expanding for large µ, we may write

∆ → 2
[
1− 2ω coth−1

(
1 + η

η − 1

)]
+ O(µ−1), S1 → h(n̄) + log2 [e(1− η)µ] + O(µ−1), (121)

and

1
2

log2

{
2µ− 1

4
[2ω − 1 + 2η(µ− ω)]

}
→ log2 µ

√
η + O(µ−1) . (122)

Taking the limit S∞ = lim infµ Sµ = limµ Sµ, we get

S∞ = − log2

[
(1− η)ηn̄

]− h(n̄) . (123)

As a result, by replacing in Eq. (118), we find that the entanglement flux of a thermal-loss channel Eloss(η, n̄) satisfies

Φ(η, n̄) ≤ Φloss(η, n̄) :=




− log2 [(1− η)ηn̄]− h(n̄) for n̄ < η

1−η ,

0 otherwise.
(124)

The thermal bound in Eq. (124) is clearly tighter than previous bounds based on the squashed entanglement, such
as the “Takeoka-Guha-Wilde” (TGW) thermal bound [27]

KTGW = log2

[
(1− η)n̄ + 1 + η

(1− η)n̄ + 1− η

]
, (125)



18

and its improved version [28]. However, Φloss does not generally coincide with the achievable lower-bound [7] given by
the reverse coherent information of the channel [see Eq. (113)]. Thus, the generic two-way capacity of the thermal-loss
channel satisfies the sandwich relation

− log2 (1− η)− h(n̄) ≤ Closs(η, n̄) ≤ Φloss(η, n̄). (126)

It is easy to check that, for a lossy channel (n̄ = 0), the bounds Eq. (126) coincide, therefore establishing

Closs(η) = − log2 (1− η) . (127)

Relation with quantum discord

The result of Eq. (127) sets the fundamental limit for secret-key generation, entanglement distribution and quantum
communication in bosonic lossy channels. For high loss it provides the fundamental rate-loss scaling of 1.44η bits
per channel use. This also coincides with the maximum discord that can be distributed to the parties in a single use
of the channel. In fact, we may write the reverse coherent information of a (bosonic) channel E as [29] I(A〈B)ρE =
D(B|A)−Ef(B, E), where D(B|A) is the quantum discord [30] of Alice and Bob’s (asymptotic) Choi matrix ρE , while
Ef(B, E) is the entanglement of formation between Bob and Eve. Because a lossy channel Eloss := Eloss(η, 0) is dilated
into a beamsplitter with a vacuum environment, we have Ef(B, E) = 0. Thus, for a lossy channel, we simultaneously
have I(A〈B)ρEloss

= D(B|A) and Closs(η) = I(A〈B)ρEloss
. These relations lead to

Closs(η) = D(B|A) , (128)

where D(B|A) is the quantum discord of the (asymptotic) Gaussian Choi matrix ρEloss [25]. In particular, this discord
can be computed as Gaussian discord [31, 32].

Full calculation details for the lossy channel

For the sake of completeness, we provide the specific details of the computation of the relative entropy Sµ for the
specific case of a lossy channel. After some algebra, we achieve

Sµ = log2

[(
µ− 1

2

)√
η

]
− s

[
(1− η)µ +

η

2

]
+

∆
2 ln 2

, (129)

where

∆ :=
c− (2µ− 1)(1− η)a

b
coth−1

[
(1− η)(1− 2µ)− a

2

]
− c + (2µ− 1)(1− η)a

b
coth−1

[
(1− η)(1− 2µ) + a

2

]
,

(130)
and

a :=
√

1− (6− η)η + 4µ[1 + (4− η)η + (1− η)2µ], (131)

b :=
√

8µ + (2µ− 1)[4η + (2µ− 1)(1− η)2], (132)

c := 2η(2µ− 1)
(
2
√

4µ2 − 1− 1− 2µ
)
− η2(2µ− 1)2 − (1 + 2µ)2. (133)

We now insert the expression of ∆ in Eq. (129) and we take the limit for µ → +∞. This limit is defined (i.e.,
lim infµ = limµ) and we get

S∞ = lim
µ→+∞

Sµ = − log2(1− η) . (134)

We can show this limit step-by-step. First note that, for large ν, we have

s(ν) → log2 eν + O(ν−1) . (135)

Thus, in the limit of µ → +∞, the first two terms in the RHS of Eq. (129) become

log2

[(
µ− 1

2

)√
η

]
→ log2 (µ

√
η) + O(µ−1), (136)

−s
[
(1− η)µ +

η

2

]
→ − log2[e(1− η)µ] + O(µ−1). (137)
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Then, it is easy to show that, for µ → +∞, we have

∆ → [−4(1− η)µ + O(µ0)
]
coth−1

[−2(1− η)µ + O(µ0)
]− [−2 + O(µ−1)

]
coth−1

[
1 + η

1− η
+ O(µ−1)

]

→ 2− ln η + O(µ−1) . (138)

In conclusion, by using Eqs. (136), (137) and (138) into Eq. (129), we obtain the final result in Eq. (134).

Entanglement flux of a quantum amplifier

Consider an amplifier channel Eamp(η, n̄) with gain η > 1 and thermal number n̄, so that thermal noise has variance
ω = n̄ + 1/2. For n̄ ≥ (η − 1)−1 this channel is entanglement breaking and therefore Φ(η, n̄) = 0. For n̄ < (η − 1)−1

we compute the relative entropy Sµ := S (ρµ
E ||σ̃µ

s ) from the CMs V µ(η > 1, n̄, 0) and Ṽ µ(η > 1, n̄, 0) of the zero-mean
Gaussian states ρµ

E and σ̃µ
s . Up to terms O(µ−1), we get

S(ρµ
E) → h(n̄) + log2 e(η − 1)µ, − Tr (ρµ

E log2 σ̃µ
s ) →

ln(ηµ2) + 2 + 4ω coth−1
(

η+1
η−1

)

2 ln 2
. (139)

For large µ we therefore obtain

S∞ = log2

(
ηn̄+1

η − 1

)
− h(n̄). (140)

Thus we find

Φ(η, n̄) ≤ Φamp(η, n̄) :=





log2

(
ηn̄+1

η − 1

)
− h(n̄) for n̄ < (η − 1)−1,

0 otherwise.

(141)

In general, Φamp(η, n̄) does not coincide with the best known lower bound which is given by the coherent information
of the channel in Eq. (115). Thus, the two-way capacity of a quantum amplifier channel satisfies

log2

(
η

η − 1

)
− h(n̄) ≤ Camp(η, n̄) ≤ Φamp(η, n̄). (142)

It is easy to check that, for the quantum-limited amplifier (n̄ = 0), the previous upper and lower bounds coincide,
thus determining its two-way capacity

Camp(η) = log2

(
η

η − 1

)
. (143)

Thus, Camp(η) turns out to coincide with the unassisted quantum capacity Qamp(η) [26, 33]. The result of Eq. (143)
sets the fundamental limit for key generation, entanglement distribution and quantum communication with amplifiers.
A trivial consequence is that infinite amplification is useless for communication since Camp(∞) → 0. For an amplifier
with typical gain 2, the maximum achievable rate for quantum communication is just 1 qubit per use.

Entanglement flux of an additive-noise Gaussian channel

Consider an additive-noise Gaussian channel Eadd(ξ) with noise variance ξ ≥ 0. For ξ ≥ 1 this channel is entangle-
ment breaking and therefore we have Φ(ξ) = 0. For ξ < 1 we compute the relative entropy Sµ := S (ρµ

E ||σ̃µ
s ) from the

CMs V µ(1, 0, ξ) and Ṽ µ(1, 0, ξ) of the zero-mean Gaussian states ρµ
E and σ̃µ

s . Discarding terms O(µ−1), we get

S(ρµ
E) → log2(e

2ξµ), − Tr (ρµ
E log2 σ̃µ

s ) →
ln

[
(2µ−1)(2ξ+2µ−1)

4

]
+ 2(1 + ξ)

2 ln 2
. (144)
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which leads to

S∞ = lim inf
µ

Sµ = lim
µ

Sµ =
ξ − 1
ln 2

− log2 ξ . (145)

Thus we find

Φ(ξ) ≤ Φadd(ξ) :=





ξ−1
ln 2 − log2 ξ for ξ < 1,

0 otherwise.
(146)

The best lower bound is its coherent information IC(ξ) of Eq. (117), so that the two-way capacity satisfies

−1/ ln 2− log2 ξ ≤ Cadd(ξ) ≤ Φadd(ξ) . (147)

It is interesting to note how quantum communication rapidly degrades when we compose quantum channels. For
instance, a quantum-limited amplifier with gain 2 can transmit Q2 = 1 qubit per use from Alice to Bob. This is
the same amount which can be transmitted from Bob to Charlie, through a lossy channel with transmissivity 1/2.
By using Bob as a quantum repeater, Alice can therefore transmit at least 1 qubit per use to Charlie. If we remove
Bob and we compose the two channels, we obtain an additive-noise Gaussian channel with variance ξ = 1/2, which is
limited to Q2 . 0.278 qubits per use.

