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S1 Detailed derivation of equations

Our model arm has independent control over the projectile’s release angle (φ) and angular
velocity (ω)/ For a drag-free point-like projectile moving in a uniform gravitational field,
its trajectory (x(t), y(t)) as a function of time since release t is obtained by solving the
initial value problem,

ẍ(t) = 0, ẋ(0) = −ω sinφ, y(0) = cosφ, (S1.1a)

ÿ(t) = −1, ẏ(0) = ω cosφ, y(0) = sinφ, (S1.1b)

where x and y are measured relative to the arm’s pivot. We express lengths in units of the
arm’s length and time in appropriate units to set the acceleration due to gravity equal to
one. Then, the solutions for the trajectory of the projectile that lands on a horizontally
oriented, planar target (like a bin) located at a height h, and forward distance l are,

x(t, φ, ω) = cosφ− tω sinφ = l (S1.2a)

y(t, φ, ω) = sinφ+ tω cosφ− 1

2
t2 = h (S1.2b)

We note that the calculations proceed in an analogous manner for other target geometries,
with modifications for the definition of error as shown in figure S1.
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Figure S1. The definitions of landing error for three different target geometries, the
horizontal target that was extensively analyzed in the main paper , a circular target
where error is defined as the distance of nearest approach, and a vertical target the error
is defined along a vertical axis. The gray band depicts a set of trajectories approaching
the target.

Solving equation [S1.2b] for t, and using the condition ẏ(t) = ω cosφ− t ≤ 0 for the
projectile to strike the upper face of the target, we obtain a solution surface th(φ, ω). On
substituting t = th(φ, ω) in equation [S1.2a] we obtain the equation for the horizontal
landing location of the projectile when it strikes the plane of the horizontal target as,

th(φ, ω) = ω cosφ+
√
ω2 cos2 φ− 2(h− sinφ) (S1.3a)

xh(φ, ω) = cosφ− ω sinφ
(
ω cosφ+

√
ω2 cos2 φ− 2(h− sinφ)

)
. (S1.3b)
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We require ω2 ≥ 2(h−sinφ)/ cos2 φ for a solution to exist, i.e. a minimum launch velocity
is needed to reach the target plane when h ≥ sinφ. For some target positions and arm
postures, it is impossible to hit the target because no real solutions exist for the minimum
launch velocity. We enumerate all feasible arm angles in Supplement S2.

We set xh(φ, ω) = l in equation [S1.3b] for a target at a distance l to obtain a one
parameter family of solutions for exactly striking a point target, as given by

ω0(φ) =
cosφ− l

sinφ
√

2
sinφ

(1− l cosφ− h sinφ)
. (S1.4)

When the release parameters (φ, ω) deviate from the one-dimensional solution curve
(φ, ω0(φ)), the projectile misses the target leading to an error δxh = xh(φ, ω) − l. To
quantify the amplification of small launch errors, we linearize xh(φ, ω) in the neighborhood
of the curve (φ, ω0(φ)) or (ω, ω−1

0 (ω)) depending upon whether we want to parameterize
error amplification by the launch angle or speed. We then obtain the relation between
the ‘input errors’ (δφ δω)T and the ‘output/target error’ δxh given by

δxh(φ, ω) ≈ Jerr

(
δφ
δω

)
, (S1.5a)

where Jerr =


Jerr(φ) =

(
∂xh
∂φ

∂xh
∂ω

) ∣∣∣∣
ω=ω0(φ)

, or

Jerr(ω) =
(
∂xh
∂φ

∂xh
∂ω

) ∣∣∣∣
φ=ω−1

0 (ω)

. (S1.5b)

The amplification of these errors is quantified by the only non-zero singular value λ
of Jerr. For illustration of computing the singular value, we choose the parameterization
of error amplification as a function of φ, where the error Jacobian is computed in the
neighborhood of ω0(φ) according to,

Jerr(φ) =
(
λφ λω

)
, (S1.6a)

λφ =
∂xh
∂φ

∣∣∣∣
φ,ω0(φ)

=
4hl cosφ− 4(h+ l cotφ) + cscφ ((2l2 − 1) cos 2φ+ 3)

4h sinφ+ 2l cosφ+ cos 2φ− 3
(S1.6b)

λω =
∂xh
∂ω

∣∣∣∣
φ,ω0(φ)

