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Supplementary Information 

Supplementary Note 1: Simulation details  

We employ the united atoms model developed by G. Tiberio et al. for simulation of 5CB and 8CB. All the 

simulations are performed in the isothermal-isobaric (NPT) ensemble using the molecular dynamics 

package NAMD1. The temperature is controlled by a Langevin thermostat with a damping coefficient of 1 

ps-1, and the pressure is controlled by the Langevin piston Nosé-Hoover with 200 fs and 100 fs oscillation 

period and damping time scale, respectively. All simulations are carried out with a time step of 2 fs and a 

spherical cutoff of 1.2 nm for van der Waals interactions, with a switching distance of 1.0 nm. The Particle 

Mesh Ewald (PME) method with a high accuracy of 10-6 kcal/mol is used to calculate full electrostatic 

interactions.   

For reference, we simulate systems with 4000 molecules and obtain the isotropic-nematic transition 

temperature. Supplementary Figure 1 shows the nematic-isotropic transition for 5CB, 8CB, and a 50% 

5CB/8CB mixture. The transition temperature is 307, 313, and 312 K for 5CB, 8CB, and 5CB/8CB mixture, 

respectively. As expected, the 8CB transits to the nematic phase at a higher temperature than 5CB, and the 

Supplementary Figure 1. Transition temperature. Order parameter 

as a function of temperature for 5CB, 8CB, and 5CB/8CB mixture. 
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transition of the mixture happens between those of the two other systems. Note that 8CB exhibits a smectic 

phase at 300 K. 

We employ molecular dynamics (MD) simulations to simulate a 5CB/8CB mixture consisting of 8000 5CB 

and 8000 8CB molecules. The initial configuration is generated in a cuboid box by placing the center of 

mass of each 5CB and 8CB molecule into two separate FCC lattices. These lattices interpenetrate in such a 

way to form a 3D checkerboard pattern. In this configuration, each molecule has six nearest neighbors of 

opposite type. To equilibrate the initial configuration, the system is simulated for 10 ns under NPT 

conditions to reach the desired density (~ 0.950 g/cm3). The simulation is carried out at a pressure of 1 atm 

and a temperature of 350 K. The system is then cooled down to 320 K (isotropic phase) and run 100 ns to 

ensure that the 5CB and 8CB molecules are completely mixed. Finally the system is cooled down to 300 K 

at which point the system exhibits a nematic phase; we simulate it for 200 ns to transition to the nematic 

phase. The system is fully equilibrated in a cuboid simulation box with periodic boundary conditions, and 

the equilibrated box has dimensions 31×31×7 nm3. 

To create a neutral cylinder at the center of the simulation box, a repulsive potential is applied as follows: 

𝑈 = 𝐾 [1 + cos (
𝜋𝑟

𝑟𝑐
)]      𝑟 < 𝑟𝑐 

 1 

where K is the potential constant, r is the distance of atoms from the Z axis (cylinder’s axis), and rc is the 

radius of the cylinder. This potential applies a radial force to all atoms located in the cylinder with radius 

rc, and pushes all atoms located in the cylinder outwards. The cylinder is formed at the center of the 

simulation box along the Z axis, and has a radius of 5 nm. Note that the radial force is a function of distance 

from the center of the cylinder, and it is zero at the cylinder’s surface. To avoid any artificial effects due to 

the application of a high external force to the atoms, the radius of the cylinder and the potential constant 

are increased in five steps. We start with rc = 1 nm and K = 2 kcal/mol, and after each step we increase the 

radius of the cylinder by 1 nm and the potential constant by 2 kcal/mol, resulting in rc = 5 nm and K = 10 

kcal/mol. The simulation runtime for each step is 20 ns. 
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Supplementary Note 2. Calculation of Q Tensor  

The Q tensor is defined as follows: 

𝑄 =
1

2
< 3𝑢𝑢 − 𝛿 >, 

 2 

 

where u is a vector aligned with the long axis of each molecule (Supplementary Figure 2),  δ is the 

Kronecker delta, and <…> denotes an average over all molecules. According to this definition, Q is a 

symmetric and traceless tensor. The Q tensor can be diagonalized and written as follows: 

𝑄 =

(

 
 

𝑆 0 0

0
𝜇 − 𝑆
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where S is the scalar order parameter and µ is the biaxiality. The eigenvector corresponds to the largest 

eigenvalue (S order parameter) defines the nematic director n. 