Secondary canonical forms

For the conjugate of the amplifier it is easy to check that this channel is always entanglement-breaking, so that it
has zero flux and, therefore, zero two-way capacity C = 0. The A2-form [10], which is a ‘half’ depolarising channel, is
also an entanglement-breaking channel, so that Φ = C = 0. Finally, for the “pathological” B1-form [10], we find the
trivial bound Φ = +∞.

Supplementary Note 5. TECHNICAL DERIVATIONS FOR DISCRETE-VARIABLE CHANNELS

Given a discrete-variable channel E in dimension d, we can easily derive its Choi matrix ρE = I ⊗ E(Φ) from the
maximally-entangled state

Φ =
1√
d

d−1∑

i=0

|ii〉, (148)

where {|0〉 , . . . , |i〉 , . . . , |d− 1〉} is the computational basis of the qudit. We write the spectral decomposition

ρE =
∑

k

pk|ϕk〉〈ϕk|, (149)

where p = {pk} are the eigenvalues of the Choi matrix. The von Neumann entropy is simply equal to the Shannon
entropy of the previous eigenvalues, i.e.,

S(ρE) = H(p) := −
∑

k

pk log2 pk. (150)

From the Choi matrix we may compute the coherent and reverse coherent information of the channel. In particular,
for unital channels, these quantities coincide and are given by the simple formula in Eq. (32), i.e.,

IC(E) = IRC(E) = log2 d− S(ρE) = log2 d−H(p). (151)

To compute the entanglement flux of the channel (upper bound), recall that we have

Φ(E) := ER(ρE) ≤ S(ρE ||σ̃s) , (152)

for some suitable separable state σ̃s. Let us write its spectral decomposition

σ̃s =
∑

k

sk|λk〉〈λk|, (153)
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where |λk〉 (sk) are the orthogonal eigenstates (eigenvalues) of σ̃s. We may then write

S(ρE ||σ̃s) = −S(ρE)− Tr (ρE log2 σ̃s) = −H(p)−
∑

k

〈λk|ρE |λk〉 log2 sk . (154)

The separable state σ̃s may be constructed by applying the channel I ⊗ E to the input separable state

σs =
1
d

d−1∑

i=0

|ii〉 〈ii| , (155)

so that we have the output

σ̃s =
1
d

d−1∑

i=0

|i〉〈i| ⊗ E(|i〉〈i|). (156)

This specific choice will be optimal in some cases and suboptimal in others.

Erasure channel in arbitrary finite dimension

Consider a qudit in arbitrary dimension d with computational basis {|i〉} (results can be easily specified to the case
of a qubit d = 2). The erasure channel replaces an incoming qudit state ρ with an orthogonal erasure state |e〉 with
some probability p. In other words, we have the action

Eerase(ρ) = (1− p)ρ + p|e〉〈e| . (157)

The simplicity of this channel relies in the fact that the input states either are perfectly transmitted or they are
lost (while in other quantum channels, the input states are all transmitted into generally-different outputs). This
feature allows one to apply simple reasonings such as those in ref. [34] which determined the Q2 of this channel (more
precisely, the Q2 of the qubit erasure channel, but the extension to arbitrary d is trivial).

It is easy to see that this channel is teleportation-covariant (and therefore Choi-stretchable). In fact, any input
unitary U applied to the state ρ is mapped into an output augmented unitary U ⊕ I, i.e., we may write

Eerase(UρU†) = (U ⊕ I)Eerase(ρ)(U ⊕ I)†. (158)

Let us write the Kraus decomposition of this channel

Eerase(ρ) = AρA† +
d−1∑

i=0

AiρA†i , (159)

where A :=
√

1− pI (with I being the d× d identity) and Ai :=
√

p|e〉〈i|. We then compute its Choi matrix

ρEerase = (1− p)Φ +
p

d
(I ⊗ |e〉〈e|). (160)

Note that Tr[Φ(I⊗|e〉〈e|)] = 0, so that Eq. (160) is the spectral decomposition of ρE over two orthogonal subspaces,
where Φ has eigenvalue 1 − p, and I ⊗ |e〉〈e| is degenerate with d eigenvalues equal to p/d. Therefore, it is easy to
compute the von Neumann entropy, which is

S (ρEerase) = −(1− p) log2(1− p)− p log2

(p

d

)
. (161)

To compute the entanglement flux of the channel, we consider the separable state σ̃s in Eq. (156), which here becomes

σ̃s =
1
d

d−1∑

i=0

[(1− p)|ii〉〈ii|+ p|i, e〉〈i, e|] . (162)

We have now all the elements to be used in Eq. (154), which provides

Φ(Eerase) ≤ S(ρEerase ||σ̃s) = (1− p) log2 d. (163)
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For the lower bound, one can easily check that the coherent and reverse coherent information of this channel are
not sufficient to reach the upper bound, since we get

IC(Eerase) = (1− 2p) log2 d, IRC(Eerase) = (1− p) log2 d−H2(p), (164)

where the extra term H2(p) is the binary Shannon entropy. Note that these quantities are achievable rates for one-way
entanglement distribution but not necessarily the optimal rates. Indeed it is easy to find a strategy based on one-way
backward CCs which reaches (1− p) log2 d. This follows the same reasoning of ref. [34].

Alice can send halves of EPR states to Bob in large n uses of the channel. A fraction 1−p will be perfectly distributed.
The identification of these good cases can be done by Bob performing a dichotomic POVM {|e〉〈e|, I − |e〉〈e|} on each
received system and communicating to Alice which instances were perfectly transmitted. At that point Alice and Bob
possess n(1− p) EPR states with log2 d ebits each. On average this gives a rate of (1− p) log2 d ebits per channel use.
Thus, one may write

D1(ρEerase) ≥ (1− p) log2 d , (165)

whose combination with Eq. (163) provides

C(Eerase) = D2(Eerase) = Q2(Eerase) = K(Eerase) = Φ(Eerase) = (1− p) log2 d. (166)

Since the two-way quantum capacity of the erasure channel is already known [34], our novel result regards the
determination of its secret key capacity

K(Eerase) = (1− p) log2 d. (167)

It is clear that, for qubits, we have K(Eerase) = 1− p.

Qubit Pauli channels

Consider a Pauli channel P acting on a qubit state ρ. The Kraus representation of this channel is

P(ρ) =
3∑

k=0

pkPkρP †k = p0ρ + p1XρX + p2Y ρY + p3ZρZ, (168)

where p := {pk} is a probability distribution and Pk ∈ {I, X, Y, Z} are Pauli operators, with I the identity and

X :=
(

0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
. (169)

It is easy to check that a Pauli channel is teleportation-covariant and, therefore, Choi-stretchable. Teleportation
covariance simply comes from the fact that the Pauli operators (qubit teleportation unitaries) either commute or
anticommute with the other Pauli operators (Kraus operators of the channel). For a Pauli channel we can also write
the stronger condition

[ρP , P ∗k ⊗ Pk] = 0 for any k, (170)

i.e., its Choi matrix is invariant under twirling operations restricted to the generators of the Pauli group. In fact, the
Choi matrix of a Pauli channel is Bell-diagonal, i.e., it has spectral decomposition

ρP =
3∑

k=0

pkΦk, (171)

where the eigenvalues pk are the channel probabilities, and the eigenvectors Φk are the four Bell states
{ |00〉 ± |11〉√

2
,
|10〉 ± |01〉√

2

}
. (172)

It is clear that S(ρP) = H(p). Then, using the separable state σ̃s as in Eq. (156), we derive the following upper
bound for the entanglement flux of this channel

Φ(P) ≤ 1−H(p) + H2(p1 + p2). (173)
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Since a Pauli channel is unital, its (reverse) coherent information is just given by I(R)C(P) = 1 −H(p). Therefore,
the two-way capacity of a Pauli channel with arbitrary distribution p := {pk} must satisfy

1−H(p) ≤ C(P) ≤ 1−H(p) + H2(p1 + p2). (174)

Latter result can be made stronger by exploiting the fact that ρP is Bell-diagonal. For any such a state we can
compute the REE by using the formula of ref. [35]. In fact, let us set pmax := max{pk}, then we may write

ER(ρP) =

{
1−H2(pmax) if pmax ≥ 1

2

0 otherwise.
(175)

Thus, we have the tighter upper bound

1−H(p) ≤ C(P) ≤ Φ(P) =

{
1−H2(pmax) if pmax ≥ 1

2

0 otherwise.
. (176)

In the following subsections, we specialize this result to depolarising and dephasing channels.

Qubit depolarising channel

This is a Pauli channel with probability distribution

p =
{

1− 3p

4
,
p

4
,
p

4
,
p

4

}
, (177)

so that we have

Pdepol(ρ) =
(

1− 3p

4

)
ρ +

p

4
(XρX + Y ρY + ZρZ) = (1− p)ρ + p

I

2
. (178)

Let us set

κ(p) := 1−H2

(
3p

4

)
. (179)

Then, from Eq. (176), we derive the following bounds for the two-way capacity of the depolarising channel

κ(p)− 3p

4
log2 3 ≤ C(Pdepol) ≤ κ(p), (180)

for p ≤ 2/3, while C(Pdepol) = 0 otherwise.