=
4
√

2 sin2 φ(cscφ− l cotφ− h)
3
2

4h sin(φ) + 2l cos(φ) + cos(2φ)− 3
. (S1.6c)

The only non-zero singular value λ(φ) of Jerr(φ) is given by,

λ2(φ) = λ2
φ + λ2

ω (S1.7)

This singular value has a geometric interpretation, as seen from comparing equa-
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tion [S1.5a] to the lowest order Taylor series expansion of (δxh)
2,

(δxh)
2 =

(
δφ
δω

)T

JT
errJerr

(
δφ
δω

)
=

1

2

(
δφ
δω

)T

Herr

(
δφ
δω

)
. (S1.8)

2λ2 is the largest eigenvalue of the Hessian (Herr) of the output variance (δx2
h) and thus

the maximal principal curvature of the surface δx2
h(φ, ω0(φ)) = 0. The error varies most

weakly along the curve (φ, ω0(φ)) and strongly in the orthogonal direction to that curve.

S2 Feasible arm angles

Figure S2. The individual cases for identifying the feasible arm angles in order to be
able to strike a planar target. a. Two qualitatively different shallow shots to hit the
target depending on whether the target is above or below the point of release. b.
Enumeration of different regions of target location where domains of φ are calculated for
xh(φ, ω0(φ)) to be a real number.

For some target positions and arm postures, it is impossible to hit the target because
no real solutions exist for the minimum launch velocity. We enumerate all feasible arm
angles in this section. The ball release is always a tangent to the circle defined by the arm
length. These equations are then obtained by solving for tangency of various parabolic
and straight flight paths corresponding to the numbered domains in figure S2. These
domains are used to calculate feasible arm angles at release so that there exists a speed
of release that can reach locations within the domain.

To calculate the arm angles where it is possible to hit the target, we first observe that
there are two qualitatively different shallow shots depending on the height of the target
relative to the release point (Figure S2a). We refer to the straight-line shot with infinite
velocity by φs

(�) and the curved shallow shot which is a parabola passing through the target
with its apex at the target, and tangential to the unit circle by φc

(�). The subscript will
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denote the throwing style (‘u’ or ‘o’). These angles are given by,

c(α) = (1 + l) tan4 α

2
− 4h tan3 α

2
+ 6 tan2 α

2
− 4h tan

α

2
+ (1− l) (S2.1a)

φc
o =

{
maxα where α is a real root of c(α)if l < 1

minα if l > 1
(S2.1b)

φc
u =

{
minα if l < 1

maxα if l > 1
(S2.1c)

φs
o = arctan 2(h, l) + arccos

1

d
(S2.1d)

φs
u = arctan 2(h, l)− arccos

1

d
(S2.1e)

arctan 2(h, l) = arg(l + ih) (S2.1f)

d =
√
l2 + h2 (S2.1g)

[S2.1a] has only two real roots in the interval [0, 2π]. The domains of feasible φ so that
xh(φ, ω0(φ)) is a real number are given by,

1 : l < −1, h ≥ 1 Φ = (0, φc
u] ∪ (π, φc

o]

2 : l < −1, |h| < 1 Φ = (0, φs
u) ∪ (π, φc

o]

3 : l < −1, h ≤ −1 Φ = (0, φs
u) ∪ (π, φs

o)

4 : l > 1, h ≥ 1 Φ = [φc
u, 2π) ∪ [φc

o, π)

5 : l > 1, |h| < 1 Φ = [φc
u, 2π) ∪ (φs

o, π)

6 : l > 1, h ≤ −1 Φ = (φs
u, 2π) ∪ (φs

o, π)

7 : |l| < 1, h > 1 Φ = (0, φc
u] ∪ [φc

o, π)

8 : |l| < 1, h < −1 Φ = ((0, ψ] ∪ (φs
u, 2π − ψ]) ∪ ([ψ, π) ∪ [2π − ψ, φs

o))

9 : − 1 < l < 0, 0 < h ≤ 1 Φ = (0, φs
u) ∪ [φc

o, π)

10 : − 1 < l < 0,−1 ≤ h < 0 Φ = ((0, ψ] ∪ (φs
u, 2π − ψ]) ∪ ([ψ, π) ∪ [2π − ψ, φc

o])

11 : 0 < l < 1, 0 < h ≤ 1 Φ = (0, φc
u] ∪ (φs

o, π)

12 : 0 < l < 1,−1 ≤ h < 0 Φ = ((0, ψ] ∪ [φc
u, 2π − ψ]) ∪ ([ψ, π) ∪ [2π − ψ, φs

o))

