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Abstract

The influence of sample size on the performance of IPM is investi-
gated in the simulated scenarios. Results are shown for sample sizes
of n = 50 and n = 500. The figures and tables appearing in the
manuscript for n = 120 are replicated for these sample sizes.

1 Scenario 1

Figures S1 and S2 are analogous to Figure 1 in the manuscript, while Figures
S3 and S4 correspond to Figure 2 in the manuscript with sample sizes n =
50 and n = 500, respectively. With n = 50, results are similar to those in
the manuscript with n = 120. With n = 500, there are few variables with
a high number of observation. In such situations, it is desirable to have the
terminal node size go up with the sample size [3]. In the previous figures,
this was not taken into consideration and IPM results have been affected,
as they are based only on the tree structure, and not on performance. In



those cases, the depth of the trees in random forests may regulate overfitting
[4]. If the maximum depth (mazdepth) of the trees are restricted to 3 (this
parameter has not been tuned), for example, results for IPM change for the
better radically. The average ranking of variables for IPM (CIT-RF, mtry
= 5, maxdepth = 3) in the case of n = 500 is: 3.28 (X1), 1.01 (X3), 3.63
(X3), 3.47 (X4) and 3.61 (X5), i.e. Xy ranks first on 99% of occasions, and
second on 1% of occasions. Therefore, the ranking configuration is nearly
perfect. For comparison, Table S1 shows the ranking distribution of X, for
VIMs applied to Scenario 1 with n = 120, as in the manuscript, whereas the
average rankings for each variable are shown in Table S2.

Table S1: Ranking distribution (in percentage) of X, for VIMs in Scenario
1 with n = 120. The most frequent position for each method is marked in
bold font. Note that X, should rank ideally first in 100% of occasions.
Methods 1 15 2 3 4 5
GVIM (CART-RF, mtry = 5 95

( 2)
GVIM (CART-RF, mtry = 5) 1 9 90
PVIM (CART-RF, mtry = 2) 33 22 24 14 7
PVIM (CART-RF, mtry =5) 29 2 25 25 14 5
PVIM (CIT-RF, mtry = 2) 46 2% 16 10 2
PVIM (CIT-RF, mtry = 5) 54 2 12 6 6
CPVIM (CIT-RF, mtry = 2) 53 24 9 9 5
CPVIM (CIT-RF, mtry = 5) 51 21 15 8 5
MD (mtry = 2) 1 3 13 83
MD (mtry = 5) 2 3 9 86
IPM (CART-RF, mtry = 2) 1 26 73
IPM (CART-RF, mtry = 5) 1 3 21 75
IPM (CIT-RF, mtry = 2) 49 18 16 11 6
IPM (CIT-RF, mtry = 5) 69 5 7 5 4

2 Scenario 2

Figures S5 and S6 show the average ranking (from the 100 data sets) for each
method with mitry = 3 and mitry = 12, and n = 50 and n = 500, respectively.
They are analogous to Figure 3 in the manuscript with n = 120. With n
= 50 and mitry = 3 results of all methods are quite similar among them.
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Table S2: Average ranking of variables for VIMs in Scenario 1 with n = 120.
The most important variable (lowest ranking) for each method is marked in
bold font. Ideally, X5 should rank 1, and 3.5 the rest of variables.
Methods X, X X3 Xy X5
GVIM (CART-RF, mtry = 2) 2.45 495 4.05 2.55 1.00
GVIM (CART-RF, mtry =5) 222 4.89 4.10 2.79 1.00
PVIM (CART-RF, mtry =2) 3.20 2.40 3.11 3.21 3.09
PVIM (CART-RF, mtry =5) 3.16 2.38 3.29 3.12 3.06
PVIM (CIT-RF, mtry =2) 3.23 1.96 3.30 3.18 3.34
PVIM (CIT-RF, mtry =5) 3.35 1.88 3.09 3.32 3.37
CPVIM (CIT-RF, mtry =2) 3.24 1.89 3.39 321 3.28
CPVIM (CIT-RF, mtry =5) 3.32 1.95 3.18 2.97 3.58
MD (mtry = 2) 273 477 417 212 1.21
MD (mtry = 5) 292 477 411 194 1.26
IPM (CART-RF, mtry =2) 2.68 4.72 4.27 230 1.03
IPM (CART-RF, mtry =5) 298 4.70 4.25 2.07 1.00
IPM (CIT-RF, mtry = 2) 3.02 2.07 320 3.30 3.41
IPM (CIT-RF, mtry = 5) 3.32 1.60 3.15 3.27 3.66