Qubit dephasing channel

This is a Pauli channel with probability distribution p = {1− p, 0, 0, p}, so that we have

Pdeph(ρ) = (1− p)ρ + pZρZ. (181)

It is easy to see that H(p) = H2(pmax) = H2(p), so that Eq. (176) leads to

C(Pdeph) = D2(Pdeph) = Q2(Pdeph) = K(Pdeph) = Φ(Pdeph) = 1−H2(p), (182)

which also coincides with the unassisted quantum capacity of this channel Q(Pdeph) [36].
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Pauli channels in arbitrary finite dimension

Let us now consider Pauli channels Pd in arbitrary dimension d ≥ 2. These qudit channels are also called “Weyl
channels” and they have Kraus representation

Pd(ρ) =
d−1∑

a,b=0

pab(XaZb)ρ(XaZb)†, (183)

where pab is a probability distribution for a, b ∈ Zd := {0, 1, . . . , d−1}. Here X and Z are generalized Pauli operators
whose action on the computational basis {|j〉} is given by

X |j〉 = |j ⊕ 1〉 , Z |j〉 = ωj |j〉 , (184)

where ⊕ is the modulo d addition and

ω := exp(i2π/d). (185)

These operators satisfy the generalized commutation relation

ZbXa = ωabXaZb. (186)

Not only for d = 2 (qubits) but also at any d ≥ 2 a Pauli channel is teleportation-covariant.
The channel’s Choi matrix ρPd

is Bell-diagonal with eigenvalues {pab}, so that we may write its von Neumann
entropy in terms of the Shannon entropy as follows

S(ρPd
) = H({pab}). (187)

Note that the Choi matrix can also be written as

ρPd
=

1
d

d−1∑

a,b,j,k

pab(I ⊗XaZb)|jj〉〈kk|(I ⊗XaZb)† =
1
d

d−1∑

a,b,j,k

pab ωb(j−k)|j, j ⊕ a〉〈k, k ⊕ a|. (188)

Then, let us consider a separable state σ̃s which is constructed as in Eq. (156). This state can be re-written as

σ̃s =
1
d

d−1∑

a,b,i=0

pab|i, i⊕ a〉〈i, i⊕ a|. (189)

By applying Eq. (154), we find

Φ(Pd) ≤ log2 d−H({pab}) + H({pa}), (190)

where pa :=
∑d−1

b=0 pab. Since the d-dimensional Pauli channel is unital, we may also write I(R)C(Pd) = log2 d −
H({pab}), so that we derive the following bounds for its two-way capacity

log2 d−H({pab}) ≤ C(Pd) ≤ log2 d−H({pab}) + H({pa}), (191)

which generalizes Eq. (174) to arbitrary dimension d. In the following two subsections, we consider the specific cases
of the depolarising and dephasing channels in arbitrary finite dimension d.

Depolarising channel in arbitrary finite dimension

Consider a depolarising channel acting on a qudit with dimension d ≥ 2. This channel can be written as

Pd-depol(ρ) = (1− p)ρ + p
I

d
= AρA† +

d−1∑

i,j=0

AijρA†ij , (192)

where A =
√

1− pI and Aij =
√

p/d|i〉〈j|. Its Choi matrix is the isotropic state

ρPd-depol = (1− p)|Φ〉〈Φ|+ p

d2
I ⊗ I, (193)
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satisfying the twirling condition
[
ρPd-depol , U

∗ ⊗ U
]

= 0, (194)

for any qudit unitary U .
The REE of an isotropic state can be evaluated exactly by using the formula of ref. [37]. Thus we can exactly

compute the entanglement flux of the d-dimensional depolarising channel. Let us set

f :=
d2 − 1

d2
p, κ(d, p) := log2 d−H2 (f)− f log2(d− 1). (195)

Then, we may write the following expression

Φ(Pd-depol) = ER

(
ρPd-depol

)
=

{
κ(d, p) if p ≤ d

d+1 ,

0 otherwise.
(196)

Because the depolarising channel is unital, we may use Eq. (151) to compute its (reverse) coherent information.
We specifically find

I(R)C(Pd-depol) = log2 d−H2 (f)− f log2(d
2 − 1) = κ(d, p)− f log2(d + 1). (197)

Thus, the two-way capacity of this channel must satisfy the bounds

κ(d, p)− f log2(d + 1) ≤ C(Pd-depol) ≤ κ(d, p), (198)

for p ≤ d/(d + 1), while zero otherwise.

Dephasing channel in arbitrary finite dimension

Consider a generalized dephasing channel affecting a qudit in arbitrary dimension d ≥ 2. This channel has Kraus
representation [38, 39]

Pd-deph(ρ) =
d−1∑

i=0

PiZ
iρ(Z†)i, , (199)

where Z is the generalized Pauli (phase-flip) operator defined in Eq. (184), and Pi is the probability of i phase flips.
The channel’s Choi matrix is

ρPd-deph =
∑

mjl

Pm

d
exp

[
2iπ

d
(j − l)m

]
|jj〉〈ll|. (200)

By diagonalizing, we find d non-zero eigenvalues P := {P0, . . . , Pd−1}, so that the Von Neumann entropy is given by

S(ρPd-deph) = H(P). (201)

The separable state σ̃s in Eq. (156) turns out to be diagonal in the computational basis and takes the form

σ̃s =
d−1∑

i=0

1
d
|ii〉〈ii| . (202)

Thus, using Eq. (154), we find

Φ(Pd-deph) ≤ S(ρPd-deph ||σ̃s) = log2 d−H(P). (203)

Since this channel is unital, from Eq. (151) we have that its (reverse) coherent information is I(R)C(Pd-deph) =
log2 d−H(P), so that lower and upper bounds coincide. This means that this channel is distillable and its two-way
capacity is equal to

C(Pd-deph) = D2(Pd-deph) = Q2(Pd-deph) = K(Pd-deph) = Φ(Pd-deph) = log2 d−H(P). (204)
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Amplitude damping channel

The amplitude damping channel describes the process of energy dissipation through spontaneous emission in a
two-level system. Its application to an input qubit state is defined by the Kraus representation

Edamp(ρ) =
∑

i=0,1AiρA†i , (205)

where

A0 := |0〉 〈0|+
√

1− p |1〉 〈1| , A1 :=
√

p |0〉 〈1| , (206)

and p is the probability of damping. This channel is not teleportation-covariant. In fact, because we have

|0〉 〈0| → |0〉 〈0| , |1〉 〈1| → p |0〉 〈0|+ (1− p) |1〉 〈1| , (207)

there is no unitary U able to realize UEdamp(|0〉 〈0|)U† = Edamp(X |0〉 〈0|X) for Pauli operator X.
The amplitude damping channel can be decomposed as

Edamp = ECV→DV ◦ Eη(p) ◦ EDV→CV, (208)

where EDV→CV is an identity mapping from the original qubit (e.g. a spin) to a single-rail qubit, which is the
subspace of a bosonic mode spanned by the vacuum and the single photon states; then, Eη(p) is a lossy channel with
transmissivity η(p) := 1 − p; finally, ECV→DV is an identity mapping from the single-rail qubit to the original qubit.
Note that the two mappings can be performed via perfect hybrid teleportation and the middle lossy channel preserves
the 2-dimensional effective Hilbert space of the system.

Thanks to this decomposition, we can include EDV→CV in Alice’s LOs and ECV→DV into Bob’s LOs. The middle
lossy channel Eη(p) can therefore be stretched into its asymptotic Choi matrix ρEη(p) . Overall, this means that the
amplitude damping channel can be stretched into the asymptotic resource state σ = ρEη(p) by means of an asymptotic
simulation. By applying teleportation stretching, we therefore reduce the output of an adaptive protocol to the form

ρn
ab := ρab(E⊗n

damp) = Λ̄
(
ρ⊗n
Eη(p)

)
, (209)

where both Λ̄ and ρEη(p) are intended as asymptotic limits. Thus, our reduction method provides the upper bound

C(Edamp) ≤ Φ
[Eη(p)

]
= − log2 p. (210)

We can combine the latter result with the fact that we cannot exceed the logarithm of the dimension of the input
Hilbert space (see this simple “dimensionality bound” in the main text, in the discussion just before Proposition 5).
This leads to

C(Edamp) ≤ min{1,− log2 p}. (211)

The best lower bound is given by optimizing the reverse coherent information over the input states ρu = diag(1−u, u)
for 0 ≤ u ≤ 1. In fact, we have [6]

IRC(p) := max
u

IRC(Edamp, ρu) = max
u
{H2 (u)−H2 (up)}. (212)

This is an achievable lower bound for entanglement distribution assisted by a final round of backward CCs. Note that
this is strictly higher than the Q1 = Q of the channel, which is given by [6]

Q1(Edamp) = max
u
{H2[u(1− p)]−H2 (up)}. (213)

Thus, in total, we may write

IRC(p) ≤ C(Edamp) ≤ min{1,− log2 p}, (214)

which is shown in Supplementary Fig. 1a. See the next section for the derivation of a tighter upper bound which is
based on the squashed entanglement.
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Amplitude damping channel: Upper bound based on the squashed entanglement

An alternative upper bound for the two-way capacity of a quantum channel is its squashed entanglement, i.e., we
may write [40]

C(E) ≤ Esq(E). (215)

The squashed entanglement of an arbitrary channel E , from system A to system B, is defined as [40]

Esq(E) :=
1
2

max
ρA

inf
VC→EF

[S(B|E)ω + S(B|F )ω], (216)

where ρA is an arbitrary input state, and ω is the global output state

ωBEF := VC→EF [UE
A→BC(ρA)], (217)

with UE
A→BC being an isometric extension of E and VC→EF being an arbitrary “squashing isometry”.