13 : l2 + h2 ≤ 1 Φ = (0, ψ] ∪ [ψ, π)

where ψ = arccos(l), and the domains are listed in the format (underarm) ∪ (overarm).
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S3 Speed versus accuracy for vertical targets

Using a modified definition of error for a vertical target as shown in figure S1, and the
same method of derivation as shown in section S1, we find the accuracy p as a function
of launch speed ω for several targets. A speed-accuracy trade-off, similar to that of a
horizontal target, is observed for the vertical target so long as it is located at or above
the shoulder height, as seen in figure S3. For targets below shoulder height, we find faster

Figure S3. Accuracy as a function of speed for several vertically oriented targets.

underarm throws to be more accurate. This reversal of the speed-accuracy trade-off is
however, true only for a small region of targets near the arm. For vertical targets more
than 3.5 arm lengths below the shoulder pivot or horizontally away from the shoulder,
the usual speed-accuracy trade-off is observed. Casual observations of striking the wicket
in cricket from proximal locations such as the wicket keeper’s action are consistent with
our calculations that predict that a fast underarm throw is the most accurate strategy for
a vertical target like the wickets that is typically less than 3m away from the thrower.
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S4 Generalization of the speed-accuracy trade-off

The error in the projectile’s landing location e, is defined based on the target geometry
(see figure S1). For example, e = xh − l for a horizontally oriented target, and e = yl − h
for a vertically oriented target. The accuracy p is given by,

p =
1

λ
, (S4.1a)

(S4.1b)

following equations [S1.7] for the definition of λ, so that,

λ2 = λ2
φ + λ2

ω, (S4.2a)

where λφ =
∂e

∂φ
, λω =

∂e

∂ω
. (S4.2b)

For a horizontal target, i.e. e = xh − l, the expressions for λφ and λω are given by
equations [S1.6]. The dependence of λ2

φ and λ2
ω on the speed ω, are therefore central

to characterize accuracy as a function of throwing speed. A projectile launched with a
speed ω = ω0(φ), as given by equation [S1.4] will strike the target with zero error. The
non-invertible nature of ω0(φ) implies that there are four distinct throws, launched at four
different launch angles, which strike a target at its center. For our analysis, we consider
the limit ω → ∞. With increasing speed, the flight time tf → 0 for the two straight
shots (overarm and underarm). For the curved shots however, higher speeds imply longer
flight times, and tf → ∞. Therefore, the landing location for both the curved shots are
infinitely sensitive to the launch angle in the limit of the throwing speed becoming infinite.
We will therefore only consider the shallow shots for the remainder of this analysis. Also,
we consider only non-trivial targets where simply dropping the projectile with zero speed
is not a solution, i.e. l > 1, and l2 + h2 > 1. The straight shot for the overarm and
underarm throw correspond to a launching angle of

φs
o = arctan 2(h, l) + arccos

1

d
, and (S4.3a)

φs
u = arctan 2(h, l)− arccos

1

d
, (S4.3b)

respectively. Note that the straight overarm and underarm shot are impossible for hori-
zontal targets with h > 1 and h > −1, respectively. This is because we consider horizontal
targets like bins or basketball hoops, where hitting the target from below is disallowed.

From equation [S1.4], the leading-order asymptotic expansion of ω0(φ) as φ → φs
o/u,
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and denoting overarm or underarm by o/u, is given by,

ω2 = co/u

(
φ− φs

o/u

)
, (S4.4a)

co/u =
l(l2 + h2 − 1)± h

√
l2 + h2 − 1

2(l2 + h2)
> 0. (S4.4b)

This expansion of ω for large speeds, i.e. as φ → φs
o/u will be used to find asymptotic

expansions for λφ and λω.