To investigate the orientation of molecules locally, the simulation box is divided into small bins, and the 

local Q tensor is computed by averaging over all molecules present in each bin through the following 

expression: 

𝑄 =
1

∑ 𝑁(𝑡)𝑇
𝑡=0

 ∑∑
1

2

𝑁(𝑡)

𝑖=1

𝑇

𝑡=0

[3𝑢𝑖(𝑡) ⊗ 𝑢𝑖(𝑡) − 𝐼] 

 

 4 

 

Supplementary Figure 2. 5CB chemical structure. Schematic picture of a united atom n-cyanobiphenyl 

or nCB (with n=4-8) molecule. The gray spheres represent carbon atoms and the blue sphere shows the 

nitrogen atom. The long molecular axis is illustrated by a red arrow.      

 



 

4 of 17 
 

 

 

Where u is the long molecular axis unit vector, I is the identity matrix, N is the number of molecules in each 

bin (N ~ 10 in each bin), and T is the simulation time (T = 100 ns). The long molecular axis shown in 

Supplementary Figure 2 with vector u represents the direction of the LC molecule, and the midpoint of the 

vector is defined as the position of the molecule.  

We define two types of bin, based on the geometry of the system. The first type is a cuboid bin whose 

length in the Z direction spans the entire simulation system, and it stands parallel to the cylinder. 

Supplementary Figure 3 shows a cuboid bin with blue color and all molecules located in the bin. The second 

type is defined in polar coordinates, due to the symmetry of the system and the cylinder. In this case, 

cylindrical shells around the cylinder are divided into several bins. A polar bin is shown with green color 

in the Supplementary Figure 3. The size of each bin is adjusted to obtain a similar population of LC 

molecules in each bin (N ~ 10 in each bin). 

 

 

Supplementary Figure 3. Bins shape. Schematic picture of the simulation box and the 

shape of two bins; a cuboid bin with blue color and a bin in polar coordinate with green 

color. All the molecules located in a bin are used to calculate the local Q tensor.  
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Supplementary Note 3. Simulation of 5CB/8CB mixture in the 

absence of the homeotropic cylinder  

The standard simulation protocol involving unrestrained molecular dynamics simulations is employed to 

simulate a 5CB/8CB mixture consisting of 8000 5CB and 8000 8CB molecules in the NPT ensemble with 

periodic boundary conditions. The simulation is carried out at a pressure of 1 atm and a temperature of 300 

K. The process of equilibration is explained in simulation details section. The final configuration of the 

simulation box has dimensions 31×31×7 nm3, and the equilibrated system is run for 200 ns for data 

collection.  

In order to investigate the orientation of LC molecules locally, the simulation box is divided into 225 bins 

with dimensions 2×2×7 nm3, and the Q tensor is calculated in each bin. Using the Q tensor we can obtain 

the order parameter and nematic director at the position of each bin. Supplementary Figure 4a shows the 

top view of the simulation box. Colors represent the value of the order parameter and black lines display 

the direction of the nematic field. The order parameter is uniform throughout the simulation box, with 

average value of 0.56±0.06, indicating that the system is fully equilibrated. The nematic director field 

orients along the diagonal of the XY plane. In addition to the orientation of LC molecules, we calculate the 

local density by counting the number of LC molecules in each bin. The position of each molecule is defined 

as the midpoint of long molecular axis of LC molecule shown on Supplementary Figure 2. Based on our 

calculation the average density is 2.27 molecules/nm3 (1.022 g/cm3) in the bulk. To further study, we 

calculate the local concentration of 5CB and 8CB molecules by the following equation: 