In Eq. (216), the terms in the brackets are conditional von Neumann entropies computed over ωBEF , i.e.,

S(B|E)ω = S(BE)ω − S(E)ω, S(B|F )ω = S(BF )ω − S(F )ω. (218)

Then note that the most general input state reads

ρA =
(

1− γ c∗

c γ

)
, (219)

where γ ∈ [0, 1] is the population of the excited state |1〉, while the off-diagonal term |c| ≤
√

(1− γ)γ accounts for
coherence. Thus, the maximization in Eq. (216) is mapped into a maximization over parameters γ and c.

Let us compute the squashed entanglement of the amplitude damping channel Edamp. Recall that its action is
described by Eq. (205) with Kraus operators as in Eq. (206). In the computational basis {|00〉 , |01〉 , |10〉 , |11〉}, the
unitary dilation of Edamp is therefore given by the following matrix

Up =




1 0 0 0
0
√

1− p
√

p
0 −√p

√
1− p 0

0 0 0 1


 , (220)

so that we may write

Edamp(ρA) = TrC [Up(ρA ⊗ |0〉〈0|C)U†
p ], (221)

where C is an environmental qubit prepared in the fundamental state |0〉. It is clear that Eq. (221) expresses the
isometric extension of the channel, i.e., it corresponds to Edamp(ρA) = TrC [Udamp

A→BC(ρA)].
As a squashing channel we consider another amplitude damping channel but with damping probability equal to 1/2,

so that its unitary dilation is V = U1/2. In other words, we consider the squashing isometry VC→EF = [Udamp
C→EF ]p=1/2

(so that we are more precisely deriving an upper bound of the squashed entanglement of the channel). Let us derive
the global output state ωBEF step-by-step.

The state of systems B and C at the output of the dilation Up is given by

ρBC := Up(ρA ⊗ |0〉〈0|C)U†
p =




1− γ
√

pc∗
√

1− pc∗ 0
c
√

p pγ
√

1− p
√

pγ 0
c
√

1− p
√

1− p
√

pγ (1− p)γ 0
0 0 0 0


 . (222)

Now the system C is sent through the squashing amplitude damping channel with probability 1/2. At the output of
the dilation U1/2 we have the final output state

ωBEF = (IB ⊗ U1/2)ρBC ⊗ |0〉〈0|F (IB ⊗ U1/2)† =




1− γ
√

pc∗√
2

√
pc∗√
2

0
√

1− pc∗ 0 0 0
c
√

p√
2

pγ
2

pγ
2 0

√
(1−p)pγ√

2
0 0 0

c
√

p√
2

pγ
2

pγ
2 0

√
(1−p)pγ√

2
0 0 0

0 0 0 0 0 0 0 0

c
√

1− p

√
(1−p)pγ√

2

√
(1−p)pγ√

2
0 γ − pγ 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




. (223)
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We now proceed with the calculation of the entropies in Eq. (218), which are obtained from the eigenvalues of the
reduced states ρBE , ρBF , ρE and ρF . We obtain

ρE = ρF =

(
1− pγ

2

√
pc∗√
2

c
√

p√
2

pγ
2

)
, (224)

with eigenvalues

λ1,2 =
1
2

(
1±

√
2|c|2p + (pγ − 1)2

)
. (225)

The eigenvalues of ρBE and ρBF are too complicated to be reported here but it is easy to check that, exactly as for
λ1,2 in previous Eq. (225), their dependence on c is just through the modulus |c|, so that we can choose c to be real
without losing generality.

Because c is real, we also have that the entropic functional z(ρ) = S(B|E)ω + S(B|F )ω computed over the input
state ρ is exactly the same as that computed over the state ZρZ, with Z being the phase-flip Pauli operator. Using
the latter observation, together with the concavity of the conditional quantum entropy, one simply has

z(ρ) =
z(ρ) +z(ZρZ)

2
≤ z

(
ρ + ZρZ

2

)
= z(ρ̄), (226)

where ρ̄ is diagonal. This means that we may reduce the maximization to diagonal input states (c = 0).
As a result, we may just consider

ρE = ρF =
(

1− pγ
2 0

0 pγ
2

)
, (227)

with eigenvalues

λ1 =
pγ

2
, λ2 = 1− pγ

2
, (228)

and

ρBE = ρBF =




1
2 (p− 2)γ + 1 0 0 0

0 pγ
2

√
(1−p)pγ√

2
0

0
√

(1−p)pγ√
2

γ − pγ 0
0 0 0 0




, (229)

with eigenvalues

ν1 =
γ

2
(2− p), ν2 = 1− ν1, ν3 = ν4 = 0. (230)

From the previous eigenvalues, we compute the conditional quantum entropies in Eq. (218). Thus, we find that the
squashed entanglement of the amplitude damping channel must satisfy the bound

Esq(Edamp) ≤ max
γ
{H2(ν1)−H2(λ1)} , (231)

where H2 is the binary Shannon entropy of Eq. (37). In particular, the function H2(ν1) − H2(λ1) is concave and
symmetric in γ, so that the maximum is reached for γ = 1/2, which corresponds to a maximally mixed state at the
input. This reduces Eq. (231) to the simple bound

Esq(Edamp) ≤ H2

(
1
2
− p

4

)
−H2

(
1− p

4

)
. (232)

If we choose a squashing amplitude damping channel with generic probability of damping η and we repeat the
calculation from the beginning we obtain the following bound for the squashed entanglement

Esq(Edamp) ≤ 1
2

max
γ

min
η
{H2(γ − pγη)+ H2 [γ(1− p + pη)]−H2 [pγ(1− η)]−H2(pγη)} . (233)
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The minimum of the function inside the curly bracket is for η = 1/2, so our choice of a balanced amplitude damping
channel as a squashing channel is now justified. Note that the sub-optimal choice η = 0 corresponds to use the identity
as squashing channel; correspondingly, the right hand side of Eq. (233) becomes half of the entanglement-assisted
classical capacity CA of the amplitude damping channel, i.e.,

Esq(Edamp) ≤ 1
2
CA(Edamp) =

1
2

max
γ
{H2(γ) + H2 [γ(1− p)]−H2(pγ)} . (234)

In conclusion, combining the lower bound of Eq. (212) and the upper bound of Eq. (232), we find that the two-way
capacity of the amplitude damping channel is within the sandwich

max
u
{H2 (u)−H2 (up)} ≤ C(Edamp) ≤ H2

(
1
2
− p

4

)
−H2

(
1− p

4

)
. (235)

This is shown in Supplementary Fig. 1b, which also contains a comparison with the previous upper bound based on
the REE. Note that, for high damping (p ' 1), the upper bound in Eq. (235) provides the scaling of . 0.793(1 − p)
bits per channel use, while Eq. (211) provides the scaling of . 1.44(1− p) bits per channel use.

Supplementary Note 6. MAXIMUM RATES ACHIEVABLE BY CURRENT QKD PROTOCOLS

We consider the state of the art in high-rate QKD, by analyzing the maximum rates which are achievable by current
practical protocols in CVs and DVs. We assume the optimal asymptotic case of infinitely long keys, so that finite-size
effects are negligible. We also assume ideal parameters. For CVs this means: Unit detector efficiency, zero excess
noise, large modulation and unit reconciliation efficiency. For DVs this means: Unit detector efficiencies, zero dark
count rates, zero intrinsic error, unit error correction efficiency, and no other internal loss in the devices. Note that
all the following results are already present in the literature or are easily derivable from those in the literature. They
are given to the reader for the sake of completeness.

Continuous-variable protocols

• No-switching protocol [41]. This is the practical CV protocol with the highest secret key rate. It is based on
coherent states and heterodyne detection. In reverse reconciliation (RR), its maximum secret key rate over a lossy
channel with transmissivity η is equal to

Rno-switch = log2

[
η

e(1− η)

]
+ s

(
2− η

2η

)
, (236)

where s(·) is the entropic function given in Eq. (95). For high loss (η ' 0), it scales as ' η/2 ln 2, which is 1/2 of the
secret key capacity.
• Switching protocol [42, 43]. This was the first practical CV protocol. It is based on coherent states and homodyne

detection (with switching between the two quadratures). In RR, it reaches the rate

Rswitch =
1
2

log2

(
1

1− η

)
, (237)

which is 1/2 of the secret key capacity. For high loss, it clearly scales as the previous protocol.
• CV measurement-device-independent (MDI) protocol [44, 45]. This is based on coherent states sent to an un-

trusted relay implementing a CV Bell detection. Alice-relay channel has transmissivity ηA and Bob-relay channel has
transmissivity ηB , so that the total Alice-Bob channel transmissivity is η = ηAηB . In the symmetric configuration
with the relay perfectly in the middle (ηA = ηB) [44, 46], it has maximum rate

RCVMDI-sym = log2

[
η

e2(1−√η)

]
+ s

(
1√
η
− 1

2

)
. (238)

In the asymmetric configuration (ηA 6= ηB), it has maximum rate

RCVMDI-asym = s

(
1

ηB
− 1

2

)
− s

(
2− ηA − ηB

2|ηA − ηB |
)

+ log2

(
ηAηB

e|ηA − ηB |
)

. (239)



30

In particular, in the most asymmetric configuration, where the relay coincides with Alice (ηA = 1) [44, 47], we recover
the one-way rate of Eq. (236).
• CV two-way protocols [48]. In the first main variant, Bob sends coherent states to Alice, who randomly displaces

their amplitudes before sending them back to Bob for heterodyne detection. In RR (Bob as encoder), this protocol
has maximum rate

R2way-het =
1
2

{
s

[
2− η + η2

2η(1 + η)

]
+ log2

[
η(1 + η)
e(1− η)

]}
. (240)

In the second main variant, the protocol runs as before except that Bob’s measurement is homodyne detection (with
switching between the quadratures). In RR, it has maximum rate [49]

R2way-hom =
1
4

log2

(
1 + η2

1− η

)
. (241)

It is easy to check that both the variants scale as ' η/4 ln 2 for high loss. Despite the fact that two-way protocols
have lower key rates than one-way protocols in a lossy channel, they are more robust when excess noise is present.
In this case, one considers the “security threshold” of the protocol which is defined as the maximum tolerable excess
noise above which the rate becomes negative. Two-way protocols have higher security thresholds than one-way
protocols [48, 49].