S4.1 Horizontal target

Consider targets with h < 1 for the overarm style, or h < −1 for the underarm style.
Using equation [S1.6b] in the limit of the straight shot ω →∞, i.e. φ→ φs

o/u, the leading
order asymptotic expansion of the sensitivity to release angle is given by,

λ2
φ = λ2

φ∞ +mφ(φ− φso/u) +O
(
(φ− φso/u)2

)
, (S4.5)

with constants λφ∞ and mφ given by,

λφ∞ = λφ
(
φs

o/u

)
, (S4.6a)

mφ =
∂λ2

φ

∂φ

∣∣∣∣∣
φs
o/u

< 0. (S4.6b)

Using equation [S4.4a] in equation [S4.5] to rewrite the expansion in terms of the launch
speed ω, and noting that mφ < 0,

λ2
φ

λ2
φ∞

= 1− |mφ| co/u

λ2
φ∞

ω−2 +O
(
ω−3

)
, (S4.7a)

=⇒ 1−
λ2
φ

λ2
φ∞
∼ ω−2. (S4.7b)

Therefore, for overarm and underarm horizontal throws of increasing speeds, the error
λφ saturates towards λφ∞ with an exponent of 2.

Using equation [S1.6c], the leading order asymptotic expansion of the sensitivity to
release speed is given by,

λ2
ω = mω(φ− φs

o/u)3 +O
(
(φ− φs

o/u)4
)
, (S4.8a)

mω =
1

3!

∂3λ2
ω

∂φ3

∣∣∣∣∣
φs
o/u

> 0. (S4.8b)



9

Using equation [S4.4a] in equation [S4.8a] we rewrite the expansion in terms of the
launch speed ω as,

λ2
ω = mωco/uω

−6 +O
(
ω−7

)
, (S4.9a)

=⇒ λ2
ω ∼ ω−6. (S4.9b)

Suppose the noise level in release angle and speed are not equal, and parameterized
by the ratio of the noise level in speed versus angle k = δω/δφ. The combined error λ
due to both angle and speed sensitivities is then given by,

λ2 = λ2
φ + k2λ2

ω (S4.10a)

=⇒ λ2

λ2
φ∞

= 1− |mφ| c
λ2
φ∞

ω−2 +
k2mωc

λ2
φ∞

ω−6. (S4.10b)

The error λ2 has a local (and global) minimum at ω = ±ω∗ for the underarm and overarm
style, where

ω∗ =
√
k

(
3mω

|mφ|

)1/4

, (S4.11a)

λ(ω∗)2 = λ2
φ∞ −

2

3
√

3

c |mφ|3/2
k
√
mω

. (S4.11b)

For speeds higher than the optimal speed, where the asymptotic results are increas-
ingly accurate, the squared error grows monotonically. However, higher relative levels
of noise in release speed implies a higher optimal speed, and a weaker trade-off between
speed and accuracy. Nevertheless, and independent of the release speed, increasing the
throwing speed beyond the optimal value ω∗ always implies growing error, and therefore
decreasing accuracy. This qualitative result is independent of the relative noise levels,
the chosen length and time scales for the non-dimensional analysis, or on the parameters
being controlled by the throwing arm.

All the other targets, h > 1 with the overarm style or h > −1 with the underarm style,
can only be reached by a curved shot (overarm or underarm). Because the flight time
grows to infinity with higher speeds for the curved shot, the sensitivity to the release angle
goes to infinity as well, i.e. lim

ω→∞
λφ → ∞. For these curved shots, the two sensitivities

scale as,

λ2
φ ∼ ω4, (S4.12a)

λ2
ω ∼ ω−2 (S4.12b)

This implies more severe speed-accuracy trade-off for these targets because the total error
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suffers an unbounded increase with speed.

S4.2 Vertical target

For the overarm throwing style, and for all possible targets, the scaling of error with
speed is identical to the analysis presented for the horizontal target in equations [S4.7]
and [S4.9].

Using an underarm style, however, a qualitative difference arises for λ2
φ. In contrast

to equation [S4.7], we find,

λ2
φ

λ2
φ∞
− 1 ∼ ω−2. (S4.13)

Therefore, the sensitivity λ2
φ attains a local maximum at an intermediate throwing speed

and subsequently decays to its asymptotic value. Therefore, both the sensitivities λ2
φ

and λ2
ω have decreasing values with increasing speed, beyond a critical value. However,

whether this is an optimal speed that minimizes error depends on the ratio,

χ =
lim
ω→∞

λ2
φ

lim
ω→ωmin

λ2
ω

. (S4.14)

The ratio χ depends solely on the target location. When δω/δφ = k, and χ > k2, the
optimal speed is close to the minimum feasible speed ωmin, and faster underarm throws
are less accurate. When χ < k2, faster underarm throws are more accurate. Figure S4
shows the dependence of χ on the target location. For k = 1, the solid red curve separates
the region of targets with the usual speed-accuracy trade-off for the underarm throw, from
the ‘faster is more accurate’ region.