𝜌8𝐶𝐵 − 𝜌5𝐶𝐵
𝜌8𝐶𝐵 + 𝜌5𝐶𝐵

× 100 
 5 

where 𝜌8𝐶𝐵 and 𝜌5𝐶𝐵 denote the 8CB and 5CB density, respectively. A positive value indicates a higher 

concentration of 8CB, while a negative value corresponds to a higher concentration of 5CB. Supplementary 

Figure 4b shows the concentration of 5CB and 8CB molecules in the bulk. The deviation from zero is small, 

indicating that the mixture is homogeneous. 
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Supplementary Note 4. The antiparallel arrangement of 5CB and 

8CB molecules in the mixture 

To study the arrangement of 5CB and 8CB molecules in the mixture, we calculate the radial 

distribution function (RDF) between 5CB-5CB, 8CB-8CB, and 5CB-8CB pairs in the bulk of the 

5CB/8CB mixture (Supplementary Figure 5). The pair distance is defined between the centers of 

the two vectors that describe the direction of the molecules, as shown in Supplementary Figure 2. 

The RDFs show that the average number of 5CB and 8CB molecules in the neighborhood of any 

given molecule is nearly identical, indicating that the mixture is homogeneous.  

In order to quantify the antiparallel arrangement of molecules, we calculate the dot product 

between the two vectors that define the direction of all pairs of molecules whose pair distance is 

smaller than 0.5 nm, which is the position of the first peak of the RDFs. The sum of the dot products 

over all pairs serves to measure the arrangement of the molecules; a negative value corresponds to 

Supplementary Figure 4. Bulk order parameter and concentration. (a) Top view of the simulation box. The colors represent 

the local order parameter and the black lines show the direction of the nematic field. (b) Concentration profile of 5CB and 8CB 

molecules is given by 
𝜌8𝐶𝐵−𝜌5𝐶𝐵

𝜌8𝐶𝐵+𝜌5𝐶𝐵
× 100 where 𝜌8𝐶𝐵 and 𝜌5𝐶𝐵 are the 8CB and 5CB density, respectively. A positive value shows 

a higher concentration of 8CB molecules while a negative value represents a higher concentration of 5CB molecules. The 

simulation is performed over 500 ns for equilibration and 200 ns for data collection. 
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antiparallel arrangement, while a positive value shows parallel arrangement. In the bulk of the 

5CB/8CB mixture, we find -0.354, -0.357, and -0.356 for 5CB-5CB, 8CB-8CB, and 5CB-8CB 

pairs, respectively. 

 

Supplementary Note 5. Molecular orientation near the interface 

We study the orientation of the LC molecules located in a cylindrical shell around the cylinder with 

thickness of 3 nm, by calculating the second-order Legendre polynomials defined as follow: 

𝑃2(𝑐𝑜𝑠𝜃) =<
3

2
𝑐𝑜𝑠𝜃2 −

1

2
>,  6 

 

where θ is the angle between the long molecular axis and the surface normal, and <…> denotes an average 

over all molecules located in the cylindrical shell. The value of P2 represents the orientation of molecules 

at the interface: a positive value shows perpendicular arrangement of molecules (homeotropic anchoring), 

a negative value indicates parallel arrangement (planar anchoring), and zero corresponds to the disordered 

state. For the cylinder considered here, P2 is positive, P2=0.61, indicating that the LC molecules are 

perpendicular to the cylinder’s surface and the cylinder exhibits homeotropic anchoring. To further study 

Supplementary Figure 5. Radial distribution function. 