Discrete-variable protocols

Here we consider various DV protocols. As said before, we assume the optimal asymptotic case of infinitely long
keys and also ideal parameters, which here means: Unit detector efficiencies, zero dark count rates, zero intrinsic
error, unit error correction efficiency, and no other internal loss in the devices. Under these assumptions, we consider
the ideal BB84 protocol with single photon sources [50], the BB84 with weak coherent pulses and decoy states [51, 52],
and DV-MDI-QKD [53, 54].

Let us consider the BB84 protocol [50] assuming that Alice’s source generates perfect single-photon pulses. The
general formula of the key rate can be found in ref. [51]. It reduces to the following expression

R = R̄ {[1−H2 (Q)]− δ(Q)} , (242)

where H2 is the binary Shannon entropy. In Eq. (242), δ(Q) = f H2(Q) is a function accounting for the leak of
information from imperfect error correction, f ≥ 1 is the efficiency of the classical error correction codes, Q is the
total error rate (QBER), and R̄ is the total detection rate after quantum communication (the raw key). Under ideal
conditions of zero dark-count rates, unit efficiency detectors, perfect visibility, and perfect classical error correction
(f = 1), one has Q = 0 and obtains the following maximum rate RBB84-1ph = η/2, setting the maximum rate for the
current DV protocols.

A realistic photon source is a device emitting attenuated coherent pulses. In this case, the performance of the
protocol depends on an additional parameter which is the intensity of the source. In the BB84 protocol, with weak
coherent pulses and decoy states [52], Alice randomly changes the intensity µ of the pulses, and reveals publicly
their values during the final classical communication. In this way Eve cannot adapt her attacks during the quantum
communication. The µ-dependent key rate of the protocol is given by [51]

Rµ = R̄

{
Y µ

0 + Y µ
1

[
1−H2

(
Qµ

Y µ
1

)]
− δ(Qµ)

}
, (243)

where Qµ is the µ-dependent QBER, and Y µ
n = Rµ

n/R̄ is the ratio between the µ-dependent detection rate Rµ
n,

associated to Alice sending n photons, and the total detection rate R̄. Assuming ideal conditions, one finds Rµ =
e−µηµ/2. The optimal key rate is obtained by maximizing over the intensities, i.e., R = maxµ Rµ. It is easy to check
that the optimum is given by µ = 1 and the maximum key rate becomes RBB84-decoy = η/(2e).

Finally consider DV-MDI-QKD. The general expression of the key rate is given by the following expression [54]

R = P 11
Z Y 11

Z

[
1−H2(e11

Z )
]−GZ δ(QZ), (244)

where P 11
Z = µAµB exp[−(µA + µB)] is the joint probability that both emitters (with intensities µA and µB) generate

a single-photon pulse. The quantity Y 11
Z gives the gain in the Z-basis (one assumes Y 11

X = Y 11
Z for the X-basis),
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and e11
Z is the error rate in the Z-basis. Finally, the quantity GZ describes the gain and QZ the QBER, both in the

Z-basis. Under ideal conditions, the µ-dependent key rate becomes

RµAµB =
1
2
e−(µA+µB)ηAηBµAµB , (245)

where ηA and ηB are the transmissivities of Alice’s and Bob’s channels. It is easy to check that the maximum is taken
for µA = µB = 1, providing RDV-MDI = η/(2e2).

Supplementary Note 7. ENERGY CONSTRAINTS AND COST OF CLASSICAL COMMUNICATION

Input energy constraints

It is important to remark that the two-way capacities that we computed for Gaussian channels are bounded
quantities, which do not diverge even if the maximum is achieved in the limit of infinite input energy (excluding the
case of a pathological canonical form). In fact, one may consider an alphabet of input states whose mean number of
photons is capped at some finite value N̄ . This assumption automatically defines a hard-constrained two-way capacity
C(E , N̄). For a bosonic Gaussian channel, C(E , N̄) is increasing in N̄ but also upper-bounded by the entanglement flux
of the channel Φ(E). (In fact, note that all the procedure of teleportation stretching still applies if we enforce an input
energy constraint for the adaptive protocols. For instance the constraint can be realized by a pinching map which is
then absorbed in Alice’s LOs). As a result, the asymptotic limit of the unconstrained capacity C(E) := limN̄ C(E , N̄)
is finite. This is clearly true for Q2(E), D2(E) and K(E), but the situation would be different for the two-way classical
capacity of the channel.

Another possibility is imposing a “soft constraint” on the input energy. This means to fix the average number of
photons at the input to some finite value m̄. In this case, it is interesting to see that our “unconstrained” upper
bounds remain sufficiently tight even in the presence of such an energy constraint. The best way to show this is
considering our main result for the lossy channel with arbitrary transmissivity η, for which we have proven that

Q2(η) = D2(η) = K(η) = Φ(η) = − log2(1− η). (246)

Even if we constrain the input to m̄ mean photons, it is easy to show that:

(1) The unconstrained bound Φ(η) is still very tight, since it is rapidly approached from below by the reverse coherent
information computed at finite energy;

(2) The unconstrained bound Φ(η) remains tighter than other constrained bounds based on the squashed entangle-
ment, even when m̄ is of the order of a few photons.

Let us start with point (1). From Eq. (109), we see that the reverse coherent information associated with a lossy
channel and a TMSV state is

IRC(m̄, η) = h(m̄)− h [(1− η)m̄] , (247)

which is obtained by setting µ = m̄+1/2 in Eq. (109) and using the h-function of Eq. (95). In Supplementary Fig. 2,
we see that IRC(m̄, η) rapidly approaches the unconstrained upper bound Φ(η) already for m̄ ' 1− 5 photons.

Let us now discuss point (2). We compare the unconstrained upper bound Φ(η) with the unconstrained TGW
upper bound for the lossy channel [27]

KTGW(η) = log2

(
1 + η

1− η

)
, (248)

and its energy-constrained version

KTGW(η, m̄) = h

[
(1 + η)m̄

2

]
− h

[
(1− η)m̄

2

]
. (249)

(Note that the latter was just a partial result [27] used to derive the bound in Eq. (248) for m̄ → +∞).
In Supplementary Fig. 3 we clearly see that Φ(η) not only is tighter than KTGW(η) but also outperforms the

constrained version KTGW(η, m̄) for all input energies down to one mean photon. This is certainly true in the regime
of intermediate-long distances (> 25 km), where DV-QKD protocols have ideal performances at one mean photon per
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channel use. At short distances (< 25 km), energy constraints do not really have so much practical value since we
can efficiently use highly-modulated CV-QKD whose number of photons is high enough to approach the asymptotic
infinite-energy behavior. In general, note that CV-QKD protocols with highly-modulated Gaussian states can be used
at any distance. Their performance is not limited by the input energy, but critically depends on the efficiency of the
output detection scheme and the quality of the data-processing (reconciliation efficiency).

Cost of classical communication

It is important to discuss the cost associated with the CCs. In fact, in order to achieve its performance, an optimal
protocol will need a certain number of classical bits per channel use. Furthermore, the physical transmission of these
bits is ultimately restricted by the speed of light. It is therefore essential to consider these aspects in order to translate
a capacity, which is expressed in terms of target-bits (e.g. secret bits) per channel use, into a practical throughput,
which is expressed in terms of target-bits per second. Consider the case of a bosonic lossy channel which is the most
important for quantum optical communications.

By definition, an adaptive protocol is assisted by unlimited and two-way CCs. This is a very general formulation
but it has an issue for practical applications: An adaptive protocol, which may be optimal in terms of target-bits per
channel use, may have zero throughput in terms of target-bits per second, just due the fact that its implementation
may require infinite rounds of feed-forward and feedback CCs in each channel use. The existence of such protocol is
not excluded by the TGW bounds [27] of Eqs. (248) and (249), which are non-tight and do not have control on the
CCs. By contrast, this problem is completed solved by our bound.