S5 Scaling of experimental data

In order to compare experimental data against the dimensionless predictions of our model,
we use published anthropometric data [1, 4]. We calculate a histogram of dimensionless
parameters l and h for the dimensional distance L and height H of the target using the
formulas l = L/R and h = (H − S)/R, where R is the arm length, and S is the shoulder
height above ground. We estimate R and S, normalized by total height, from previously
published anthropometric data [1], namely, S = 0.86(Total Height) and R = 0.54S. Data
on overall height for Americans, categorized by age, gender and year of measurement, are
available from Ogden et al. [4].

The standard rules of the World Darts Federation stipulate that the center of the dart
board (the bull) is 2.37m in front (L), and 1.73m above the ground (H). We normalize
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Figure S4. Dependence of the ratio χ on the target location. The value of χ relative to
k2, square of the ratio of velocity to angle noise, determines whether the underarm style
exhibits the typical speed-accuracy trade-off or not. When χ < k2, faster underarm
throws are more accurate. Therefore, for large noise in release velocity relative to release
angle, faster underarm throws are more accurate than slower ones for almost all targets.

the dart board’s location relative to the shoulder using the procedure outlined above.

S6 Effect of planning uncertainty on strategy

We compare against the data of Westergaard et al. [8], who used repeated throws in
humans to estimate the proportion of overarm throws. The Westergaard et al. [8] ex-
periment consisted of throwing a ball into a 0.8 m tall bin (H) for two targets — one
‘near’ (L1 = 3 m) and another ‘far’ (L2 = 6 m). For the age distribution of subjects that
participated in [8], and using the procedure outlined in section S5, we generate histograms
for the expected fraction of overarm throws in both the large and small planning error
limits. In figure S5, we show the result of our calculations using an ellipse or a square
box, corresponding to the results of the calculation for a circular to a horizontal target.
The mean location of the symbol is the mean of the calculations, allowing for body size
variations, and the height of the symbol is the range of calculations. The open symbols
� and ◦ correspond to the estimated fraction of overarm throws with zero planning un-
certainty, while the solid symbols � and • are the estimated fraction of overarm throws
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with maximal planning uncertainty. The + symbols are the experimentally measured
means [8]. The gray bar shows the complete experimental range, lumping both targets,
and corresponds well with the total range that we would predict.

Figure S5. The result of our calculations in comparison with data. The symbols of an
ellipse (◦ for zero planning uncertainty and • for maximal planning uncertainty) or a
square box (� for zero planning uncertainty and � for maximal planning uncertainty),
correspond to the results of the calculation for a circular or a horizontal target,
respectively. Because the experimental data (+ symbol) were measured for a horizontal
bin [8], we expect the calculations for a horizontal target (�, �) to correspond well with
the experimental mean, and the calculations for a circular target (◦, •) to not match the
data. The mean location of the symbol is the mean of the calculations, allowing for
body size variations, and the height of the symbol is the range of calculations. For the
closer target, the experimental data correspond to the predictions with zero planning
uncertainty. For the target that is further away, the predictions with large planning
uncertainty are a better predictor of the fraction of overarm throws that are used.

For two targets corresponding to bins at 3m and 6m, figure S5 (square symbols � and
�) shows an overlay of our predictions on the experimental data for observed fraction of
overarm throws [8]. Because visual estimates are likely more accurate for the closer bin,
we expect smaller planning errors for the nearer target. Thus throwing into the bin at
3m corresponds better to τ(φ) = δ(φ − φoptim

over ) + δ(φ − φoptim
under) while throwing into the

bin at 6m corresponds better to τ(φ) = 1.
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S7 Basketball free throws

The implications of our analysis to ball games suggests some comparisons to observations
and data on free throws in basketball. Most professional players such as those in the
American National Basketball Association (NBA) use an overarm throw for free throws.
Using the average height for an NBA player, the dimensionless distance and height of the
basket from the player for a free throw are 5.05 and 1.38, respectively. Our model predicts
that for zero and uniform (arbitrary) planning uncertainty [11b in main text], fover, the
fraction of overarm throws, should be 49% and 64%, respectively. The numbers are similar
for an average American male as well (fover = 50% and 62% for zero and infinite planning
uncertainty, respectively). Therefore, our model predicts that an overarm throw is a better
choice for larger noise. However, if one could train to reduce sensorimotor noise, then the
underarm throw is marginally better for an average NBA player. This relates to the
observation that although the underarm throw is seldom used in professional basketball,
one of the most proficient free throw shooter with a 90% success rate, Rick Barry, used
the underarm style [5, 6]. However, given that our model predicts such a small margin
of preference for the underarm style, it is likely that one of the many neuromechanical or
psychological factors we did not include in our model will influence the choice of throwing
style. Okubo and Hubbard [5] also find that the underarm throw is marginally superior for
the ‘typical’ free throw in basketball by using a model with three-dimensional dynamics
of a basketball with spin, non-ideal collisions with the backboard and rim, rolling on the
rim, and so on. We arrive at a similar finding using only projectile dynamics with our
relatively simpler model.