With mitry = 12, the smaller sample size affects the methods differently.
PVIM-CIT-RF and CPVIM provide less importance to X5 and Xg than to
the irrelevant variable X,. MD considers X5 and Xg more important than
X4, but the importance of X; and X5 is not as high as expected, and it is too
similar to the importance given to (the less important) X3 and the irrelevant
X4. IPM-CIT-RF shows a ranking pattern in the middle between these two
situations, the one represented by PVIM-CIT-RF and CPVIM, and the one
represented by MD.

As regards the results with n = 500, on the one hand the higher sample
size affects the behavior of the methods in three different ways with mtry
= 3. Results with PVIM-CIT-RF, PVIM-CART-RF and GVIM are the less
successful because give more or less the same importance to the irrelevant
variable X, as the important predictors X5 and Xg. The opposite behavior
is found for CPVIM, which is the method with the biggest difference in
importance between X, and the group formed by X; and Xg. However,
CPVIM gives less importance to the relevant predictors X; and Xs, when
they are as important as X5 and Xg. IPM (CIT-RF and CART-RF) and MD
show a similar profile as CPVIM, but they give more importance to X; and
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X5 than the one given to CPVIM, and less importance to X5 and Xg than the
one given by CPVIM. On the other hand, with mtry = 12 the methods show
a similar ranking pattern among them, but the methods that give the most
similar ranking to the theoretical one are IPM with CIT-RF and CART-RF.
The dissimilarity is computed as the sum of the differences in absolute value
between the average ranking of each method and the theoretical one.

3 Scenarios 3 and 4

Tables S3, S4, S5 and S6 show the average ranking (from the 100 data sets)
for each method in Scenarios 3 and 4 with n = 50 and n = 500. They are
homologue to Tables 8 and 9 in the manuscript with n = 120.

Table S3: Average ranking of variables for VIMs in Scenario 3, with n =50.

Methods X1 X2 X3 X4 X5 X@ X7
MD (miry = 3) 1.84 1.79 505 4.93 237 506 6.96
MD (mtry = 7) 1.36 198 4.97 5.00 266 5.04 6.99

IPM (CIT-RF, mtry =7) 2.21 1.02 544 542 3.07 542 5.44

Table S4: Average ranking of variables for VIMs in Scenario 3, with n =500.

Methods X1 X2 X3 X4 X5 X6 X7
MD (mtry = 3) 1.00 2.01 5.06 4.94 299 5.00 7.00
MD (mtry = 7) 1.00 2.00 4.89 5.06 3.00 5.05 7.00

I[PM (CIT-RF, mtry =7) 2.00 1.00 5.18 5.20 4.21 528 5.14

Table S5: Average ranking of variables for VIMs in Scenario 4, with n = 50.

Methods X1 X2 X3 X4 X5 Xﬁ X7

MD (miry = 3) 100 271 475 479 293 4.82 7.00

MD (mtry = 7) 1.00 246 4.60 4.74 3.14 5.07 6.99

IPM (CIT-RF, mtry = 7) 1.00 4.41 426 4.19 482 452 4.82

IPM (CIT-RF, mtry = 7, all samples) 1.03 3.64 4.43 4.52 4.83 4.84 4.72




Table S6: Average ranking of variables for VIMs in Scenario 4, with n = 500.