The radial distribution function for 5CB-5CB, 8CB-8CB, 

and 5CB-8CB pairs in the bulk of 5CB/8CB mixture. 
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the orientation of the LC molecules at the interface, we calculate the distribution of 𝑐𝑜𝑠𝜃 as a function of 

distance from the cylinder’s surface. We observe two sharp peaks at 𝑐𝑜𝑠𝜃 = 1 and 𝑐𝑜𝑠𝜃 = −1 

(Supplementary Figure 6). The former peak (𝑐𝑜𝑠𝜃 = 1) corresponds to the orientation of cyano groups 

towards the bulk, and it lays slightly at lower values of 𝑧 relative to the other peak at  𝑐𝑜𝑠𝜃 = −1 . The 

latter peak at 𝑐𝑜𝑠𝜃 = −1 corresponds to the orientation of cyano groups towards the cylinder’s surface. 

These observations indicate an antiparallel arrangement of LC molecules at the interface shown in 

Supplementary Figure 7.   

 

Supplementary Figure 7. Antiparallel arrangement. Schematic representation of antiparallel arrangement of LC molecules at the 

interface. 

Supplementary Figure 6. Orientation of 5CB molecules. 

Distribution of 𝑐𝑜𝑠𝜃 as a function of distance from the 

cylinder’s surface. 𝜃 is defined as the angle between the long 

molecular axis and the surface normal. 
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Supplementary Note 6. Calculation of anchoring strength  

The surface free energy, which describes the interaction of the LCs with the surface, is defined as the 

energy required to deviate the nematic director from equilibrium direction at the interface2. The surface 

free energy is described by a Rapini-Papoular expression of the following form: 

𝐹(𝜃) = −
1

2
𝑊 cos2(𝜃 − 𝜃𝑒𝑞), 

 7 

 

Where 𝐹(𝜃) is the free energy, W is the anchoring strength, 𝜃 is the angle between the director and the 

surface normal, and 𝜃𝑒𝑞 is the equilibrium angle between the director and the surface normal. In the 

atomistic description, the interaction between surface and LC molecules is a function of distance from the 

surface. Therefore, the surface free energy should be rewritten as follow: 

𝐹(𝜃, 𝑟) = −
1

2
𝑊(𝑟) cos2(𝜃 − 𝜃𝑒𝑞) + 𝐹0(𝑟), 

 8 

Where r is the distance from the surface, and 𝐹0 is a constant. In our case, for simplicity, we consider the 

surface as a perfect homeotropic surface, 𝜃𝑒𝑞 = 0. Using the distribution of 𝑐𝑜𝑠𝜃 shown in Supplementary 

Figure 6, one can obtain the free energy at the surface with a Boltzmann weight as follows: 

𝐹(𝑐𝑜𝑠𝜃, 𝑟) = 𝑘𝐵𝑇𝑙𝑛(
𝑃(𝑐𝑜𝑠𝜃,𝑟)𝑁(𝑟)

𝐴
) + 𝐹0,  9 
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Where 𝑃(𝑐𝑜𝑠𝜃, 𝑟) is the probability of finding a molecule at a distance 𝑟 from the surface and at a given 

angle 𝜃 from the surface normal. Here 𝑁(𝑟) is the number of molecules per unit area 𝐴,  𝑘𝐵 is the Boltzmann 

constant, 𝑇 is temperature, and 𝐹0 is a constant. Fitting the surface free energy obtained from simulation to 

the Rapini-Papoular expression, we calculate the anchoring strength as a function of distance from the 

surface.  

Using the method explained above, we calculate the anchoring strength of the neutral cylinder 

(Supplementary Figure 8). The anchoring strength is in a range between 5.0×10-3 to 3.5×10-2 J/m2 within a 

3 nm distance from the interface. We observe the maximum at 1.5 nm distance from the interface where 

the first smectic layer is formed.  

Supplementary Note 7. Molecular orientation near the interface at 

temperatures above the nematic-isotropic transition  

Based on the results reported in the main text, the cylinder’s surface induces order and forms smectic layers 

around the cylinder. To study the influence of temperature on these layers, we perform two simulations at 

higher temperatures, namely 310 K and 320 K (Supplementary Figure 9). The order parameter oscillations 

around the bulk value disappear at high temperatures. However, the first high order layer around the 

cylinder is stable even at temperatures well into the isotropic phase. Note that the 5CB/8CB mixture exhibits 

a nematic and an isotropic phase at a temperature of 310 and 320 K, respectively. 