S8 Propagating distributions with non-infinitesimal

variance

We next relax assumptions of the linearized analyses by introducing finite noise at the
input side using a joint probability density function (PDF) f[φ,ω] associated with the noise
in φ and ω. The horizontal distance xh at which the projectile lands is given by the non-
invertible, surjective function xh(φ, ω), which transforms f[φ,ω] into the PDF fxh associated
with xh. For a fixed φ, f[φ,ω](φ, ω0(φ, l)) is transformed into fxh(l) by the Jacobian of ω0

with respect to l. However, for a given target at distance l and height h, there is a curve of
release parameters (φ, ω0(φ, l)) for accurately striking the target. Therefore, integrating
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over this solution curve and using [5 in main text] for ω0, we find fxh as,

fxh(l) =

∫
Φ

f[φ,ω](φ
′, ω0(φ′, l))

∣∣∣∂ω0(φ′,l)
∂l

∣∣∣ dφ′
∞∫
−∞

∫
Φ

f[φ,ω](φ′, ω0(φ′, l))
∣∣∣∂ω0(φ′,l)

∂l

∣∣∣ dφ′ dl (S8.1a)

∂ω0(φ, l)

∂l
=

csc2 φ(4h sinφ+ 2l cosφ+ cos 2φ− 3)

4
√

2(cotφ+ cscφ− h− l)3/2
(S8.1b)

where Φ = {φ : xh(φ, ω0(φ, l)) = l} is typically disjoint and depends on the location of
the target as enumerated in S2. To ensure that fxh is a probability density with total
area equal to one, we normalize [S8.1a] 1.

To follow the implications of the fully nonlinear calculation for error amplification,
we choose the simple example of throwing a projectile into a bin. For this example, we
assume uncorrelated noise in φ and ω, f[φ,ω] = fφfω, where fφ is a von Mises distribution.
Because φ is a periodic variable, we use a von Mises distribution [3, 7], which is the
circular analogue of a Gaussian distribution. The PDF of a von Mises distribution with
mean µ and concentration κ (1/κ is analogous to the variance of a normal distribution)
is given by,

v(x, µ, κ) =
eκ cos(x−µ)

2πI0(κ)
(S8.2)

where I0(κ) is the modified Bessel function of order 0. For fω, we use a one-sided truncated
Gaussian in order to restrict ω to a single throwing style at a time, i.e. ω ≥ 0 or ω < 0 for
underarm and overarm, respectively. The PDF of a truncated Gaussian variable x with
mean µ and standard deviation σ that is truncated at a and b is given by,

g(x, µ, σ, a, b) =


√

2
π

1
σ
e
− (x−µ)2

2σ2(
erf

(
b−µ
σ
√
2

)
−erf

(
a−µ
σ
√
2

)) if a ≤ x ≤ b

0 Otherwise

(S8.3)

where erf is the Gauss error function. Therefore, the distributions we use for numerical
examples are,

f[φ,ω](φ
′, ω′) = fφ(φ′) fω(ω′) (S8.4a)

fφ(φ′) = v(φ′, φoptim
(�) , 1/σ2

φ), (�) = over or under (S8.4b)

fω(ω′) =

{
g(ω′, ω0(φoptim

over ), σω,−∞, 0) for overarm

g(ω′, ω0(φoptim
under), σω, 0,∞) for underarm

(S8.4c)

1There is ‘leakage’ because xh(φ, ω) is not a real number for some combinations (φ, ω) when the
projectile fails to reach the plane of the target, and thus normalization becomes necessary.
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where σ is the standard deviation, and φoptim denotes the optimal throwing angle such that
the linear amplification λ(φoptim) is the minimum for the chosen throwing style [S1.7].