Methods X1 Xo X3 Xy X5 X¢ X7

MD (mtry = 3) 1.00 2.10 5.03 494 290 5.03 7.00

MD (mtry = 7) 100 2.00 438 446 446 470 7.00

IPM (CIT-RF, mtry = 7) 2.01 1.00 4.15 429 6.28 424 6.03

IPM (CIT-RF, mtry = 7, maxdepth = 3) 1.19 1.81 4.62 4.63 590 4.74 5.11

For Scenario 3, X; or X, are in third position in 50% of occasions with n
= 50 and mtry = 3 with MD, their results are more affected to worse by a
smaller sample size than the results of the other methods. X5 (related with
X>) is given lower ranking in all methods than when n = 120 was considered,
but the same patterns in Table 8 are observed in general. However, with n =
500, results for IPM are more similar to those theoretically expected (X; and
X, in first position, while the rest of variables are irrelevant and should rank
in 5th position). For MD with n = 500, the pattern observed with n = 120 in
Table 8 is now more evident. Results with MD shows a bias on the irrelevant
categorical predictor X7, which is always ranked in 7th position, and also on
X5 (irrelevant but related with X3), which is always ranked in 3rd position.
The other irrelevant variables X3, X, and Xg rank in 5th position.

In Scenario 4 with n = 50, results are affected for the small sample size and
the special configuration. Remember that variable X is irrelevant when X;
= 1, which is the most frequent value (60%). In other words, it is expected
that X, intervenes in the generation of approximately only 20 (50 x 0.4)
samples. With MD, the rank of X5 rises up and it is closer to the rank
given to X5. The same ranking pattern as that of the case n = 120 is
observed for the rest of variables, included the bias for X;. For IPM, the
rank of X5 rises a lot with n = 50. X, ranks in second position in 22%
of occasions, while X, ranks from third to seventh position around 15% of
occasions for each position. Note that when n = 50, the size of the OOB
sample is around 18 (50 x (1-0.632)), so only around 7 (18 x 0.4) samples
will have a value of X; = 0 and X, will participate in the generation of
the responses. The size sample of the in-bag observations, which build the
trees, with X; = 0 is approximately 13 (50 x 0.632 x 0.4). Therefore, we
are estimating IPM with a very small sample, and a small sample size is a
source of variance [1]. For solving this issue and increasing the sample size,
trees have been computed with all available observations (fraction = 0.99



has been considered in the function cforest of the R package party [2]) as
IPM is not used for prediction. Then, all observations have been used for
estimating IPM. Results of this configuration appear in the last row of Table
S5, which gives an average ranking of 3.64 for X5. The average ranking for
irrelevant variables is around 4.5. However, this global information can be
easily desegregated by groups with IPM, supplying interesting information.
The average IPM values were 54% for X;, 15% for X, and around 6% for
the other variables. For samples with X; = 0, the average IPM values were
75% for X, and 25% for X5, and null for the rest of variables. Therefore,
IPM discards the irrelevant variables.

Results for VIMs with n = 500 in Scenario 4 are similar to the manuscript
with n = 120, except for IPM, for the reason explained in Section 1. The
results for IPM (CIT-RF, mtry = 7, maxdepth = 3) are incorporated into
Table S6. When the depths of trees are limited for avoiding overfitting in the
high sample size setting, results of IPM are again very good. In fact, it is
very reasonable that X ranks first and X, second in 81% of occasions, and
X5 ranks first and X second in 19% of occasions, according to the structure
of Scenario 4, since X7 is only important for some part of the sample, and
both X; and X, are important for the other part of the sample.
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Figure S1: Ranking distribution (in percentage) of X5 for VIMs in Scenario

1 with n = 50.
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Figure S2: Ranking distribution (in percentage) of X5 for VIMs in Scenario

1 with n = 500.
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Figure S4: Average ranking of variables for VIMs in Scenario 1 with n

500.
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Figure S5: Average ranking for each VIM in Scenario 2, for mtry =3 and
mtry =12, with n = 50. The code of each VIM appears in the figure legend.
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Figure S6: Average ranking for each VIM in Scenario 2, for mtry =3 and
mtry =12, with n = 500. The code of each VIM appears in the figure legend.
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