Supplementary Figure 8. Anchoring strength. Anchoring strength as a function of 

distance from cylinder’s surface. 
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Supplementary Figure 9. Order parameter at different temperatures. The local order parameter of 5CB/8CB mixture with 

homeotropic cylinder at different temperature (a) 310 K (b) 320 K.  

Supplementary Note 8. Simulation of pure 5CB with hometropic 

cylinder 

We performed molecular dynamics simulations of pure 5CB in a system consisting of 16000 5CB 

molecules. The initial configuration was generated by placing the center of mass of each 5CB 

molecule in a BC lattice. The simulation was performed at a pressure of 1 atm and a temperature 

of 350 K for 50 ns to converge the density to a target value. Then, the temperature was reduced to 

295 K where the 5CB exhibits a nematic phase; we simulated the system for 100 ns in order to 

undergo a complete transition into the nematic phase. To make a direct comparison between the 

results for a 5CB/8CB mixture and pure 5CB, we carried out the simulation at 295 K, since the 

nematic-isotropic transition temperature for 5CB is 5 K smaller than that of the mixture. The 

equilibrated box had dimensions 30×30×7 nm3. A homeotropic cylinder with radius of 5 nm was 

formed by applying an external force at the center of the simulation box. The simulation was run 
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for 500 ns after creating the cylinder, and the final 100 ns of MD simulations were used for 

calculation of averages.  

Supplementary Figure 10 shows the local order parameter, biaxiality, and density in polar 

coordinates for pure 5CB. The presence of the homeotropic cylinder breaks the symmetry and 

induces formation of two line defects, where the nematic director abruptly changes, as revealed by 

the low order parameter. The cylinder surface induces molecular order at the interface, forming 

high-order regions that exhibit an oscillatory pattern. However, these oscillations are less 

pronounced than those observed in the 5CB/8CB mixture. The value of the order parameter 

exceeds the bulk value in a region close to the surface (Supplementary Figure 10a). In contrast to 

results for the mixture, the second and third peaks in the order parameter are not particularly 

pronounced, showing that the order parameter oscillations damp faster than the oscillations in the 

mixture. The defects are localized after the first peak, and they reduce the order parameter in the 

first peak. The calculated biaxiality for pure 5CB shows a non-zero value in small regions of space 

localized at the defects (Supplementary Figure 10b). Supplementary Figure 10c shows the 

oscillation pattern for the density profile, indicating that 5CB molecules form organized layers 

around the cylinder surface. In the first layer, 5CB molecules possess both orientational and 

positional order, forming a smectic region. This observation is particularly interesting, since the 

pure 5CB molecules can’t form a smectic in the bulk. Supplementary Figure 10d shows the 

oscillations of the order parameter and density along two different directions, as shown in 

Supplementary Figure 10c. In the direction that goes through the bulk, shown in black, we observe 

similar damped oscillations for the order parameter and density; the number and frequency of the 

maxima in both curves are the same. In contrast, in the direction that goes through the defect, the 
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order parameter is significantly lower than the bulk value and the density is lower than in other 

regions located at the same distance from the surface.    

 

Supplementary Figure 10. Defect at pure 5CB. (a) Color map of local order parameter, (b) biaxiality, and (c) local number density 

for pure 5CB simulation with homeotropic cylinder. (d) Density profile and scalar order parameter as a function of distance from 

the cylinder’s surface, plotted along two directions, as shown by the two arrows in Supplementary Figure 10c. The red arrow goes 

through the defect cores, and the black arrow is perpendicular to the red arrow. 

Supplementary Note 9. Simulation of flat interfaces 
To study the effect of curvature on segregation, we also consider a flat interface. Specifically, we 

simulate 4000 5CB and 4000 8CB molecules at 300 K. The initial configuration is generated with 



 

14 of 17 
 

the same method explained in detail before. The system is fully equilibrated in a cuboid simulation 

box with periodic boundary conditions, and the equilibrated box has dimensions 11×11×30 nm3. 