We now perform linear and nonlinear analyses for a specific numerical example, with
l = 2, h = −1. For this bin, we use the linear error amplification λ to find the angle φ and
speed ω for the optimal overarm and underarm throws. The input distributions for the
nonlinear calculation are centred at the optimal release parameters found from this linear
analysis. The variance of the distributions are arbitrarily chosen, but are equal for both
throwing styles. Table S1 lists the numerical values used in this example. Dimensional
values are shown for a one meter long arm.

Table S1. Parameters values used in nonlinear calculations for bin at l = 2,
h = −1. Dimensional estimates for an arm length of 1m.

Overarm Underarm
fφ fω fφ fω

φoptim
over σφ ω0(φoptim

over ) σω φoptim
under σφ ω0(φoptim

under) σω
1.08 0.09 -1.19 0.18 5.72 0.09 1.01 0.18

62◦ 5◦
3.72 m/s 0.56 m/s −33◦ 5◦

3.17 m/s 0.56 m/s
13.4 km/hr 2 km/hr 11.4 km/hr 2 km/hr

Our numerical solutions show that the underarm throw amplifies errors more than the
overarm throw (solid curves in Figure S6), in agreement with the linear amplification λ.
Quantitatively as well, the ratio of overarm to underarm linear amplification is similar
to the ratio of σ, the standard deviation of the output distribution fxh (see Table S2).
However, the nonlinear calculation calculation shows that the output distribution for
an underarm throw is skewed (comparison with dashed curve in Figure S6, Table S2),
something that cannot be found from a linear analysis. This skewed output implies that
the underarm throw could be perceived as a weaker throw because the projectile’s most
likely landing location undershoots the target by 4 times as much as the overarm throw.

Table S2. Comparison of linear and nonlinear calculations for bin at l = 2,
h = −1. Dimensional estimates for an arm length of 1m.

Linear Nonlinear
λover

λunder

σover

σunder

Mean landing location Most likely landing location
Overarm Underarm Overarm Underarm

0.69 0.56 1.99 2.01
1.98 1.92

2 cm undershoot 8 cm undershoot

Linear: λ(φoptim
over ) = 1.35, λ(φoptim

under) = 1.96; Nonlinear: σover = 0.19, σunder = 0.34.
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Figure S6. Propagating initial distributions with equal variance for hitting a target at
l = 2, h = −1. The underarm throw amplifies errors more than the overarm throw, in
agreement with the linear analysis. For comparison, we superimpose a normal
distribution (dashed curves) with mean and variance equal to the propagated
distribution (solid curves), together with the mode (solid vertical line) and mean
(dashed vertical line). The overarm throw leads to a nearly normal distribution where
the projectile lands with mode (1.98) and mean (1.99) nearly equal to each other. The
underarm throw in contrast leads to a skewed distribution where the most likely
outcome is an undershoot as seen from the mode (1.92) although the mean (2.01) is
nearly at the target (l = 2). The input distributions are centred at (φoptim

over = 1.082,
ω0(φoptim

over ) = −1.186) for the overarm throw and at (φoptim
under = 5.716, ω0(φoptim

under) = 1.008)
for the underarm throw, and we set standard deviations as σφ = 0.087, σω = 0.177 for
both throws. For a one metre long arm, these values expressed as mean ± standard
deviation are, overarm: φ = 62± 5◦, |v| = 3.72± 0.56 m/s (13.4± 2 km/hr) and
underarm: φ = −33± 5◦, |v| = 3.17± 0.56 m/s (11.4± 2 km/hr).

S9 Shooting: Zero arm length

Our considerations so far use the length of the arm R to set the length scale in the
problem. We now look at the limit when this length scale becomes vanishingly small
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or for throwing to faraway targets where L,H � R. In this, the artillery limit, the
problem becomes one of shooting a projectile at an angle θ with a linear velocity V .
Naturally therefore, we only consider targets at the same height as the origin from where
the projectile is launched. The ratio of variability in V to the variability in θ, introduces
a velocity scale k = δv/δθ, where the quantities δv and δθ are appropriate measures of
variability. By expressing distances in units of k2/g and time in units of k/g, we obtain
the scaled trajectory equations for distance x, height y, as a function of time t, launch
angle θ and launch velocity v,

x(t) = tv cos θ (S9.1a)

y(t) = tv sin θ − 1

2
t2. (S9.1b)