In fact, for any distillable channel E (e.g., bosonic lossy channel, quantum-limited amplifier, dephasing or erasure
channel), the generic two-way capacity C(E) is equal to D1(ρE), which is the entanglement distillable from the Choi
matrix of the channel by means of one-way CCs (forward, from Alice to Bob, or backward, from Bob to Alice). This
means that an optimal protocol achieving the capacity is non-adaptive and it does not involve infinite rounds of CCs,
but just a single round of forward or backward CCs.

For the specific case of a bosonic lossy channel, with transmissivity η, we find that an optimal key-generation
protocol, achieving the repeaterless bound K(η) = − log2(1 − η), can be implemented by using backward CCs. In
fact, as already discussed in Supplementary Note 4, an optimal key-generation protocol is the following: Alice prepares
TMSV states Φµ

AA′ sending A′ to Bob; Bob heterodynes each output mode, with outcome Y , and sends final CCs
back to Alice; Alice measures all her modes A by means of an optimal coherent detection. Taking the limit for large
µ, the key rate of the parties achieves the bound K(η).

Because this is a Devetak-Winter rate (in reverse reconciliation), the amount of CCs required by the protocol (bits
per channel use) is equal to the following conditional entropy [8]

γCC := S(Y |A) = S(Y )− [S(A)− S(A|Y )], (250)

where S(Y ) = H(Y ) is the Shannon entropy of Bob’s outcomes Y , while S(A) and S(A|Y ) are the von Neumann
entropies of Alice’s reduced state ρA and conditional state ρA|Y . These quantities are all easily computable for any
finite value of µ. By taking the limit for large µ, we derive the asymptotic cost

γCC(η) =
2η log2 π + (2η − 3) log2(3− 2η) + 3 log2 3

2η
≤ log2(3πe) ≈ 4.68 classical bits/use, (251)

where the latter bound is achieved for low transmissivities (long-distances), i.e., γCC(η ' 0) ' log2(3πe). According
to Eq. (251), at any transmissivity η, Bob needs to send Alice no more than log2(3πe) classical bits per channel use.

Consider a practical scenario where the rounds of the protocol are not infinite but yet a very large number, e.g.,
n = 109, so that the performance of such a large block of data is close to the asymptotic one. The amount of classical
bits to be transmitted is linear in n, and the total cost is no larger than 4.68× 109 bits, i.e., less than 1 gigabyte per
block. Assuming the existence of a broadband classical channel between Alice and Bob, the extra time associated
with the transmission of this classical overhead can be made negligible (for instance, it may happen at the beginning
of the second large block of quantum communication). Assuming that the procedures of error correction and privacy
amplification are also sufficiently fast within the block, then the final achievable throughput (secret-bits per second)
will only depend on the capacity K(η) (secret-bits per use) multiplied by the clock of the system (uses per second).
Clearly, this is a simplified reasoning which does not consider other technical issues.
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Supplementary Note 8. ADVANCES IN CHANNEL SIMULATION

The idea of channel simulation was originally introduced by Bennett-DiVincenzo-Smolin-Wootters (BDSW) [55] as
a simple modification of the original teleportation protocol. Instead of performing standard teleportation by using
a Bell state, one may consider an arbitrary mixed state as a resource. As a result, the effect of teleportation is
not an identity map (transfer operator) but a noisy channel from the input to the output. BDSW introduced this
teleportation-simulation argument to simulate DV channels that preserve the finite dimension d of the input Hilbert
space Hd, also known as the “tight” case [56]. Let us discuss the BDSW simulation in more detail.

Consider a mixed state σ of two qudits, A and B, both having dimension d, i.e., their joint Hilbert space is
Hd

A ⊗ Hd
B . The “teleportation channel” associated with the density operator σ ∈ D(Hd

A ⊗ Hd
B) is the dimension-

preserving quantum channel Tσ : D(Hd) → D(Hd), which is given by teleporting an input d-dimensional qudit by
using the resource state σ. The procedure goes as follows. Alice measures qudit A and input qudit a in a Bell
detection, whose outcome k ∈ {0, . . . , d2 − 1} is associated with a qudit Pauli unitary Uk. This detection projects
Bob’s qudit B onto a k-dependent state. Once the outcome k is communicated to Bob, he applies the Pauli correction
U−1

k to qudit B thus retrieving the final state on the output qudit b. The average over all outcomes k defines the
teleportation channel Tσ from the states of a to those of b.

BDSW [55, Section V] also recognized that a Pauli channel E (there called “generalized depolarizing channel”) can
be simulated by teleporting over its Choi matrix ρE , so that E = TρE . This particular case was later re-considered
in ref. [57] as a property of mutual reproducibility between mixed states and quantum channels. In a few words, we
may store a channel E into its Choi matrix ρE (by sending half of an EPR state), and then recover the channel back
by performing teleportation over ρE . At this point, a natural question to ask is the following:

Can we generate other DV channels (beyond Pauli) using the teleportation-simulation of BDSW [55, Section V]?

The answer is no. In fact, ref. [58] showed that the standard teleportation protocol (based on Bell detection and Pauli
corrections) performed over an arbitrary d× d state σ can only simulate a quantum channel of the form

Tσ(ρ) =
∑

ab

Tr(σMab) U†
(−a)b ρ U(−a)b , (252)

where Mab := (Uab⊗I)† |Φ〉 〈Φ| (Uab⊗I) are the POVM elements of the Bell detection (with |Φ〉 being a d-dimensional
Bell state), and Uab are Pauli operators. This is clearly a d-dimensional Pauli channel. The possibility to generate
other DV channels relies on a stronger modification of the original teleportation protocol, where we allow for more
general quantum operations [56, 59] and also for the possibility of varying the dimension of the Hilbert space. Recently,
ref. [60] considered a generalization of the teleportation-simulation argument for DV channels, using tools from ref. [56]
and moving important steps into the study of teleportation covariance (see also ref. [61]). Similarly, ref. [62] moved
the first steps in the simulation of single-mode Gaussian channels by using Gaussian resources and the standard CV
teleportation protocol [63].

In our paper we provide the most general and rigorous formulation. In fact, we remove all the assumptions regarding
the dimension of the quantum systems which may also vary through the channel. Thus we may tele-simulate, DV
channels, CV channels and even hybrid channels, i.e., mappings between DVs and CVs. More generally, our simulation
is not limited to teleportation-LOCCs (i.e., Bell detection and unitary corrections), but considers completely general
LOCCs which may also be asymptotic, i.e., defined as suitable sequences. Furthermore, the simulating LOCCs may
also include portions of the channels (i.e., we may decompose a channel E as E2 ◦ Ẽ ◦ E1 and include E1 and E2 in the
LOCCs). For all these reasons, we may simulate any quantum channel at any dimension. As discussed in the main
text, the best case is when the simulation can be done directly on the channel’s Choi matrix. To identify this case we
introduce the criterion of teleportation-covariance at any dimension, finite or infinite.

Note that ours is the most general simulation to be used in quantum/private communication, which is a setting
where two remote parties can only apply LOCCs. In this regard, it is different and more precise than the channel
simulation realized by using a deterministic version [64] of a programmable quantum gate array (PQGA) [65, 66].
This is also known as “quantum simulation” [67] and considers the simulation of “programmable channels” by means
of joint operations. A programmable channel is defined as a (finite-dimensional) channel E that can be simulated as

E(ρ) = Ω(ρ⊗ σE), (253)

for a universal joint quantum operation Ω and some programme state σE . This clearly fails to catch the LOCC structure
which is essential for protocols of quantum/private communication. Furthermore, this type of simulation has not been
developed into an asymptotic version (via CV teleportation), which is clearly needed for the representation of bosonic
channels. Finally, the universal character of the operation Ω restricts the class of channels that can be simulated
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(universality implies that we cannot include portions of the channel in the operation, missing a procedure that allows
one to simulate all channels). Our LOCC-simulation of channels solves all these issues.

To conclude, we give the timeline of the previous main contributions before our formulation of channel simulation:

1996 BDSW introduces the teleportation-simulation of Pauli channels [55, Section V]

1997 Nielsen and Chuang introduce the PQGA [65]

1998 Braunstein and Kimble design a realistic protocol for CV teleportation [63]

1999 Horodeckis consider the BDSW simulation for channel reproducibility [57]

2001 Bowen and Bose show that the BDSW simulation can only simulate Pauli channels [58]

2001 Werner discusses generalized teleportation protocols [56]

2008 Ji et al. use a deterministic PQGA to simulate certain DV channels in the context of quantum metrology [64]

2009 Niset et al. simulate Gaussian channels in the context of one-way Gaussian entanglement distillation [62]

2015 Leung and Matthews first discuss teleportation covariance in connection with the simulation of DV channels [60]

2015-6 The present paper rigorously generalizes the idea of teleportation-simulation to CV systems (bosonic chan-
nels). More generally, it introduces the LOCC-simulation of any channel at any dimension (including asymptotic
simulations), and identifies the criterion of teleportation-covariance at any dimension (finite or infinite).

Supplementary Note 9. ADVANCES IN PROTOCOL REDUCTION

Teleportation stretching is a general method to reduce adaptive protocols into corresponding block protocols achiev-
ing exactly the same original task. Furthermore, it may be applied to any channel at any dimension, finite or infinite,
thanks to our development of the tool of channel simulation (see Supplementary Note 8). In terms of reduction
of protocols, a precursory but very restricted argument was given in BDSW [55, Section V]. Here we discuss this
preliminary argument and we point out the main and non-trivial advances brought by our general formulation.