Then, we increase the simulation box in the Z direction to sandwich the 5CB/8CB mixture between 

vacuum, thereby forming a film, and run the simulation in the NVT ensemble. Molecules form 

two flat interfaces with homeotropic anchoring at the two opposite sides of the film. We carry out 

the MD simulation for 400 ns for equilibration and 100 ns for data collection. 

Supplementary Figure 11 shows the concentration of 5CB and 8CB molecules as a function of 

distance for the system with the cylinder and the system with a flat interface. Note that we excluded 

the defects from our calculations for systems with a cylinder. The concentration of 5CB and 8CB 

molecules follows a damped oscillatory pattern, and continue over a length scale of almost 10 nm 

from the surface. Three maxima in the concentration of 8CB are visible for both systems. For the 

system with a cylinder, only three maxima are visible at 1.6, 4.3, and 6.9 nm from the surface, 

which correspond to the three maxima in the order parameter (main text Figure 3b). For the system 

with a flat interface, the three maxima shift to the left but their frequency is identical to that 

observed in the system with a cylinder. These results reveal that the segregation of 8CB in the high 

order region is induced by both curved and flat surfaces. In both cases, 8CB molecules form 

smectic layers in the vicinity of the interface and exclude 5CB molecules from the layers, leading 

to the segregation phenomenon reported in the manuscript. It is worth mentioning that the 

magnitude of 8CB segregation in the layers is slightly more pronounced in the system with the 

cylinder. Note that the phase separation typically happens on microsecond length scales. Here, our 

long timescale MD simulations relied on a high-performance computing cluster operated by the 
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Laboratory Computing Resource Center at Argonne National Laboratory and required more than 

one year.   

Supplementary Note 10. Continnum theory calculation of density at 

a defect 

As shown in Figure 3. of the main text, the defect has lower density than other regions within the same 

distance from the surface. In liquid crystals (LC), the hydrostatic pressure depends on the density and the 

Landau-de Gennes free energy. At constant pressure, the deviation of one of them from its bulk value has 

an influence on the other.  At the defect, where the order parameter is low the Landau-de Gennes free energy 

is higher than the bulk, density is reduced to keep the pressure constant.    

The theoretical calculations below show how the hydrostatic pressure depends on the density and the 

Landau-de Gennes free energy. 

The stress  of the LC enters Navier-Stokes equation in the following form3–5: 

 t u  u     u  u  1 3 P0  u





,
  10 

 

 

Supplementary Figure 11. Concentration at flat surface. 

Concentration of 5CB and 8CB molecules as a function of distance 

from interface. 
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where , u and  are the density, velocity and dynamic viscosity of the liquid. P0 is the isotropic pressure. 

Β and  are dummy indexes. When LC is at static, i.e. u=0, one has 

  0.
 

 11 

The stress is written in terms of the tensorial form Q6–9: 
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12 

where ,  and  are dummy indexes. F is the free energy of the LC. H is the molecular field: 

H  
F

Q











st

,

 13 

where […]st stands for a symmetric traceless operation. At static when F reaches minimum, one has H=0, 

thus 
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The isotropic pressure should be a constant in the LC. It is written as: 

P0  cs

2  FLd  FLd

0 , 15 

where cs is the speed of sound and FLd is the Landau-de Gennes free energy density2:  
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,
  16 

 

 

where U is a material parameter which determines the scalar order parameter S of the undistorted bulk LC. 

F0
Ld is the phase (Landau-de Gennes) free energy density at far field where neither distortion nor 

confinement is present (bulk). Thus 

cs

2  P0 .
  17 

It is known that the phase energy is high near or at the defect, where the scalar order parameter drops, i.e. 

FLd> F0
Ld. Consequently, ρc2

s<P0, and the density near or at the defect is lowered. 
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