For exactly striking the target at a distance l with the launch parameters θ, v, the pro-
jectile lands at x0(θ, v) = l = gL/k. This gives the one-dimensional curve of launch
parameters (θ0, v0(θ0)):

v0(θ) =

√
l

sin 2θ
. (S9.2)

Performing a linearized error analysis in the neighbourhood of this curve (θ0, v0(θ0)) yields
the Jacobian J that maps small errors δθ and δv to small errors δx0:

J(θ0) =
(
∂x0
∂θ

∂x0
∂v

) ∣∣∣∣
θ=θ0,v=v0(θ0)

=
(
2v2

0 cos 2θ 2v0 sin 2θ
)

= 2
(
l cos 2θ
sin 2θ

√
l sin 2θ

)
.

(S9.3a)

The shooting angle most robust to small input noise corresponds to the θ where the only
positive singular value is minimized. Minimizing the square of the singular value

ζ(θ) = JTJ =
l2 cos2 2θ

sin2 2θ
+ l sin 2θ (S9.4)

yields

dζ

dθ

∣∣∣∣
θ=θ∗

= 0⇒ 4l cos 2θ∗ − 8l2
cos 2θ∗

sin3 2θ∗
= 0 (S9.5a)

⇒ cos 2θ∗ = 0, or, for 0 < l <
1

2
, sin 2θ∗ =

3
√

2l (S9.5b)

We therefore find that for l > 1/2, there is only one extremum at θ∗ = π/4, but three
extrema co-exist for 0 < l < 1/2 at θ∗ = π/4, arcsin 3

√
2l/2, and π/2 − arcsin 3

√
2l/2. To



18

determine if the solution [S9.5b] is a minimum or maximum, we evaluate

d2ζ

dθ2
= −16l sin 2θ +

32l2 + 64l2 cos2 2θ

sin4 2θ
(S9.6a)

⇒ d2ζ

dθ2

∣∣∣∣
θ=θ∗

=

{
16l(2l − 1) when θ∗ = π

4
, 0 < l

24(2l)
2
3 (1− (2l)

2
3 ) when sin 2θ∗ = 3

√
2l, 0 < l < 1

2

(S9.6b)

From the solutions in [S9.6b] we see that θ∗ = π/4 is a local minimum for l > 1/2, a
local maximum for l < 1/2, and there is a pitchfork bifurcation at l = 1/2. We also find
that for l < 1/2, when θ∗ = π/4 becomes a local maximum, there are two new branches
that are a local minimum, with a cubic dependence on l near l = 1/2.

The result that the optimal shooting angle (θ∗) for targets with l > 1/2 is π/4 is well
known, including cases where there is air drag [2]. However these past results however do
not scale the equations like we do using the relative amount of noise in shooting velocity
compared to shooting angle, and therefore do not identify the pitchfork bifurcation. Thus
θ = π/4 becomes the worst possible choice for shooting when l < 1/2, and there exist two
symmetric branches of optimal shooting angles.

Figure S7. Bifurcation diagram for best shooting strategy based on a linearization in
the neighborhood of all strategies that lead to an accurate strike. Recall that l = gL/k2

is the dimensionless distance to the target and θoptimal is the angle to shoot the target so
that launching errors are amplified the least amount.

To understand this result, we first consider the limit of the relative noise in shooting
velocity being much greater than that in the shooting angle, i.e. k � 1 ⇒ l ≈ 0. Then
the best shooting angle corresponds to zero sensitivity to fluctuations in velocity, namely
a high velocity shot with θ = 0 or θ = π/2. At the other extreme where k ≈ 0⇒ l � 1,
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i.e. when the noise in shooting angle is much larger than in shooting velocity, π/4 is the
optimal angle because that corresponds to a local maximum for projectile range, and
hence has zero sensitivity to fluctuations in shooting angle. There is a bifurcation, and
not a smooth continuous change between these two extreme cases because the problem
is symmetric about π/4 and the optimal shooting angle depends continuously on l. The
specific bifurcation point is determined by a trade off between the two sensitivities of the
shooting range to shooting angle and velocity, respectively. For small perturbations ε near
θ = π/4, the sensitivity to shooting angle is 16l2ε2 +O(ε3) and the sensitivity to shooting
velocity is −8lε2 +4l+O(ε3). Therefore, in the neighbourhood of θ = π/4 and for l ≤ 1/2,
the sensitivity to shooting velocity overpowers the sensitivity to shooting angle.
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