BDSW showed how to transform a quantum communication (QC) protocol, through a finite-dimensional Pauli
channel E , into an entanglement distillation (ED) protocol, implemented over mixed states σ. The connection was
established by interpreting E as the teleportation channel generated by σ (which can be taken to be a Choi-matrix
for a Pauli channel). This allowed them to prove

Q1(E) ≤ D1(σ), (254)

for protocols based on 1-way CCs. They also realized that the argument could be applied to transform QC protocols
based on 2-way CCs, so that they implicitly extended the previous result to the following inequality

Q2(E) ≤ D2(σ). (255)

An explicit proof for Eq. (255) is reported in Supplementary Fig. 4.
Let us now compare teleportation stretching with the precursory BDSW argument. We identify a number of

non-trivial differences and advances.

1. Finite-size decomposition and connection with REE. The BDSW reduction argument was formulated
in an asymptotic fashion, i.e., for large n, which is sufficient to prove Eqs. (254) and (255). Teleportation
stretching regards any n, and gives the finite-size decomposition of the output Λ̄(σ⊗n) for a trace-preserving
LOCC Λ̄ collapsing all the adaptive LOCCs. The finite-size decomposition Λ̄(σ⊗n) could have not been exploited
by BDSW, due to missing tools for the simplification of Λ̄. This simplification is today achieved by combining
teleportation stretching with the REE, which is the key insight giving applicability to the technique.

2. Task preserving. The BDSW reduction argument was specifically formulated to transform a QC protocol into
an ED protocol, therefore changing the task of the original protocol. In teleportation stretching, we maintain
the task. In the example of Supplementary Fig. 4b, we show the different re-organization of the quantum
operations of the QC protocol. Teleportation stretching would directly reduce the output of the QC protocol
as follows ρb(E⊗n) = Λ̄(σ⊗n), for a trace-preserving LOCC Λ̄ which is not connected with ED but collapses the
preparation |ϕ(m)〉〈ϕ(m)|, the encoding/decoding maps, and the teleportation operations.
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3. Any task. Maintaining the task and output of the original protocol is crucial, because the reduction can now
be applied to any kind of adaptive protocol, not just quantum communication, but any other task, including key
generation (considered in this paper) and parameter estimation/channel discrimination (considered in ref. [68]).
This aspect is also important in order to extend the procedure to more complex scenarios, from two-way quantum
communication to the presence of quantum repeaters in arbitrary network topologies [69].

4. Any channel and dimension. The BDSW reduction argument was given for the restricted class of Pauli
channel. Teleportation stretching is formulated for any channel at any dimension (finite or infinite). This is
non-trivial because it involves the use of asymptotic simulations for fundamental channels such as the bosonic
Gaussian channels and the amplitude damping channel. In general, we may write an output decomposition of
the type limµ Λ̄µ(σµ⊗n) for sequences of trace-preserving LOCCs Λ̄µ and resource states σµ.

In the literature, we can also find another type of adaptive-to-block reduction, which is based on the use of a
deterministic PQGA. It is known that a PQGA can simulate an arbitrary unitary or channel in a probabilistic
way [65]. However, as discussed in Supplementary Note 8, one may also define a class of programmable channels
for which the PQGA works deterministically: These are (finite-dimensional) channels E that can be simulated as in
Eq. (253) for a universal generally-joint quantum operation Ω and a programme state σE . It is easy to check that,
in a protocol, this “quantum simulation” [67] leads to an output decomposition of the type Q(σ⊗n

E ), where Q is a
joint quantum operation for Alice and Bob. Clearly this is not suitable for quantum/private communication, where
the parties are restricted to LOCCs and, therefore, both the channel simulation and the adaptive-to-block reduction
must maintain the LOCC structure of the original protocol. Furthermore, it lacks an asymptotic formulation which
is needed for bosonic channels and also the flexibility to include portions of the channels in the simulating operations
(these are elements introduced by our approach). It is worth to mention that the quantum simulation plays a role for
the simplification of adaptive protocols in quantum metrology and channel discrimination, where the parties are close
(they are indeed the same entity) and may therefore apply joint unitaries and joint measurements. See refs. [68, 70].

Supplementary Note 10. ADVANCES IN BOUNDING TWO-WAY CAPACITIES

By simulating Pauli channels, BDSW showed how to reduce a quantum communication protocol into an entangle-
ment distillation protocol. By combining this argument with an opposite implication, they were able to show that,
for a Pauli channel E , one may write Q1(E) = D1(ρE), which was implicitly extended to

Q2(E) = D2(ρE). (256)

The latter result is not exploitable for computing the two-way quantum capacity Q2 unless one identifies simple (and
tight) upper bounds for D2. Such elements were missing in 1996 but today we can exploit powerful tools.

Using today’s knowledge, the simplest approach is to combine Eq. (256) with the fact that D2(ρE) ≤ K(ρE) (since
an ebit is a particular type of secret-bit) and the REE upper bound on the distillable key of quantum states [11], so
that K(ρE) ≤ E∞

R (ρE). All this leads us to write

Q2(E) ≤ E∞
R (ρE) ≤ ER(ρE) . (257)

Our work shows the bound of Eq. (257) for any finite-dimensional Choi-stretchable channel. In particular, we show
that the single-letter REE bound of Eq. (257) is tight for dephasing and erasure channels.

The next non-trivial generalization is moving from quantum to private communication. In this regard, the notions
of private capacities [71] and private states [11, 12] were available well after 1996. Note that we may consider the
secret-key capacity K, which is the number of secret bits which are distributed between the parties (via adaptive
protocols), and the two-way private capacity P2, which is the maximum rate at which classical messages can be
securely encoded and transmitted [71]. Because of the unlimited two-way CCs and the one-time pad, we have
P2 = K. For a finite-dimensional Choi-stretchable channel E , it is easy to write the equivalence

P2(E) = K(E) = K(ρE) . (258)

The simplest way to show this is to apply teleportation stretching to reduce adaptive key-generation protocols, which
leads to K(E) = K(ρE) as in Proposition 6 of our main text. An alternate way is to show P2(E) = K(ρE) by means
of a suitable extension of the BDSW reduction argument. In fact, for a finite-dimensional Choi-stretchable channel,
we may transform a protocol of private communication [71] through E into a protocol of key-distillation [11, 12] over
the Choi matrix ρE , so that P2(E) ≤ K(ρE). The latter bound is achievable by a protocol where Alice transmits part
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of Bell states, so that the parties distill a key from the output Choi matrices, which is then used to send the message
via the one-time pad. Note that these extensions from quantum to private communication, and from entanglement
to key distillation were not available in 1996, which is why Eq. (258) can only be written today. At the same time, it
is surprising that Eq. (258) was never written before our work, with many of the tools being available since 2005.

Now it is very important to observe that both Eqs. (257) and (258) cannot be used to investigate the most important
setting for quantum/private communication, which is the bosonic one. Furthermore, they miss to provide single-letter
bounds for other DV channels which involve asymptotic simulations (e.g., amplitude damping). For these important
reasons, it is necessary to develop a general theory which is dimension-independent and applicable to channels of any
dimension, finite or infinite. This is the main content of our Theorem 5 in the main text. This states that, for any
channel E stretchable into a resource state σ (even asymptotically), we may write

C(E) ≤ E∞
R (σ) ≤ ER(σ), (259)

where C(E) is any among the two-way capacities Q2(E) = D2(E) ≤ P2(E) = K(E). In particular, for a Choi stretchable
channel (σ = ρE), we have

C(E) ≤ E∞
R (ρE) ≤ ER(ρE). (260)

Recall that the proof of Eq. (259) relies on the following steps:

• First the derivation of the REE bound C(E) ≤ EF
R (E) for any channel E at any dimension (weak converse

theorem)

• Second, the adaptive-to-block reduction by teleportation stretching at any dimension, which decomposes the
output of an arbitrary adaptive protocol into Λ̄(σ⊗n) or a suitable asymptotic form.

Because the REE is a functional which is monotonic under trace-preserving LOCCs and subadditive over tensor
products, we may then derive Eq. (259). It is clear that this procedure can be adapted to simplify any functional
which is monotonic under LOCCs, which includes the Rains bound [72, 73] and entanglement monotones.



37

SUPPLEMENTARY DISCUSSION

Schematic summary of our key findings

(1) We have designed an adaptive-to-block reduction method which reduces any adaptive protocol for quantum
communication, entanglement distribution and key generation to the computation of a single-letter quantity. This is
possible by combining the following two main ingredients:

(1.1) Channel’s REE. We have extended the notion of relative entropy of entanglement (REE) from states to
channels. In particular, we have shown that the two-way capacity C(E) of any channel E is upperbounded by a
suitably-defined REE bound EF

R (E).

(1.2) LOCC simulation and teleportation stretching. We have introduced the most general form of simulation
of a quantum channel within a quantum/private communication scenario. This is based on arbitrary LOCCs
(even asymptotic) and can be used to stretch an arbitrary channel E into a resource state σ. By exploiting this
simulation, we have shown how to reduce an adaptive protocol (achieving an arbitrary task) into a block form,
so that its output can be decomposed as Λ̄(σ⊗n) for a trace-preserving LOCC Λ̄. This is valid at any dimension
(finite or infinite) and can be extended to more complex communication scenarios.

Thus, the insight of our entire reduction method is the combination of (1.1) and (1.2). ‘REE+teleportation stretching’
allows us to exploit the properties of the REE (monotonicity, subadditivity) and simplify EF

R (E) into a single-letter
quantity so that we may write C(E) ≤ ER(σ) for any σ-stretchable channel. This is valid at any dimension.

(2) Teleportation covariance. At any dimension (finite or infinite), we have identified a simple criterion (teleporta-
tion covariance) which allows us to find those channels which are stretchable into their Choi matrices (Choi-stretchable
channels). For these channels, we may write C(E) ≤ ER(ρE), with the latter being the entanglement flux of the channel.

(3) Tight bounds and two-way capacities. We have shown that the entanglement flux is the tightest upper
bound for the two-way capacities of many quantum channels at any dimension, including Pauli, erasure and bosonic
Gaussian channels. In particular, we have established the two-way capacities (Q2, D2 and K) of the bosonic lossy
channel, the quantum-limited amplifier, and the dephasing channel in arbitrary finite dimension, plus the secret key
capacity K of the erasure channel in arbitrary finite dimension. All these capacities have extremely simple formulas.
For our calculations we have derived a simple formula for the relative entropy between two arbitrary Gaussian states.

(4) Fundamental rate-loss tradeoff. We have finally characterized the rate-loss tradeoff affecting quantum optical
communications, so that the rate of repeaterless QKD is restricted to 1.44η bits per channel use at long distances.
This rate is achievable with one-way CCs and provides the maximum throughput of a point-to-point QKD protocol.

Recent developments in quantum and private communications

Repeater-assisted capacities and multi-hop networks

As also mentioned in the discussion of the main text, an important generalization of the results has been achieved
in ref. [69] with the study and determination of repeater-assisted capacities in the presence of unlimited two-way
CCs. Ref. [69] establishes the ultimate rates for transmitting quantum information, distributing entanglement and
secret keys in repeater-assisted quantum communications, under the most fundamental decoherence models for both
discrete and continuous variable systems, including lossy channels, quantum-limited amplifiers, dephasing and erasure
channels. These capacities are derived considering the most general adaptive protocols of quantum and private
communication between the two end-points of a repeater chain and, more generally, of an arbitrarily-complex quantum
network or internet, where systems may be routed though single or multiple paths. Methodology combines tools from
quantum information and classical network theory. Converse results are derived by introducing a tensor-product
representation for a quantum communication network, where quantum channels are replaced by their Choi matrices.
Exploiting this representation and suitable entanglement cuts of the network, one can upperbound the end-to-end
capacities by means of the relative entropy of entanglement. Achievability of the bounds is proven by combining
point-to-point quantum communications with classical network algorithms, so that optimal routing strategies are
found by determining the widest path and the maximum flow in the network. In this way, ref. [69] extends both the
widest path problem and the max-flow min-cut theorem from classical to quantum communications.
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Single-hop networks (broadcast, multiple-access and interference channels)

Ref. [74] investigates the maximum rates for transmitting quantum information, distributing entanglement and
secret keys in a single-hop multipoint network, with the assistance of unlimited two-way classical communication
among all the parties. Ref. [74] first considers a sender directly communicating with an arbitrary number of receivers,
so called quantum broadcast channel. In this case, it provides a simple analysis in the bosonic setting considering
quantum broadcasting through a sequence of beamsplitters. This specific case has been also investigated in ref. [75]
where the use of our method (REE+teleportation stretching) has led to the determination of the capacity region of
the lossy broadcast channel. Then, ref. [74] also considers the multipoint setting where an arbitrary number of senders
directly communicate with a single receiver, so called quantum multiple-access channel. Finally, ref. [74] studies the
general case of a quantum interference channel where an arbitrary number of senders directly communicate with an
arbitrary number of receivers. Upper bounds are formulated for quantum systems of arbitrary dimension, so that
they can be applied to many different physical scenarios involving multipoint quantum and private communication.

Improving the lower bound for the thermal-loss channel

It remains an open problem to determine the two-way capacities of several channels, most notably that of the
thermal-loss channel Eloss(η, n̄). Here we have shown lower- and upper-bounds in Eq. (126). Recently, ref. [76] has
studied the specific case of the secret-key capacity K(η, n̄) of this channel investigating a region where the lower-bound
given by the reverse coherent information can be beaten. This is possible by resorting to a Gaussian QKD protocol
based on trusted-noise detection. However, the improved lower bound is still far from closing the gap.

Improved upper bounds based on the squashed entanglement and secret-key capacity of the erasure channel

Note that the first version of our paper appeared on the arXiv in October 2015 [77]. It originally contained the
main result for the bosonic lossy channels. The other results for DV and CV channels were given in a second paper,
uploaded on the arXiv in mid December 2015 [78]. These two papers were later merged into a single contribution,
which is the present manuscript.

In late November 2015, one month after our first arXiv version, another manuscript appeared on the arXiv by
Goodenough et al. [28]. This is a very interesting paper that improves the upper bounds of ref. [27] based on the
squashed entanglement. As is clear from our main text, these improved bounds are still larger than ours based on
the REE. However there are two notable exceptions: the amplitude damping channel and the erasure channel. For
the amplitude damping channel, ref. [28] led us to improve our previous results and to find the tightest known upper-
bound based on the squashed entanglement, which is the one given in Eq. (232). Regarding the erasure channel, the
REE and the squashed entanglement lead to the same upper bound, so that both methods are sufficient to determine
the secret-key capacity of this channel.

In our main text, we acknowledge the independent derivation of ref. [28] for the secret-key capacity of the erasure
channel. This is independent because of the completely different method. It is simultaneous because it has been
achieved in a short time window between our first [77] and second [78] arXiv papers. Goodenough et al. [28] first
wrote their upper bound for the erasure channel without making the crucial observation that it was tight. They then
realized this important fact after seeing our updated results on the arXiv two weeks later [78], where we first explicitly
claimed the secret-key capacity of the erasure channel. In a later update of their manuscript (arXiv version 2, April
2016) they then remarked the tightness and claimed to have found the capacity too. In agreement with these authors,
we have therefore decided to credit each other for the independent derivation of the secret-key capacity of the erasure
channel.

Further remarks

Simulation and stretching of bosonic channels

In March 2016, several months after our manuscript was available on the arXiv, an author uploaded a paper [79]
discussing some mathematical aspects associated with our treatment of teleportation stretching with bosonic channels.
Let us briefly give some background before clarifying that these mathematical aspects were already taken into account
and addressed in our arXiv version 2 of December 2015 [80].
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Teleportation stretching of bosonic channels involves the use of an asymptotic CV EPR state Φ, defined as the limit
of TMSV states Φµ. As a consequence, we have to consider the following steps: (i) We first perform an imperfect
stretching of the protocol based on a finite-energy TMSV state Φµ; (ii) we compute the relevant functionals on the
finite-energy decomposition of the output; and (iii) we take the infinite-energy limit µ → +∞ on the final result.
This is actually a standard procedure in any calculus with a delta function, which is implicitly meant to be a limit of
test functions. This is also why the Vaidman teleportation protocol [81] (based on an asymptotic delta-like CV EPR
state) has to be implicitly replaced by the Braunstein-Kimble protocol [63], where the resource state is a TMSV state
Φµ and the infinite-energy limit is computed at the end on the fidelity.

Such a basic argument was already present in our earlier arXiv versions. Already in December 2015 [80] we stated
that, for bosonic channels, one needs to relax the condition of infinite energy and replace the asymptotic CV EPR
state Φ by a sequence of TMSV states Φµ, defining a sequence of Choi-approximating states ρµ

E := I ⊗ E(Φµ). The
latter states are then used to compute the relative entropy of entanglement before taking the limit for large µ; see
Eq. (9) and corresponding text of ref. [80]. Therefore, our treatment of bosonic channels was already rigorous and
correct well before ref. [79]. However, we have also realized that these non-trivial steps were too implicit. For this
reason, we have decided to fully expand the specific treatment of bosonic channels in more recent arXiv versions of
our manuscript. Furthermore, in order to be completely rigorous, we have also accounted for the fact that the CV
Bell detection also needs to be approximated by a suitable limit of finite-energy measurements.

Shield system

In earlier arXiv versions of our manuscript, we proved our weak converse theorem by exploiting an (at most)
exponential growth of the dimensionality of the shield system in the private state. This corresponds to the first
proof in Supplementary Note 3. This assumption on the shield size is correct and fully justified by the argument of
refs. [14, 15] which may be applied to both DV and CV channels, as presented in Lemma 4 of Supplementary Note 3
for the sake of completeness. Despite the correctness of this approach, in later arXiv versions we have also provided
two additional proofs, alternative but essentially equivalent to the first one (with exactly the same conclusions). Our
second proof relies on an exponential increase of the mean number of photons in the private state, while our third
proof is independent from the shield system. See Supplementary Note 3 for full details. It is clear that these proofs
are all complete proofs which do not need further confirmation or validation by follow-up works.
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